簡易檢索 / 詳目顯示

研究生: 羅之昕
Tse-Hsin Lo
論文名稱: 超分子聚合物官能化二硒化錸奈米片:材料製備、性質探討與潛在電化學應用
Supramolecular Polymer-Functionalized Rhenium Diselenide Nanosheets: Preparation, Physical Properties and Potential Electrochemical Applications
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 謝永堂
Yeong-Tarng Shieh
何清華
Ching-Hwa Ho
陳建光
Jem-Kun Chen
朱哲毅
Che-Yi Chu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 139
中文關鍵詞: 超分子聚合物氫鍵二硒化錸複合材料過度金屬二硫屬化物
外文關鍵詞: Supramolecular polymer, Hydrogen bond, Rhenium Diselenide, Composite, Transition metal dichalcogenides
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

超分子聚合物能有效地剝離二維奈米材料,進而形成具有特異物理性質的
低層數奈米片,因此極具潛力拓展至不同的應用領域。本次研究中,我們成功
以簡便且有效的方法合成出一具有自身互補多重氫鍵作用力之腺嘌呤官能化親
水性高分子(AJ),並將其與二硒化錸(ReSe2)混摻後進行液相脫層,形成層
數可控之 ReSe2-AJ 複合材料。因 AJ 與 ReSe2 之間存在特定的非共價作用力,
使其能在 ReSe2 表面形成腺嘌呤誘導排列之自組裝超分子微結構,能促進 ReSe2
之脫層效果並防止其回疊,其所得之複合材料具有許多特異的物理性質,包含
高度穩定的氫鍵作用力、熱可逆的黏彈行為,以及可控的形貌與層數。此外,
當應用於析氫反應時,相較於原始 ReSe2,這些複合材料能有效增加其催化效
果及導電特性,其主因可歸於脫層的 ReSe2 奈米片能有效增加其比表面積及反
應活性位點,因此此新興開發的複合材料系統極具潛力應用於催化領域。


The supramolecular polymers can efficiently exfoliate the two-dimensional nano
materials into few-layered nanosheets with specific physical properties, which is
potential to be used in various applications. In this study, we successfully synthesized
an adenine-functionalized hydrophilic polymer (AJ) with self-complemeatary
multiple hydrogen bonding interaction by a simple and effective approach. A liquid
phase exfoliation process was applied after the mixing between AJ and rhenium
diselenide (ReSe2), in order to form a layer-tunable ReSe2-AJ composite. Due to the
present of the non-covalent interaction between AJ and ReSe2 nanosheets, AJ could be
arranged into a self-assembled supramolucular nanostructrure on the suface of ReSe2,
being able to improve the efficiency of ReSe2 exfoliation and prevent them from
restacking. The resulting ReSe2-AJ composites possessed a numbers of unique
physical properties, including highly stable hydrogen bond interaction,
thermoreversable viscoelastic behavior, tunable morphological characteristics and
layer number. Additionally, in the application of the hydrogen evolution reaction, the
composites could significantly enhance the catalytic performance and conductivity
compared to the pristine ReSe2, being attributed from the exfoliated ReSe2 nanosheets
whom’s specific area and the active edge sites could be increased substaintially. Thus,
the newly developed composite system has the great potential for the applications in
the field of catalysis.

第一章 緒論 第二章 文獻回顧 第三章 實驗材料與方法 第四章 結果與討論 第五章 結論 第六章 未來展望 第七章 參考文獻

1. Total energy consumption. 2022 2022/07/18; Available from: https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html.
2. Chu, S. and A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature, 2012. 488(7411): p. 294-303.
3. Greeley, J., et al., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 2006. 5(11): p. 909-913.
4. Zou, X.X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015. 44(15): p. 5148-5180.
5. Eftekhari, A., Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017. 42(16): p. 11053-11077.
6. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
7. 黃松勳. 二維材料的發展與應用進程. 2018; Available from: https://portal.stpi.narl.org.tw/index/article/10409.
