簡易檢索 / 詳目顯示

研究生: Fasih Bintang Ilhami
Fasih Bintang Ilhami
論文名稱: Multifunctional Adenine-functionalized Supramolecular Micelles-Selective Cell Internalization and Chemotherapy against Cancer Cells
Multifunctional Adenine-functionalized Supramolecular Micelles-Selective Cell Internalization and Chemotherapy against Cancer Cells
指導教授: 高震宇
Chen-Yu Kao
鄭智嘉
Chih-Chia Cheng
口試委員: 蔡協致
Hsieh-Chih Tsai
何明樺
Ming-Hua Ho
方致元
Chih-Yuan Fang
余承佳
Cheng-Chia Yu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 130
中文關鍵詞: 腺嘌呤自組裝多功能超分子微胞氫鍵藥物傳輸選擇性內化化學光動力療法癌細胞
外文關鍵詞: Adenine, Self-assembly, Multifunctional supramolecular micelle, Hydrogen bond, Drug delivery, Selective internalization, Chemophotodynamic therapy, Cancer Cell
相關次數: 點閱:288下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今有許多治療癌症的方法,化學療法是最常被選用的的療程。傳統的化療方法有許多缺點,例如: 藥物溶解性不佳,無法專一性針對癌細胞。這些缺點造成正常細胞的傷害,也嚴重影響治療的效用與效率。藥物傳輸系統可將欲傳遞物質專一性的帶入體內特定部位。在癌症藥物的傳輸方面,奈米科技的運用,使藥物以特殊的尺寸傳遞,且可因應需求做功能上的調整,因此受到相當多的討論。其中,反饋刺激的高分子材料 (Stimuli-responsive polymeric materials, SRPMs),可在受到特定刺激時改變其結構,這樣隨外界刺激改變物理性質的特性,獲得廣泛的關注。超分子型高分子微胞(Supramolecular polymeric micelles) 因具有良好的氫鍵結構,可自組裝成具有特殊物理性質的材料,特殊性質如:可調整的親和性,高專一性,具可逆性。以氫鍵媒介組合而成的高分子,已被用於模仿細胞核內核醣核酸與去氧核醣核酸鹼基對的微結構,作為藥物傳遞系統的架構。
    在本研究中,具雙腺嘌呤端基的超分子型高分子,在經過多重氫鍵的交互作用後,可在水中或液態緩衝液中形成球狀微胞。具腺嘌呤官能基的超分子型高分子微胞 (Adenine-functionalized supramolecular polymers micelles, A-PPG micelles) 具有許多特殊的性質,例如:雙極性,可調整且可逆的感溫性相變態,球形結構,微胞大小可調控。在藥物傳輸上,酸鹼值與溫度改變可調控藥物的性質與釋放。體外細胞毒性與流式細胞分析的結果顯示,載藥微胞可有效地在不傷害正常細胞的狀況下,降低癌細胞的存活率。
    再者,A-PPG微胞,可增加藥物在水溶液中遞送至腫瘤的效率。因此此種微胞,在建構有效的癌症化療方法上,值得期待。由於微胞結構中含有 核鹼基氫鍵,包埋的藥物長期在富含血清的培養基中仍保持穩定;而在微酸性環境下,能快速釋放藥物。更重要的是,在體外細胞毒性與流式細胞分析中,可清楚的觀察到載藥的A-PPG微胞,對於癌細胞有高度專一性,且可快速地被癌細胞胞吞,誘發癌細胞凋亡;然而,正常細胞並不會胞吞A-PPG微胞,且不會影響其生長。上述結果在分別包埋兩種不同的抗癌藥物 (厚朴酚, Magnolol和阿黴素Doxorubicin) 的實驗中均可觀察到。驗證具腺嘌呤結構的A-PPG微胞可顯著提高癌細胞專一性胞吞作用與凋亡。此種特性可以增進化療的效用與安全性。
    在接續的研究中,為了讓使藥物釋放更精準,我們將5-氨基酮戊酸 (photosensitizer 5-aminolevulinic acid, 5-ALA) 結合進A-PPG微胞,使微胞具光化學治療(photo-chemotherapy) 的功能。在雷射照射下,5-胺基乙酰丙酸 (5-aminolevulinic acid,5-ALA) 可轉換為原紫質IX (protoporphyrin IX, PpIX),原紫質IX會誘導微胞產生的活性含氧物(oxygen species),進而使阿黴素的大量釋放。在體外實驗中,同時包埋阿黴素和5-氨基酮戊酸A-PPG的微胞,在雷射照射下,與未照射對照組相比,對於癌細胞有較高的細胞毒性。因此A-PPG微胞作為奈米級媒介,在提升癌症化療的安全性和效益上,有極大的潛力。


    Among the various cancer treatments that are currently available, chemotherapy is often not the best treatment option, but remains the most common choice for the majority of cancer patients. Traditional chemotherapy possesses have a range of disadvantages, including poor drug solubility, lack of target specificity and serious side-effects into physiological normal conditions that lead to extremely ineffective and efficient for cancer treatment. A drug delivery system is defined as the ability to bring an agent from outside the body to a specific targeted site in the body. As a means of delivering the chemo-drug, nanotechnology has received enormous attention due to their unique size, dynamics and addible functional moiety according to the needs. Stimuli-responsive polymeric materials (SRPMs) have received a great deal of interest as their structures and physical properties can be altered in response to a stimulus, and revert to their original structures when another stimulus is applied. Supramolecular polymeric micelles with well-defined hydrogen-bonding motifs allow the supramolecular polymer chains to rapidly self-assemble into materials with unique physical properties, such as controlled affinity, high specificity, and reversibility. Hydrogen-bonding mediated polymer assemblies have been designed to mimic the nucleobase paired nanostructures formed within Ribonucleic acid (RNA) and Deoxyribonucleic acid (DNA) could building blocks for a unique stimuli-responsive polymeric material as drug delivery system
    In the present study, supramolecular polymer containing difunctional adenine-containing end groups to form nano-spherical micelles in water and aqueous buffer solutions through multiple hydrogen-bonding interactions. Adenine-functionalized supramolecular polymers (A-PPG) micelles exhibits a number of interesting properties, including unique amphiphilic behavior, tunable and reversible thermo-responsive phase transitions, desirable spherical morphology and controllable size, as well as tunable drug-loading properties and well-controlled drug release capability by pH and thermos-responsive. In vitro cytotoxicity assays and flow cytometry demonstrated that drug-loaded micelles could potentially be employed to selectively and effectively deliver drugs to cancer cells and rapidly reduce tumor cell viability, without harming normal cells. Second, adenine-functionalized supramolecular polymers (A-PPG) in aqueous solution enhance the efficiency of drug delivery to solid tumors in order to further advance supramolecular polymer micelles as a promising platform for efficient cancer chemotherapy. Due to the presence of nucleobase hydrogen bonding within the structure of the micelles, drug-loaded A-PPG micelles exhibit long-term drug-entrapment stability in serum-rich media and rapid drug release under mildly acidic conditions. Importantly, cytotoxicity assays and flow cytometric analysis clearly demonstrated that the drug-loaded A-PPG micelles were highly selectively and rapidly endocytosed by cancer cells and effectively triggered apoptotic tumor cell death, but were not internalized and did not affect the cell viability of normal cells. The same effects were observed using two different anticancer drugs, indicating that the adenine moieties within A-PPG significantly increased the tumor-selective cellular uptake and cytotoxicity of supramolecular micelles, substantially enhanced the response to chemotherapy and could improve the safety and effectiveness of the cancer treatment.