8. Tan, C.L., et al., Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017. 117(9): p. 6225-6331.
9. Rohaizad, N., et al., Two-dimensional materials in biomedical, biosensing and sensing applications. Chemical Society Reviews, 2021. 50(1): p. 619-657.
10. Zhang, Q., et al., Highly Efficient Photocatalytic Hydrogen Evolution by ReS2 via a Two-Electron Catalytic Reaction. Advanced Materials, 2018. 30(23).
11. Chen, B., et al., 1T '-ReS2 Confined in 2D-Honeycombed Carbon Nanosheets as New Anode Materials for High-Performance Sodium-Ion Batteries. Advanced Energy Materials, 2019. 9(30).
12. Zhang, Q., et al., Thermally Induced Bending of ReS2 Nanowalls. Advanced Materials, 2018. 30(3).
13. Sim, S., et al., Ultrafast quantum beats of anisotropic excitons in atomically thin ReS2. Nature Communications, 2018. 9.
14. Gong, C.H., et al., Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides. Advanced Science, 2017. 4(12).
15. Xiong, Y., et al., Electronic and Optoelectronic Applications Based on ReS2. Physica Status Solidi-Rapid Research Letters, 2019. 13(6).
16. Arora, A., et al., Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1T '-ReSe2. Nano Letters, 2017. 17(5): p. 3202-3207.
17. Lee, K.C., et al., Analog Circuit Applications Based on All-2D Ambipolar ReSe2 Field-Effect Transistors. Advanced Functional Materials, 2019. 29(22): p. 8.
18. Ho, C.H. and Z.Z. Liu, Complete-series excitonic dipole emissions in few layer ReS(2 )and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy, 2019. 56: p. 641-650.
19. Wang, N., et al., Passively Q-switched ytterbium-doped fiber laser with ReSe2 saturable absorber. Optics and Laser Technology, 2019. 116: p. 300-304.
20. Melaku, A.Z., et al., Programmed exfoliation of hierarchical graphene nanosheets mediated by dynamic self-assembly of supramolecular polymers. Materials Chemistry Frontiers, 2021. 5(18): p. 6998-7011.
21. Melaku, A.Z., et al., Controlling the Hierarchical Structures of Molybdenum Disulfide Nanomaterials via Self-Assembly of Supramolecular Polymers in Water. Chemistry of Materials, 2022. 34(7): p. 3333-3345.
22. Wolf, K.L., Frahm, H. Harms, H, Z. Phys. Chem. (B), 1937. 36: p. 237 —287.
23. Lehn, J.M., SUPRAMOLECULAR CHEMISTRY. Science, 1993. 260(5115): p. 1762-1763.
24. Lehn, J.M., Supramolecular Chemistry: Concepts and Perspectives. 1995. ISBN 978-3527293117.
25. Kwon, T.W., J.W. Choi, and A. Coskun, Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries. Joule, 2019. 3(3): p. 662-682.
26. Mehwish, N., et al., Supramolecular fluorescent hydrogelators as bio-imaging probes. Materials Horizons, 2019. 6(1): p. 14-44.
27. Lehn, J.M., PERSPECTIVES IN SUPRAMOLECULAR CHEMISTRY - FROM MOLECULAR RECOGNITION TOWARDS MOLECULAR INFORMATION-PROCESSING AND SELF-ORGANIZATION. Angewandte Chemie-International Edition in English, 1990. 29(11): p. 1304-1319.
28. DONALD J. CRAM, J.M.C., Host-Guest Chemistry: Complexes between organic compounds simulate the substrate selectivity of enzymes. Science, 1974. 183(4127): p. 803-809.
29. Fullenkamp, D.E., et al., Mussel-Inspired Histidine-Based Transient Network Metal Coordination Hydrogels. Macromolecules, 2013. 46(3): p. 1167-1174.
30. Kim, K., Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chemical Society Reviews, 2002(36): p. 96-107.
31. Oshovsky, G.V., D.N. Reinhoudt, and W. Verboom, Supramolecular chemistry in water. Angewandte Chemie-International Edition, 2007. 46(14): p. 2366-2393.
32. Whitesides, G.M. and M. Boncheva, Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(8): p. 4769-4774.
33. Rajapaksha, R.D.A.A., Self-assembling smart materials for biomaterials applications, in Polymer Nanocomposite-Based Smart Materials. 2020, Elsevier. p. 121-147.
34. Chen, L.J. and H.B. Yang, Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. Accounts of Chemical Research, 2018. 51(11): p. 2699-2710.
35. Wang, D.D., et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nature Communications, 2020. 11(1).
36. Duan, Y., et al., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 2003. 24(16): p. 1999-2012.
37. Dereka, B., et al., Crossover from hydrogen to chemical bonding. Science, 2021. 371(6525): p. 160-+.
38. Lemonick, S. Where the hydrogen bond ends and the covalent bond begins. [Internet] 2021; Available from: https://cen.acs.org/physical-chemistry/chemical-bonding/hydrogen-bond-ends-covalent-bond/99/i2.
39. Than, J. Hydrophobic Interactions. 2020; Available from: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matter/Atomic_and_Molecular_Properties/Intermolecular_Forces/Hydrophobic_Interactions.
40. Martinez, C.R. and B.L. Iverson, Rethinking the term "pi-stacking". Chemical Science, 2012. 3(7): p. 2191-2201.
41. Michael Lewis, C.B., Laura Hardebeck, Selina Wireduaah, Modern Computational Approaches to Understanding Interactions of Aromatics, in Aromatic Interactions: Frontiers in Knowledge and Application, F.H. Darren W. Jonhson, Editor. 2016, Royal Society of Chemistry: England. p. 1-17.
42. McGaughey, G.B., M. Gagne, and A.K. Rappe, pi-stacking interactions - Alive and well in proteins. Journal of Biological Chemistry, 1998. 273(25): p. 15458-15463.
43. ; Available from: http://ir.lib.pccu.edu.tw/retrieve/68464/216-5.pdf.
44. Hunter, W.N., et al., Structure of an adenine cytosine base pair in DNA and its implications for mismatch repair. Nature, 1986. 320(6062): p. 552-555.
45. Luger, K., et al., Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 1997. 389(6648): p. 251-260.
46. Varani, G. and W.H. McClain, The G· U wobble base pair. EMBO reports, 2000. 1(1): p. 18-23.
47. Lucas, J. Genetics and Information. 2018; Available from: https://slideplayer.com/slide/13156299/.
48. Raczynska, E.D., et al., Tautomeric equilibria in relation to Pi-electron delocalization. Chemical Reviews, 2005. 105(10): p. 3561-3612.
49. Sivakova, S. and S.J. Rowan, Nucleobases as supramolecular motifs. Chemical Society Reviews, 2005. 34(1): p. 9-21.
50. Verma, S., A.K. Mishra, and A. Kumar, The Many Facets of Adenine: Coordination, Crystal Patterns, and Catalysis. Accounts of Chemical Research, 2010. 43(1): p. 79-91.
51. Kelly, R.E.A., Y.J. Lee, and L.N. Kantorovich, Homopairing possibilities of the DNA base adenine. Journal of Physical Chemistry B, 2005. 109(24): p. 11933-11939.
52. Cheng, L.X., Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110) Surfaces. Materials, 2016. 9(12).
53. Cabaj, M.K. and P.M. Dominiak, Frequency and hydrogen bonding of nucleobase homopairs in small molecule crystals. Nucleic Acids Research, 2020. 48(15): p. 8302-8319.
54. Cheng, C.C., et al., Dual stimuli-responsive supramolecular boron nitride with tunable physical properties for controlled drug delivery. Nanoscale, 2019. 11(21): p. 10393-10401.
55. Wu, C.Y., et al., Conductive Supramolecular Polymer Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions. International Journal of Molecular Sciences, 2022. 23(8).
56. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013. 5(4): p. 263-275.