    For the next studies, to enable high levels of well-controlled drug release in cancer cells, incorporation of photosensitizer 5-aminolevulinic acid (5-ALA) within adenine-functionalized supramolecular micelles (A-PPG) to achieve effective drug delivery combined with photo-chemotherapy. Under laser irradiation, the generate of reactive oxygen species generation of DOX/5-ALA-loaded A-PPG micelles due to triggered by PpIX converted from ALA in micelles, thereby promoting the burst release of DOX from micellar. In vitro assay demonstrated that treatment with double cargo of DOX/5-ALA-loaded A-PPG micelle under laser irradiation is higher cytotoxicity than non-irradiated in cancer cell and effectively induced apoptotic cell death via endocytosis. Thus, developed Adenine-functionalized supramolecular polymers (A-PPG) micelles has great potential as nanovector to improve the safety and efficacy of cancer chemotherapy.

    CHINESE ABSTRACT ........................................................................................ i ABSTRACT ................................................................................................... iii ACKNOWLEDGMENTS ............................................................................. v TABLE OF CONTENS ................................................................................. vi ABBREVIATIONS ........................................................................................ viii LIST OF FIGURES ....................................................................................... x LIST OF TABLES ......................................................................................... xv LIST OF SCHEMES ..................................................................................... xvi CHAPTER-1 .................................................................................................. 1 1. Introduction ................................................................................................. 1 1.1 Background ................................................................................................ 1 1.2 Objectives of the Thesis ............................................................................. 3 1.3 Materials, Reagents and Instruments .......................................................... 4 1.3.1 Materials and Reagents ...................................................................... 4 1.3.2 Instruments ........................................................................................ 5 1.3.3 Statistical Analysis ............................................................................ 5 CHAPTER-2 .................................................................................................. 7 2. Literature Review ........................................................................................ 7 2.1 Overview of Cancer ................................................................................... 6 2.2 Therapeutic of Cancer Modalities ............................................................... 12 A. Surgery .................................................................................................. 12 B. Radiation Therapy ......................................................................................... 12 C. Chemotherapy ....................................................................................... 13 D. Hyperthermia Therapy ........................................................................... 14 E. Immunotherapy ...................................................................................... 14 F. Role of Stem Cells in Cancer Treatment ................................................. 16 G. Photodynamic Therapy .......................................................................... 16 2.3 Nanomedicine in Cancer Therapy .............................................................. 17 2.3.1 Principle of Nanomedicine ...................................................................... 17 2.3.2 Advanced Functionalities Nanomedicine in Cancer Therapy ................... 19 2.4 Nanocarrier for Cancer Therapy ................................................................. 21 2.4.1 Liposomes ............................................................................................... 21 2.4.2 Dendrimers ............................................................................................. 22 2.4.3 Polymers ................................................................................................. 22 2.4.4 Micelles .................................................................................................. 23 2.4.5 Stimuli-responsive Polymeric Micelles.................................................... 24 2.5 Functional Systems Derived from Nucleobase Self-Assembly for Drug Delivery ....................................................................................... 27 2.6 Adenine-functionalized Supramolecular Micelles ....................................... 29 CHAPTER-3 .................................................................................................. 31 3. Experimental Methods ................................................................................. 31 3.1 Synthesis of Adenine-functionalized polypropylene glycol (A-PPG) .......... 31 3.2 Synthesis of Uracil-functionalized polypropylene glycol (U-PPG) ............. 31 3.3 Critical micelle concentration (CMC) ......................................................... 31 3.4 Dynamic Light Scattering (DLS) and Zeta Potentials ................................. 32 3.5 Transmittance measurements and determination of LCST .......................... 32 3.6 Atomic Force Microscopy (AFM) .............................................................. 32 3.7 Preparation of Magnolol/DOX-loaded supramolecular micelles ................. 32 3.7.1 Encapsulation of Magnolol-loaded Supramolecular Micelles ................... 32 3.7.2 Encapsulation of DOX-loaded Supramolecular Micelles ......................... 