57. Manzeli, S., et al., 2D transition metal dichalcogenides. Nature Reviews Materials, 2017. 2(8).
58. Toh, R.J., et al., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057.
59. 莊鎮宇, 未來的魔毯: 淺談二維材料與其大面積製程發展. 科儀新知, 2015(203): p. 72-80.
60. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
61. Lee, J., et al., Hydrogen Evolution Reaction at Anion Vacancy of Two-Dimensional Transition-Metal Dichalcogenides: Ab Initio Computational Screening. Journal of Physical Chemistry Letters, 2018. 9(8): p. 2049-2055.
62. Liu, W., et al., Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors. Nano Letters, 2013. 13(5): p. 1983-1990.
63. Cao, W., et al., 2D Semiconductor FETs-Projections and Design for Sub-10 nm VLSI. Ieee Transactions on Electron Devices, 2015. 62(11): p. 3459-3469.
64. Liu, W.J., et al., Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passive Q-switched erbium doped fiber lasers. Photonics Research, 2018. 6(10): p. C15-C21.
65. Liu, R., et al., Band Alignment Engineering in Two-Dimensional Transition Metal Dichalcogenide-Based Heterostructures for Photodetectors. Small Structures, 2021. 2(3).
66. Choudhary, N., et al., High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers. Acs Nano, 2016. 10(12): p. 10726-10735.
67. Yu, P., et al., Controllable Synthesis of Atomically Thin Type-II Weyl Semimetal WTe2 Nanosheets: An Advanced Electrode Material for All-Solid-State Flexible Supercapacitors. Advanced Materials, 2017. 29(34).
68. Cherusseri, J., et al., Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons, 2019. 4(4): p. 840-858.
69. Yuan, S.G., S.Y. Pang, and J.H. Hao, 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020. 7(2).
70. Ye, M.X., D.Y. Zhang, and Y.K. Yap, Recent Advances in Electronic and Optoelectronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides. Electronics, 2017. 6(2).
71. Shen, P.C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-+.
72. Yagmurcukardes, M., Stable anisotropic single-layer of ReTe2 : a first principles prediction. Turkish Journal of Physics, 2020. 44(5): p. 450-457.
73. Tongay, S., et al., Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nature Communications, 2014. 5.
74. Lorchat, E., G. Froehlicher, and S. Berciaud, Splitting of Interlayer Shear Modes and Photon Energy Dependent Anisotropic Raman Response in N-Layer ReSe2 and ReS2. Acs Nano, 2016. 10(2): p. 2752-2760.
75. Zhang, Q., et al., Extremely Weak van der Waals Coupling in Vertical ReS2 Nanowalls for High-Current-Density Lithium-Ion Batteries. Advanced Materials, 2016. 28(13): p. 2616-+.
76. Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
77. Li, X.B., et al., 2D Re-Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunities. Advanced Science, 2020. 7(23).
78. Hafeez, M., et al., Rhenium dichalcogenides (ReX2, X = S or Se): an emerging class of TMDs family. Materials Chemistry Frontiers, 2017. 1(10): p. 1917-1932.
79. Fadhel, M.M., et al., A Review on Rhenium Disulfide: Synthesis Approaches, Optical Properties, and Applications in Pulsed Lasers. Nanomaterials, 2021. 11(9).
80. Cao, Y.D., et al., Anisotropy of two-dimensional ReS2 and advances in its device application. Rare Metals, 2021. 40(12): p. 3357-3374.
81. Zhang, E.Z., et al., Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets. Acs Nano, 2016. 10(8): p. 8067-8077.
82. Hafeez, M., et al., Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe2 Flakes for Anisotropic Raman Property and Optoelectronic Application. Advanced Materials, 2016. 28(37): p. 8296-8301.
83. Kim, J., et al., Rhenium Diselenide (ReSe2) Near-Infrared Photodetector: Performance Enhancement by Selective p-Doping Technique. Advanced Science, 2019. 6(21).