33 3.7.3 Encapsulation of 5-ALA-loaded Supramolecular Micelles....................... 33 3.8 In vitro Drugs Release Assay ..................................................................... 34 3.9 Long-term Kinetic Stability ........................................................................ 34 3.10 Cell culture .............................................................................................. 35 3.11 In vitro cytotoxicity studies ...................................................................... 35 3.12 Analysis of cellular uptake by confocal laser scanning microscopy .......... 36 3.13 Intracellular ROS assay ............................................................................ 36 3.14 Detection of Fluorescence Intensity by Flow Cytometry ........................... 37 3.15 Flow Cytometric Analysis of Apoptosis by Annexin V/PI Double Staining ......................................................................................... 37 CHAPTER-4 .................................................................................................. 38 4. Multifunctional Adenine-Functionalized Supramolecular Micelles for Highly Selective and Effective Cancer Chemotherapy ............................................. 38 4.1 Introduction ............................................................................................... 38 4.2 Result and Discussion ................................................................................ 41 4.3 Conclusion ................................................................................................. 49 CHAPTER-5 .................................................................................................. 51 5. Adenine-Functionalized Supramolecular Micelles for Selective Cancer Chemotherapy ............................................................................................. 51 5.1 Introduction ............................................................................................... 51 5.2 Result and Discussion ................................................................................ 54 5.3 Conclusion ................................................................................................. 63 CHAPTER-6 .................................................................................................. 65 6. Multifunctional Light-Triggered Supramolecular Micelles with Enhanced Controlled Drug Release and Improved Chemotherapeutic Efficacy ............ 65 6.1 Introduction ............................................................................................... 65 6.2 Result and Discussion ................................................................................ 69 6.3 Conclusions ............................................................................................... 78 CHAPTER-7 .................................................................................................. 79 7. Summary and Outlook ................................................................................. 79 7.1 Summary.................................................................................................... 79 7.2 Outlook ...................................................................................................... 79 REFERENCE................................................................................................. 81 APPENDIX .................................................................................................... 99 Supportive Information ................................................................................. 99 Publications .................................................................................................... 110

    1. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer. 2007;7(11):834-46.
    2. National Cancer Control Programmes. Policies and management guidelines Geneva, World Health Organization. 1995.
    3. Organization WH. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. International Agency For Research on Cancer. 2018.
    4. Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev. 2020;40(1):54-78.
    5. Ma A, Zhang R. Facile synthesis of redox-responsive paclitaxel drug release platform using metal-organic frameworks (ZIF-8) for gastric cancer treatment. Materials Research Express. 2020;7(9).
    6. Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience. 2013;4(4):385-92.
    7. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: An updated review. Int J Pharm Investig. 2012;2(1):2-11.
    8. Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771-82.
    9. Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. A framework for designing delivery systems. Nat Nanotechnol. 2020;15(10):819-29.
    10. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O'Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. The Lancet Oncology. 2006;7(8):657-67.
    11. Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol. 2005;288(4):F605-13.
    12. Aghebati-Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol.2020;235(3):1962-72.
    13. Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm. 2015;12(2):314-21.
    14. Dong Z, Feng L, Hao Y, Chen M, Gao M, Chao Y, et al. Synthesis of Hollow Biomineralized CaCO3-Polydopamine Nanoparticles for Multimodal Imaging-Guided Cancer Photodynamic Therapy with Reduced Skin Photosensitivity. J Am Chem Soc. 2018;140(6):2165-78.
    15. Gong MQ, Wu JL, Chen B, Zhuo RX, Cheng SX. Self-assembled polymer/inorganic hybrid nanovesicles for multiple drug delivery to overcome drug resistance in cancer chemotherapy. Langmuir. 2015;31(18):5115-22.
    16. Fox JD, Rowan SJ. Supramolecular Polymerizations and Main-Chain Supramolecular Polymers. Macromolecules. 2009;42(18):6823-35.
    17. Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Macroscopic self-assembly through molecular recognition. Nat Chem. 2011;3(1):34-7.
    18. Cheng CC, Chang FC, Kao WY, Hwang SM, Liao LC, Chang YJ, et al. Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation. Acta Biomater. 2016;33:194-202.
    19. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991-1003.
    20. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187-204.
    21. Follain G, Osmani N, Azevedo AS, Allio G, Mercier L, Karreman MA, et al. Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells. Dev Cell. 2018;45(1):33-52 e12.
    22. Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res. 2017;62(1).
    23. Heng HH, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ. The evolutionary mechanism of cancer. J Cell Biochem. 2010;109(6):1072-84.
    24. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism.Cell Metab. 2016;23(1):27-47.
    25. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127(4):679-95.
    26. J. L. Wike-Hooley JHaHSR. The relevance of tumour pH to the treatment of malignant disease. Radiotherapy and Oncology. 1984;343 366.
    27. White KA, Grillo-Hill BK, Barber DL. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J Cell Sci. 2017;130(4):663-9.
    28. Parks SK, Pouyssegur J. The Na(+)/HCO3(-) Co-Transporter SLC4A4 Plays a Role in Growth and Migration of Colon and Breast Cancer Cells. J Cell Physiol. 2015;230(8):1954-63.
    29. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer. 2011;11(9):671-7.
    30. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11-20.
    31. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298-307.
    32. Russo MM, Sundaramurthi T. An Overview of Cancer Pain: Epidemiology and Pathophysiology. Semin Oncol Nurs. 2019;35(3):223-8.
    33. Ames BN GL, Willett WC. The causes and prevention of cancer. Proceedings of the National Academy of Sciences. 1995;92(12):5258-5265.
    34. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med. 2010;31(2):145-70.
    35. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338-45.
    36. Wu H-C CD-K, Huang C-T. Targeted therapy for cancer. Journal of Cancer Molecules. 2006;(2):57-66.
    37. Abbas Z, Rehman S. An Overview of Cancer Treatment Modalities. Neoplasm.2018.
    38. E. van der Schueren KK, I. Cleemput. Federation of European Cancer Societies. Full Report. Economic evaluation in cancer care: questions and answers on how to alleviate con¯icts between rising needs and expectations and tightening budgets. European Journal of Cancer. 1999;36 (2000) 13-36.
    39. Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol. 2018;9:1300.
    40. Farrelly J, McEntee MC. Principles and applications of radiation therapy. Clin Tech Small Anim Pract. 2003;18(2):82-7.
    41. Brada M, et al. Modifying Radical Radiotherapy in High Grade Gliomas; Shortening The Treatment Time Through Acceleration. International Journal of Radiation Oncology Biology Physics. 1998;Vol. 43, No. 2, pp. 287–292.
    42. DeVita VT, Jr., Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68(21):8643-53.
    43. Bhosle J, Hall G. Principles of cancer treatment by chemotherapy. Surgery (Oxford). 2009;27(4):173-7.
    44. Rodgers GM. Cancer-and chemotherapy-induced anemia. Journal of the National Comprehensive Cancer Network. 2012;10(5):628-653.
    45. Kowalczyk DW WP, Mackiewicz A. Cancer immunotherapy using cells modified with cytokine genes. Acta Biochim Pol. 2003;50:613-624.
    46. Nawrocki S WP, Mackiewicz A. Genetically modified tumor vaccines: an obstacle race to break host tolerance to cancer. Expert Opin Biol Ther. 2001;1:193-204.
    47. Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279-330.
    48. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-Cell Lymphoma with Monoclonal Anti-Idiotype Antibody. N Engl J Med. 1982;306(9):517-22.
    49. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895-902.
    50. Felsher DW. Cancer revoked: oncogenes as therapeutic targets. Nat RevCancer. 2003;3(5):375-80.
    51. Epstein JH. Phototherapy and photochemotherapy. N Engl J Med. 1990;322, 1149–1151.
    52. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311-30.
    53. Freitas RA, Jr. What is nanomedicine? Nanomedicine. N Nano. Bio and Med. 2005;1(1):2-9.
    54. Zhang L GF, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5), 761–769.
    55. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315-499.
    56. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138-57.
    57. P.L. Golden JH, W.M. Pardridge. Treatment of large solid tumors in mice with daunomycin-loaded sterically stabilized liposomes. Drug Deliv. 1998;207–212.
    58. Detampel P, Witzigmann D, Krahenbuhl S, Huwyler J. Hepatocyte targeting using pegylated asialofetuin-conjugated liposomes. J Drug Target. 2014;22(3):232-41.
    59. Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release. 2014;190:352-70.
    60. B.M. Dicheva GAK. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin Drug Deliv. 2014;11 83–100.
    61. Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release. 2011;153(1):4-15.
    62. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers.Nat Rev Drug Discov. 2005;4(2):145-60.
    63. AA. G. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest. 2001;19: 424–36.
    64. Lee CC, MacKay JA, Frechet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23(12):1517-26.
    65. Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicine--an overview. Fundam Clin Pharmacol. 2009;23(3):263-9.
    66. Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep. 2017;38(2):611-24.
    67. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007;25(10):1149-57.
    68. Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10(10):767-77.
    69. Gao GH, Li Y, Lee DS. Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. J Control Release. 2013;169(3):180-4.
    70. Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184-202.
    71. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61(10):768-84.
    72. Chen W MF, Li F, Ji SJ, Zhong Z. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release. Biomacromolecules. 2009;10(7):1727-35.
    73. Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30(12):2180-98.
    74. Talelli M, Hennink WE. Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine (Lond). 2011;6(7):1245-55.
    75. Wang Q, Tang H, Wu P. Aqueous Solutions of Poly(ethylene oxide)-Poly(N-isopropylacrylamide): Thermosensitive Behavior and Distinct Multiple Assembly Processes. Langmuir. 2015;31(23):6497-506.
    76. Fan W, Wang Y, Dai X, Shi L, McKinley D, Tan C. Reduction-responsive crosslinked micellar nanoassemblies for tumor-targeted drug delivery. Pharm Res. 2015;32(4):1325-40.
    77. Gohy JF, Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chem Soc Rev. 2013;42(17):7117-29.
    78. Huang Y, Dong R, Zhu X, Yan D. Photo-responsive polymeric micelles. Soft Matter. 2014;10(33):6121-38.
    79. Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M. Injectable Superparamagnetic Ferrogels for Controlled Release of Hydrophobic Drugs. Advanced Materials. 2009;21(13):1354-7.
    80. Husseini GA, Pitt WG. The use of ultrasound and micelles in cancer treatment. J Nanosci Nanotechnol. 2008;8(5):2205-15.
    81. Li J, Wang Z, Hua Z, Tang C. Supramolecular nucleobase-functionalized polymers: synthesis and potential biological applications. J Mater Chem B. 2020;8(8):1576-88.
    82. Harguindey A, Domaille DW, Fairbanks BD, Wagner J, Bowman CN, Cha JN. Synthesis and Assembly of Click-Nucleic-Acid-Containing PEG-PLGA Nanoparticles for DNA Delivery. Adv Mater. 2017;29(24).
    83. Gebeyehu BT, Lee A-W, Huang S-Y, Muhabie AA, Lai J-Y, Lee D-J, et al. Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. European Polymer Journal. 2019;110:403-12.
    84. Cheng CC, Gebeyehu BT, Huang SY, Abebe Alemayehu Y, Sun YT, Lai YC, et al. Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior. J Colloid Interface Sci. 2019;552:166-78.
    85. Muhabie AA, Ho CH, Gebeyehu BT, Huang SY, Chiu CW, Lai JY, et al. Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chem Sci. 2018;9(24):5452-60.
    86. Muhabie AA, Cheng C-C, Huang J-J, Liao Z-S, Huang S-Y, Chiu C-W, et al. Non-Covalently Functionalized Boron Nitride Mediated by a Highly Self-Assembled Supramolecular Polymer. Chemistry of Materials.2017;29(19):8513-20.
    87. Xu W, Qian J, Hou G, Wang Y, Wang J, Sun T, et al. PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer. Acta Biomater. 2018;82:171-83.
    88. Wu J, Han H, Jin Q, Li Z, Li H, Ji J. Design and Proof of Programmed 5-Aminolevulinic Acid Prodrug Nanocarriers for Targeted Photodynamic Cancer Therapy. ACS Appl Mater Interfaces. 2017;9(17):14596-605.
    89. Kim DH, Hwang HS, Na K. Photoresponsive Micelle-Incorporated Doxorubicin for Chemo-Photodynamic Therapy to Achieve Synergistic Antitumor Effects. Biomacromolecules. 2018;19(8):3301-10.
    90. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213-25.
    91. Cui Y, Sui J, He M, Xu Z, Sun Y, Liang J, et al. Reduction-Degradable Polymeric Micelles Decorated with PArg for Improving Anticancer Drug Delivery Efficacy. ACS Appl Mater Interfaces. 2016;8(3):2193-203.
    92. Lim YB, Moon KS, Lee M. Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev. 2009;38(4):925-34.
    93. Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release. 2012;161(2):473-83.
    94. Zhang Z, Chen X, Chen L, Yu S, Cao Y, He C, et al. Intracellular pH-sensitive PEG-block-acetalated-dextrans as efficient drug delivery platforms. ACS Appl Mater Interfaces. 2013;5(21):10760-6.
    95. Li H, Cui Y, Sui J, Bian S, Sun Y, Liang J, et al. Efficient Delivery of DOX to Nuclei of Hepatic Carcinoma Cells in the Subcutaneous Tumor Model Using pH-Sensitive Pullulan-DOX Conjugates. ACS Appl Mater Interfaces. 2015;7(29):15855-65.
    96. Yan J, Ye Z, Chen M, Liu Z, Xiao Y, Zhang Y, et al. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(epsilon-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Biomacromolecules.2011;12(7):2562-72.
    97. Guo X, Li D, Yang G, Shi C, Tang Z, Wang J, et al. Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl Mater Interfaces. 2014;6(11):8549-59.
    98. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136-51.
    99. Jiang D, Mu W, Pang X, Liu Y, Zhang N, Song Y, et al. Cascade Cytosol Delivery of Dual-Sensitive Micelle-Tailored Vaccine for Enhancing Cancer Immunotherapy. ACS Appl Mater Interfaces. 2018;10(44):37797-811.
    100. Kuang H, Wu Y, Zhang Z, Li J, Chen X, Xie Z, et al. Double pH-responsive supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases and acetalated dextran for drug delivery. Polymer Chemistry. 2015;6(19):3625-33.
    101. Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7(1):53-65.
    102. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273-89.
    103. Liao ZS, Huang SY, Huang JJ, Chen JK, Lee AW, Lai JY, et al. Self-Assembled pH-Responsive Polymeric Micelles for Highly Efficient, Noncytotoxic Delivery of Doxorubicin Chemotherapy To Inhibit Macrophage Activation: In Vitro Investigation. Biomacromolecules. 2018;19(7):2772-81.
    104. Hu X, Zhang Y, Xie Z, Jing X, Bellotti A, Gu Z. Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules. 2017;18(3):649-73.
    105. Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal. 2014;21(5):755-67.
    106. Ma L, Geng H, Song J, Li J, Chen G, Li Q. Hierarchical self-assembly of polyhedral oligomeric silsesquioxane end-capped stimuli-responsive polymer: from single micelle to complex micelle. J Phys Chem B.2011;115(36):10586-91.
    107. Gebeyehu BT, Huang S-Y, Lee A-W, Chen J-K, Lai J-Y, Lee D-J, et al. Dual Stimuli-Responsive Nucleobase-Functionalized Polymeric Systems as Efficient Tools for Manipulating Micellar Self-Assembly Behavior. Macromolecules. 2018;51(3):1189-97.
    108. Cheng C-C, Liao Z-S, Huang J-J, Lee D-J, Chen J-K. Supramolecular polymer micelles as universal tools for constructing high-performance fluorescent nanoparticles. Dyes and Pigments. 2017;137:284-92.
    109. Fan J, Zeng F, Wu S, Wang X. Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules. 2012;13(12):4126-37.
    110. Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647-57.
    111. Yang HY, Jang M-S, Gao GH, Lee JH, Lee DS. Construction of redox/pH dual stimuli-responsive PEGylated polymeric micelles for intracellular doxorubicin delivery in liver cancer. Polymer Chemistry. 2016;7(9):1813-25.
    112. Wang D, Jin Y, Zhu X, Yan D. Synthesis and applications of stimuli-responsive hyperbranched polymers. Progress in Polymer Science. 2017;64:114-53.
    113. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science. 2007;32(8-9):962-90.
    114. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. The Lancet Oncology. 2002;3(8):487-97.
    115. Cheng C-C, Huang J-J, Muhable AA, Liao Z-S, Huang S-Y, Lee S-C, et al. Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior. Polymer Chemistry. 2017;8(15):2292-8.
    116. Cheng C-C, Lee D-J, Liao Z-S, Huang J-J. Stimuli-responsive single-chain polymeric nanoparticles towards the development of efficient drug deliverysystems. Polymer Chemistry. 2016;7(40):6164-9.
    117. Cheng C-C, Wang J-H, Chuang W-T, Liao Z-S, Huang J-J, Huang S-Y, et al. Dynamic supramolecular self-assembly: hydrogen bonding-induced contraction and extension of functional polymers. Polymer Chemistry. 2017;8(21):3294-9.
    118. Dai S, Tam KC. Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly(propylene glycol)s and sodium dodecyl sulfate. Langmuir. 2004;20(6):2177-83.
    119. Honda S, Yamamoto T, Tezuka Y. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nat Commun. 2013;4:1574.
    120. Wang YJ, Chien YC, Wu CH, Liu DM. Magnolol-loaded core-shell hydrogel nanoparticles: drug release, intracellular uptake, and controlled cytotoxicity for the inhibition of migration of vascular smooth muscle cells. Mol Pharm. 2011;8(6):2339-49.
    121. Lee DH, Szczepanski MJ, Lee YJ. Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem. 2009;106(6):1113-22.
    122. Ou HC, Chou FP, Sheu WH, Hsu SL, Lee WJ. Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells. Arch Toxicol. 2007;81(6):421-32.
    123. Chen LC, Lee WS. P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo. J Agric Food Chem. 2013;61(11):2811-9.
    124. Yang SE, Hsieh MT, Tsai TH, Hsu SL. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol. 2003;138(1):193-201.
    125. Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res. 2003;531(1-2):231-51.
    126. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6(6):714-29.
    127. Z. Ahmad AS, M. Siddiq, H.-B. Kraatz. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;17028–17038.
    128. Cai C, Li Y, Lin J, Wang L, Lin S, Wang XS, et al. Simulation-assisted self-assembly of multicomponent polymers into hierarchical assemblies with varied morphologies. Angew Chem Int Ed Engl. 2013;52(30):7732-6.
    129. Wang A, Huang J, Yan Y. Hierarchical molecular self-assemblies: construction and advantages. Soft Matter. 2014;10(19):3362-73.
    130. C. Rest RK, G. Fernández. Strategies to create Hierarchical Self-Assembled Structures via Cooperative Non-covalent Interactions. Chem Soc Rev. 2015;44, 2543–2572.
    131. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl. 2003;42(38):4640-3.
    132. Wei T, Liu J, Ma H, Cheng Q, Huang Y, Zhao J, et al. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 2013;13(6):2528-34.
    133. Liu D, Poon C, Lu K, He C, Lin W. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy. Nat Commun. 2014;5:4182.
    134. Chen WH, Luo GF, Lei Q, Jia HZ, Hong S, Wang QR, et al. MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chem Commun (Camb). 2015;51(3):465-8.
    135. Groschel AH, Schacher FH, Schmalz H, Borisov OV, Zhulina EB, Walther A, et al. Precise hierarchical self-assembly of multicompartment micelles. Nat Commun. 2012;3:710.
    136. Fan X, Li Z, Loh XJ. Recent development of unimolecular micelles as functional materials and applications. Polymer Chemistry. 2016;7(38):5898-919.
    137. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37.
    138. Paulmurugan R, Bhethanabotla R, Mishra K, Devulapally R, Foygel K, Sekar TV, et al. Folate Receptor-Targeted Polymeric Micellar Nanocarriers for Delivery of Orlistat as a Repurposed Drug against Triple-Negative BreastCancer. Mol Cancer Ther. 2016;15(2):221-31.
    139. Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release. 2017;248:96-116.
    140. Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release. 2017;258:226-53.
    141. Wang Z, Deng X, Ding J, Zhou W, Zheng X, Tang G. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review. Int J Pharm. 2018;535(1-2):253-60.
    142. Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y. Multi-Stimuli-Responsive Polymeric Materials. Chemistry. 2015;21(38):13164-74.
    143. Mozhi A, Sunil V, Zhan W, Ghode PB, Thakor NV, Wang CH. Enhanced penetration of pro-apoptotic and anti-angiogenic micellar nanoprobe in 3D multicellular spheroids for chemophototherapy. J Control Release. 2020;323:502-18.
    144. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W, et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(1):e1527.
    145. Hu J, Zhang X, Wang D, Hu X, Liu T, Zhang G, et al. Ultrasensitive ratiometric fluorescent pH and temperature probes constructed from dye-labeled thermoresponsive double hydrophilic block copolymers. Journal of Materials Chemistry. 2011;21(47).
    146. Koo H, Lee H, Lee S, Min KH, Kim MS, Lee DS, et al. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun (Camb). 2010;46(31):5668-70.
    147. Abebe Alemayehu Y, Tewabe Gebeyehu B, Cheng CC. Photosensitive Supramolecular Micelles with Complementary Hydrogen Bonding Motifs To Improve the Efficacy of Cancer Chemotherapy. Biomacromolecules. 2019;20(12):4535-45.
    148. Cheng CC, Muhabie AA, Huang SY, Wu CY, Gebeyehu BT, Lee AW, et al. Dual stimuli-responsive supramolecular boron nitride with tunable physicalproperties for controlled drug delivery. Nanoscale. 2019;11(21):10393-401.
    149. Bintang Ilhami F, Huang S-Y, Chen J-K, Kao C-Y, Cheng C-C. Multifunctional adenine-functionalized supramolecular micelles for highly selective and effective cancer chemotherapy. Polymer Chemistry. 2020;11(4):849-56.
    150. Vermes IH, C.; Steffens-Nakken, H.; Reutellingsperger, C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184, 39–51.
    151. Van Engeland MN, L.J.; Ramaekers, F.C.; Schutte, B.; Reutelingsperger, C.P. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31, 1–9.
    152. Zhen S, Yi X, Zhao Z, Lou X, Xia F, Tang BZ. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials. 2019;218:119330.
    153. Zhu LZ, Z.; Mao, H.; Yang, L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine. 2017;12, 73–87.
    154. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-26.
    155. Wang Y, Yang M, Qian J, Xu W, Wang J, Hou G, et al. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer. Carbohydr Polym. 2019;203:203-13.
    156. Wang T, Wang D, Yu H, Wang M, Liu J, Feng B, et al. Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug-Resistant Tumor. ACS Nano. 2016;10(3):3496-508.
    157. Soenen SJ, Demeester J, De Smedt SC, Braeckmans K. Turning a frown upside down: Exploiting nanoparticle toxicity for anticancer therapy. Nano Today. 2013;8(2):121-5.
    158. De Vera AA, Reznik SE. Combining PI3K/Akt/mTOR Inhibition WithChemotherapy. Protein Kinase Inhibitors as Sensitizing Agents for Chemotherapy. 2019. p. 229-42.
    159. Yokoi K, Tanei T, Godin B, van de Ven AL, Hanibuchi M, Matsunoki A, et al. Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer Lett. 2014;345(1):48-55.
    160. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52-67.
    161. Cheng C-C, Sun Y-T, Lee A-W, Huang S-Y, Fan W-L, Chiao Y-H, et al. Self-Assembled Supramolecular Micelles with pH-Responsive Properties for More Effective Cancer Chemotherapy. ACS Biomaterials Science & Engineering. 2020;6(7):4096-105.
    162. Guo Z, Sui J, Ma M, Hu J, Sun Y, Yang L, et al. pH-Responsive charge switchable PEGylated epsilon-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J Control Release. 2020;326:350-64.
    163. Liu L, Wang R, Wang C, Wang J, Chen L, Cheng J. Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy. Biomater Sci. 2018;6(5):997-1001.
    164. Harnoy AJ, Buzhor M, Tirosh E, Shaharabani R, Beck R, Amir RJ. Modular Synthetic Approach for Adjusting the Disassembly Rates of Enzyme-Responsive Polymeric Micelles. Biomacromolecules. 2017;18(4):1218-28.
    165. Phua SZF, Xue C, Lim WQ, Yang G, Chen H, Zhang Y, et al. Light-Responsive Prodrug-Based Supramolecular Nanosystems for Site-Specific Combination Therapy of Cancer. Chemistry of Materials. 2019;31(9):3349-58.
    166. Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. Adv Mater. 2010;22(44):4925-43.
    167. Cho HJ, Chung M, Shim MS. Engineered photo-responsive materials for near-infrared-triggered drug delivery. Journal of Industrial and Engineering Chemistry. 2015;31:15-25.
    168. Alemayehu YA, Fan WL, Ilhami FB, Chiu CW, Lee DJ, Cheng CC.Photosensitive Supramolecular Micelle-Mediated Cellular Uptake of Anticancer Drugs Enhances the Efficiency of Chemotherapy. Int J Mol Sci. 2020;21(13).
    169. Kamkaew A, Cheng L, Goel S, Valdovinos HF, Barnhart TE, Liu Z, et al. Cerenkov Radiation Induced Photodynamic Therapy Using Chlorin e6-Loaded Hollow Mesoporous Silica Nanoparticles. ACS Appl Mater Interfaces. 2016;8(40):26630-7.
    170. Pinto da Silva L, Magalhaes CM, Nunez-Montenegro A, Ferreira PJO, Duarte D, Rodriguez-Borges JE, et al. Study of the Combination of Self-Activating Photodynamic Therapy and Chemotherapy for Cancer Treatment. Biomolecules. 2019;9(8).
    171. Pinto da Silva L, Nunez-Montenegro A, Magalhaes CM, Ferreira PJO, Duarte D, Gonzalez-Berdullas P, et al. Single-molecule chemiluminescent photosensitizer for a self-activating and tumor-selective photodynamic therapy of cancer. Eur J Med Chem. 2019;183:111683.
    172. Hamblin MR. Upconversion in photodynamic therapy: plumbing the depths. Dalton Trans. 2018;47(26):8571-80.
    173. Song C, Li Y, Li T, Yang Y, Huang Z, de la Fuente JM, et al. Long‐Circulating Drug‐Dye‐Based Micelles with Ultrahigh pH‐Sensitivity for Deep Tumor Penetration and Superior Chemo‐Photothermal Therapy. Advanced Functional Materials. 2020;30(11).
    174. He S, Krippes K, Ritz S, Chen Z, Best A, Butt HJ, et al. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem Commun (Camb). 2015;51(2):431-4.
    175. Wu S, Butt HJ. Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles. Adv Mater. 2016;28(6):1208-26.
    176. Bagheri A, Arandiyan H, Boyer C, Lim M. Lanthanide-Doped Upconversion Nanoparticles: Emerging Intelligent Light-Activated Drug Delivery Systems. Adv Sci (Weinh). 2016;3(7):1500437.
    177. Liu B, Li C, Chen G, Liu B, Deng X, Wei Y, et al. Synthesis and Optimization of MoS2@Fe3O4-ICG/Pt(IV) Nanoflowers for MR/IR/PA Bioimaging and Combined PTT/PDT/Chemotherapy Triggered by 808 nm Laser. Adv Sci(Weinh). 2017;4(8):1600540.
    178. Pandya AD, Overbye A, Sahariah P, Gaware VS, Hogset H, Masson M, et al. Drug-Loaded Photosensitizer-Chitosan Nanoparticles for Combinatorial Chemo- and Photodynamic-Therapy of Cancer. Biomacromolecules. 2020;21(4):1489-98.
    179. Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev. 2009;61(4):327-38.
    180. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-Czop K, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098-107.
    181. Wachowska M, Muchowicz A, Firczuk M, Gabrysiak M, Winiarska M, Wańczyk M, et al. Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer. Molecules. 2011;16(5):4140-64.
    182. Masuda H, Kimura M, Nishioka A, Kato H, Morita A. Dual wavelength 5-aminolevulinic acid photodynamic therapy using a novel flexible light-emitting diode unit. J Dermatol Sci. 2019;93(2):109-15.
    183. Mohammad-Hadi L, MacRobert AJ, Loizidou M, Yaghini E. Photodynamic therapy in 3D cancer models and the utilisation of nanodelivery systems. Nanoscale. 2018;10(4):1570-81.
    184. Ding H, Sumer BD, Kessinger CW, Dong Y, Huang G, Boothman DA, et al. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. J Control Release. 2011;151(3):271-7.
    185. Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces. 2015;7(20):10671-6.
    186. Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR. An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis Photodyn Ther. 2013;10(4):382-8.
    187. Ilhami FB, Alemayehu YA, Fan WL, Tsai HC, Kao CY, Cheng CC. Adenine-Functionalized Supramolecular Micelles for Selective Cancer Chemotherapy.Macromol Biosci. 2020:e2000233.
    188. Tong H, Wang Y, Li H, Jin Q, Ji J. Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy. Chem Commun (Camb). 2016;52(20):3966-9.
    189. Tian J, Ding L, Xu HJ, Shen Z, Ju H, Jia L, et al. Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J Am Chem Soc. 2013;135(50):18850-8.
    190. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.

    QR CODE