84. Yang, S.X., et al., Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 2014. 6(13): p. 7226-7231.
85. Zhong, H.X., et al., Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Physical Review B, 2015. 92(11).
86. Qi, F., et al., Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2017. 224: p. 593-599.
87. Jiang, S.L., et al., Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Research, 2018. 11(4): p. 1787-1797.
88. Sun, Y., et al., Electrochemical activity of 1T structured rhenium selenide nanosheets via electronic structural modulation from selenium-vacancy generation. Journal of Materials Chemistry A, 2018. 6(45): p. 22526-22533.
89. Zhuang, M.H., et al., Sub-5 nm edge-rich 1T '-ReSe2 as bifunctional materials for hydrogen evolution and sodium-ion storage. Nano Energy, 2019. 58: p. 660-668.
90. Wang, R., et al., Dual-Enhanced Doping in ReSe2 for Efficiently Photoenhanced Hydrogen Evolution Reaction. Advanced Science, 2020. 7(9).
91. Wolverson, D., et al., Raman Spectra of Monolayer, Few-Layer, and Bulk ReSe2: An Anisotropic Layered Semiconductor. Acs Nano, 2014. 8(11): p. 11154-11164.
92. Hart, L.S., et al., Electronic bandstructure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy. Scientific Reports, 2017. 7.
93. Pradhan, N.R., et al., Phase Modulators Based on High Mobility Ambipolar ReSe2 Field-Effect Transistors. Scientific Reports, 2018. 8.
94. Ho, C.H., Y.S. Huang, and K.K. Tiong, In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. Journal of Alloys and Compounds, 2001. 317: p. 222-226.
95. Ajayan, P.M., et al., ALIGNED CARBON NANOTUBE ARRAYS FORMED BY CUTTING A POLYMER RESIN-NANOTUBE COMPOSITE. Science, 1994. 265(5176): p. 1212-1214.
96. Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-3431.
97. Qian, D., et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 2000. 76(20): p. 2868-2870.
98. Liaw, D.J., et al., Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 2012. 37(7): p. 907-974.
99. Huang, Z.M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
100. Eichhorn, S.J., et al., Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 2010. 45(1): p. 1-33.
101. Faruk, O., et al., Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 2012. 37(11): p. 1552-1596.
102. Coleman, J.N., et al., Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 2006. 44(9): p. 1624-1652.
103. Moniruzzaman, M. and K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006. 39(16): p. 5194-5205.
104. Liu, H., et al., Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C, 2018. 6(45): p. 12121-12141.
105. Abbasi, H., M. Antunes, and J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 2019. 103: p. 319-373.
106. Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-286.
107. Yang, N.L., et al., Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. Acs Nano, 2010. 4(2): p. 887-894.
108. Bai, H., C. Li, and G.Q. Shi, Functional Composite Materials Based on Chemically Converted Graphene. Advanced Materials, 2011. 23(9): p. 1089-1115.
109. Singh, V., et al., Graphene based materials: Past, present and future. Progress in Materials Science, 2011. 56(8): p. 1178-1271.
110. Li, T.L. and S.L.C. Hsu, Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride. Journal of Physical Chemistry B, 2010. 114(20): p. 6825-6829.
111. Yu, B., et al., Thermal exfoliation of hexagonal boron nitride for effective enhancements on thermal stability, flame retardancy and smoke suppression of epoxy resin nanocomposites via sol-gel process. Journal of Materials Chemistry A, 2016. 4(19): p. 7330-7340.
112. Yu, J.H., et al., Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer, 2012. 53(2): p. 471-480.
113. Sajedi-Moghaddam, A., E. Saievar-Iranizad, and M. Pumera, Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications. Nanoscale, 2017. 9(24): p. 8052-8065.
114. Sethulekshmi, A.S., et al., Insights into the reinforcibility and multifarious role of WS2 in polymer matrix. Journal of Alloys and Compounds, 2021. 876.
115. Ahmadi, M., et al., 2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites. Journal of Materials Chemistry A, 2020. 8(3): p. 845-883.
116. Velusamy, D.B., et al., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nature Communications, 2015. 6.
117. Shahzad, F., et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016. 353(6304): p. 1137-1140.
118. Cai, W., et al., Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: Enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane. Journal of Colloid and Interface Science, 2020. 561: p. 32-45.
119. Cai, W., et al., Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change. Journal of Hazardous Materials, 2021. 404.
120. Coleman, J.N., et al., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011. 331(6017): p. 568-571.
121. Zhang, Q.Y., et al., Intercalation and exfoliation chemistries of transition metal dichalcogenides. Journal of Materials Chemistry A, 2020. 8(31): p. 15417-15444.
122. Hu, C.X., et al., Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale, 2021. 13(2): p. 460-484.
123. Liu, T., et al., Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale, 2014. 6(19): p. 11219-11225.
124. Yin, W.Y., et al., High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. Acs Nano, 2014. 8(7): p. 6922-6933.
125. Liu, T., et al., Drug Delivery with PEGylated MoS2 Nano-sheets for Combined Photothermal and Chemotherapy of Cancer. Advanced Materials, 2014. 26(21): p. 3433-3440.
126. Cheng, L., et al., PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy. Advanced Materials, 2014. 26(12): p. 1886-1893.
127. Shen, S.D., et al., Bottom-Up Preparation of Uniform Ultrathin Rhenium Disulfide Nanosheets for Image-Guided Photothermal Radiotherapy. Advanced Functional Materials, 2017. 27(28).
128. Miao, Z.H., et al., Liquid Exfoliation of Colloidal Rhenium Disulfide Nanosheets as a Multifunctional Theranostic Agent for In Vivo Photoacoustic/CT Imaging and Photothermal Therapy. Small, 2018. 14(14).
129. Song, Y.W., et al., Promising Colloidal Rhenium Disulfide Nanosheets: Preparation and Applications for In Vivo Breast Cancer Therapy. Nanomaterials, 2022. 12(11).
130. Muhabie, A.A., et al., Non-Covalently Functionalized Boron Nitride Mediated by a Highly Self-Assembled Supramolecular Polymer. Chemistry of Materials, 2017. 29(19): p. 8513-8520.
131. Breazu, C., et al., Nucleobases thin films deposited on nanostructured transparent conductive electrodes for optoelectronic applications. Scientific Reports, 2021. 11(1): p. 7551.
132. Wen, W., et al., Anisotropic Spectroscopy and Electrical Properties of 2D ReS2(1-x)Se2x Alloys with Distorted 1T Structure. Small, 2017. 13(12).
133. Rosyadi, A.S., et al., Formation of van der Waals Stacked p-n Homojunction Optoelectronic Device of Multilayered ReSe2 by Cr Doping. Advanced Optical Materials, 2022. 10(13).
134. Yukhymchuk, V.O., et al., Structure and vibrational spectra of ReSe(2)nanoplates. Journal of Raman Spectroscopy, 2020. 51(8): p. 1305-1314.
135. Resende, G.C., et al., Effects of dimensionality and excitation energy on the Raman tensors of triclinic ReSe2. Journal of Raman Spectroscopy, 2021. 52(12): p. 2068-2080.
136. Muhabie, A.A., et al., Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical Science, 2018. 9(24): p. 5452-5460.
137. Jariwala, B., et al., Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals. Chemistry of Materials, 2016. 28(10): p. 3352-3359.
138. Tsai, C., et al., Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Physical Chemistry Chemical Physics, 2014. 16(26): p. 13156-13164.
139. Jariwala, B., A. Thamizhavel, and A. Bhattacharya, ReSe2: a reassessment of crystal structure and thermal analysis. Journal of Physics D-Applied Physics, 2017. 50(4).
140. Liu, Y.M., et al., Modulation on the electronic properties and band gap of layered ReSe2 via strain engineering. Journal of Alloys and Compounds, 2020. 827.

無法下載圖示 全文公開日期 2027/08/20 (校內網路)
全文公開日期 2027/08/20 (校外網路)
全文公開日期 2027/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE