簡易檢索 / 詳目顯示

研究生: 鄭雨喬
Yu-Ciao Cheng
論文名稱: 甲基丙烯酸縮水甘油酯改質蠶絲蛋白/聚(丙二醇-二丙烯酸酯)三維列印仿生複合支架於肺癌細胞動態培養研究
3D biomimetic hybrid scaffold of Glycidyl methacrylate modified Silk Fibroin /(poly(propylene glycol)diacrylate) for Cyclic Stretching cell culture of lung cancer line
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳建光
Jem-Kun Chen
鄭智嘉
Chih-Chia Cheng
周百謙
Pai-Chien-Chou
李愛薇
Ai-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 159
中文關鍵詞: 絲素蛋白a5493D列印週期性動態培養
外文關鍵詞: Silk Fibroin, Glycidyl methacrylate, 3D Printer, Cyclic stretching cell culture, A549
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將絲素蛋白SF (Silk Fibroin)用甲基丙烯縮水甘油酯GMA(Glycidyl methacrylate)化學修飾及加入具有彈性、交聯韌性的聚(丙二醇-二丙烯酸酯)(Poly(propylene glycol)diacrylate)PPG製作成,且用3D列印方式印出均勻交錯陣列,應用於人類非小細胞肺癌細胞系A549細胞進行模擬肺癌病患呼吸頻率造成其影響。在DLP 3D樹酯槽內直接放入SFGP生物墨水溶液進行打印,通過DLP光引發自由基逐層列印在層基板上,這樣的列印方式解決了傳統方法無法控制其結構和內部幾何形狀的問題,且對所需的內部架構、結構進行精確的控制,應用於生物材料領域,以滿足器官和組織的需求,且它提供了良好的細胞微環境和機械支撐能力。
    在這裡,我們針對絲素蛋白和甲基丙烯酸縮水甘油酯 (SFGMA) 進行了改性,使用3D列印機須符合機台列印的黏度範圍,生物墨水需符合此區間,因此加入PPG用來增加黏彈性,並做了機性性質評估以及流變性測試,確認列印參數、了解物理特性,接著利用計算機輔助程式(AutoCAD)將模型逐層畫出製造3D規則排列模型,使用DLP 3D列印機列印出模型並進一步進行模擬肺癌病患呼吸頻率對肺癌增生之影響。
    將A549肺癌細胞種在3D SFGP均一孔洞模型中,用週期性動態培養細胞拉伸儀進行分析驗證,這些結果表明,SFGP 3D孔洞結構無論在細胞相容性或細胞增殖都明顯高於無孔洞結構及控制組,另外測試結果也表明應變越大如同呼吸越大,對於A549細胞活性有顯著增加,在改變頻率部分,頻率越大,造成細胞增殖越快,由此實驗也可以提供臨床醫師在用藥上的建議。


    In this study, the silk fibroin SF (Silk Fibroin) was chemically modified with GMA (Glycidyl methacrylate) and added with PPG(poly(propylene glycol) diacrylate) with elasticity and cross-linking toughness. 3D printing was used to print uniform staggered arrays, which were applied to human non-small cell lung cancer cell line “A549 cells” to simulate the effects of lung cancer patients' respiratory rate. The SFGP bio-ink solution is directly placed in the DLP 3D resin tank for printing,and the DLP light-induced free radicals are printed on the layer-by-layer substrate This printing method solves the problem that the traditional method cannot control It’s structure and internal geometry, and accurately control the required internal structure , it is used in the field of biomaterials to meet the needs of organs and tissues, and it provides a good cellular microenvironment and mechanical support capabilities.
    We modified silk fibroin and glycidyl methacrylate (SFGMA). The 3D printer must meet the viscosity range of machine printing, and the bioink must meet this range. Therefore, PPG is added to Viscoelasticity was added, and organic property evaluation and rheological test were performed to confirm printing parameters and understand physical properties. Then, use computer-aided program (AutoCAD) to draw the model layer by layer to create a 3D regular arrangement model, and use DLP 3D printing. The model was then printed out and further simulated the effect of lung cancer patients' respiratory rate on the proliferation of lung cancer.
    The A549 lung cancer cells were planted in the 3D SFGP homogeneous hole model and analyzed and verified by a periodic dynamic culture cell extensometer. These results show that the SFGP 3D hole structure is significantly higher than the non-hole structure in terms of cell compatibility and cell proliferation. and the control group. In addition, the test results also showed that the greater the strain, the greater the respiration, the significant increase in the activity of A549 cells. In the part of the frequency of change, the greater the frequency, the faster the cell proliferation. This experiment can also provide clinicians with medication. suggestion above.

    1. 緒論 1.1. 研究背景 1.2. 研究動機與目的 2. 文獻回顧與實驗理論 2.1. 再生醫學 2.2. DLP 3D列印 2.2.1. DLP技術的優缺點 2.2.2. 高黏度感光樹脂難以印刷 2.2.3. 固化3D列印技術在生物醫學應用中的進展 2.3. 組織工程 2.3.1. 組織工程(Tissue Engineering) 2.3.2. 組織工程的特性與應用 2.3.3. 支架 2.3.4. 細胞 2.3.5. 訊息因子 2.3.6. 組織工程的應用 2.4. 肺癌細胞的種類與作用 2.4.1. 肺癌細胞的種類 2.4.1.1. 小細胞肺癌(SCLC) 2.4.1.2. 非小細胞肺癌(NSCLC) 2.4.2. A549細胞 2.5. 機械應變刺激細胞增殖之影響 2.5.1. 週期性動態細胞培養 2.6. 支架材料 2.7. 天然聚合物 2.8. 絲素蛋白SILK FIBROIN 2.9. 甲基丙烯酸縮水甘油酯GLYCIDYLMETHACRYLATE 2.10. PPG 2.11. 互穿型高分子網狀結構體(INTERPENETRATING POLYMER NETWORKS, IPNS) 3.儀器原理 3.1. 高解析度場發射掃描式電子顯微鏡(FIELD-EMISSION SCANNING ELECTRON MICROSCOPE,FE-SEM) 28 3.2. 傅立葉轉換紅外線光譜儀(FOURIER TRANSFORM INFRARED SPECTROMETER, FT-IR) 3.3. 熱重量分析儀(THERMOGRAVIMETRIC ANALYSIS,TGA) 3.4. 連續波長微量盤分光光譜儀(ELISA READER) 3.5. DLP 3D列印機 3.6. 表面電位分析儀(ZETA-POTENTIAL) 3.7. 光學顯微鏡(OPTICAL MICROSCOPE) 3.8. 萬能材料試驗機(UNIVERSAL TESTING MACHINE) 3.9. 細胞拉伸機 3.10. 電泳 4. 實驗流程與方法 4.1. 實驗流程圖 4.2. 實驗藥品 4.3. 實驗儀器 4.4. 實驗步驟 4.4.1. Silk fibroin蠶絲純化 4.4.1.1.煮沸SF(silk Fibroin): 4.4.1.2.製備SF溶液: 4.4.1.3.SFGMA配膠製程: 4.4.1.4.SFGMA/PPG交聯支架: 4.4.2. SFGP支架結構形貌分析 4.4.2.1.場發射掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 支架形貌分析 4.4.2.2.固體表面界達電位分析儀(Surface Potential Analyzer for Soild Samples) 4.4.3. SFGP雙交聯支架之性質分析 4.4.3.1. 傅利葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FTIR)檢測分析 4.4.4. SFGP雙交聯支架之熱性質分析 4.4.4.1. 熱重分析儀(Thermogravimetric Analyzer,TGA)檢測分析 4.4.5. SFGP雙交聯支架之機械性質與降解率分析 4.4.5.1. 萬能材料試驗機(Universal Testing Machine,UTM)檢測分析 4.4.5.2. 降解率(Degradation rates)分析 4.4.6. 流變儀分析 4.4.7. DLP 3D列印 4.4.8. A549 cell line細胞培養 4.4.8.1. F-12K培養液配製 4.4.8.2. A549 cell line細胞培養 4.4.8.3. 更換 Medium 4.4.8.4. 細胞繼代培養 4.4.8.5. 細胞凍存 4.4.9. A549細胞活性測試 4.4.9.1. MTT Assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) 4.4.9.2. CCK-8 Assay(Cell Counting Kit-8) 4.4.10. SFGP 3D交聯支架上A549細胞成長形貌觀察 4.4.11. 週期性動態培養測試(Cyclic stretching test) 4.4.12. 雷射共軛焦顯微鏡試片製作 4.4.13. A549於支架上生長之蛋白質表徵 4.4.13.1. 樣品處理: 4.4.13.2. 蛋白質定量法Bradford protein assay 4.4.13.3. 膠體電泳SDS-PAGE 4.4.13.4. 轉印Transfer: 4.4.13.5. 抗體檢測、顯色發光: 5.結果與討論 5.1. SFGP雙交聯支架之性質分析 5.1.1. FT-IR定性及雙鍵變化分析 5.2. SFGP支架之結構形貌分析 5.2.1. SEM支架表面型貌分析 5.3. SFGP摻合支架之熱性質分析 5.3.1. TGA分析 5.4. SFGP雙交聯支架之MCR流變黏度分析 5.4.1. SFGMA的流變特性 5.4.2. SFGP光固化後的流變特性 5.5. SFGP交聯支架降解率分析 5.5.1. 降解率分析 5.6. SFGP交聯支架機械性質分析 5.6.1. UTM拉伸試驗分析 5.6.2. SFGP支架固態表面界達電位分析 5.7. SFGP通過DLP打印的實際分辨率和可打印性 5.8. SFGP雙交聯支架之生物相容性分析 5.8.1. 雙交聯支架之細胞活性測試 5.8.2. 共軛焦顯微鏡 5.9. 週期性動態培養測試 5.9.1. 循環拉伸改變應變用於A549細胞對SFGP之影響 5.9.1.1. A549細胞活性測試 5.9.1.2. A549共軛焦顯微鏡 5.9.2. 循環拉伸改變頻率用於A549細胞對SFGP之影響 5.9.2.1. A549細胞活性測試 5.9.2.2. A549共軛焦顯微鏡 5.10. SFGP摻合支架上細胞生長之表徵 5.10.1. A549細胞於支架上生長之蛋白質表徵 6. 結論 參考文獻

    [1] Roshanzadeh, A., et al. (2020). "Mechanoadaptive organization of stress fiber subtypes in epithelial cells under cyclic stretches and stretch release." Scientific reports 10(1): 1-14.
    [2] Cieza, A., et al. (2020). "Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019." The Lancet 396(10267): 2006-2017.
    [3] Park, J. H., et al. (2014). "Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process." Biofabrication 6(2): 025003.
    [4] Mandrycky, C., et al. (2016). "3D bioprinting for engineering complex tissues." Biotechnology advances 34(4): 422-434.
    [5] Zhou, M., et al. (2016). "Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding
    [6] processes." Ceramics international 42(10): 11598-11602.
    [7] Zhou, M., et al. (2016). "Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography–Optimization of the drying and debinding processes." Ceramics international 42(10): 11598-11602.
    [8] Zhu, W., et al. (2016). "3D printing of functional biomaterials for tissue engineering." Current opinion in biotechnology 40: 103-112.
    [9] Grogan, S. P., et al. (2013). "Digital micromirror device projection printing system for meniscus tissue engineering." Acta biomaterialia 9(7): 7218-7226.
    [10] Lin, H., et al. (2013). "Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture." Biomaterials 34(2): 331-339.
    [11] Zheng, X., et al. (2016). "Multiscale metallic metamaterials." Nature materials 15(10): 1100-1106.
    [12] Umair, M. and W. S. Kim (2015). An online 3d printing portal for general and medical fields. 2015 International Conference on Computational Intelligence and Communication Networks (CICN), IEEE.
    [13] Quan, H., et al. (2020). "Photo-curing 3D printing technique and its challenges." Bioactive materials 5(1): 110-115.
    [14] Wu, L., et al. (2018). "EHMP-DLP: multi-projector DLP with energy homogenization for large-size 3D printing." Rapid Prototyping Journal.
    [15] Moreno-Camacho, C. A., et al. (2019). "Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review." Journal of Cleaner Production 231: 600-618.
    [16] Akter, F. (2016). Tissue engineering made easy, Academic Press.
    [17] Sharma, S., et al. (2006). "Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats." Clinical and experimental pharmacology and physiology 33(10): 940-945.
    [18] Suh, H. (2000). "Tissue restoration, tissue engineering and regenerative medicine." Yonsei Medical Journal 41(6): 681-684.
    [19] Vinatier, C., et al. (2009). "Cartilage engineering: a crucial combination of cells, biomaterials and biofactors." Trends in biotechnology 27(5): 307-314.
    [20] Akter, F. (2016). Tissue engineering made easy, Academic Press.
    [21] Olson, J. L., et al. (2011). "Tissue engineering: current strategies and future directions." Chonnam medical journal 47(1): 1-13.
    [22] O'brien, F. J. (2011). "Biomaterials & scaffolds for tissue engineering." Materials today 14(3): 88-95.
    [23] Oh, S. K. and A. B. Choo (2006). "Human embryonic stem cells: technological challenges towards therapy." Clinical and experimental pharmacology & physiology 33(5-6): 489-495.
    [24] Atienza-Roca, P., et al. (2018). "Growth factor delivery systems for tissue engineering and regenerative medicine." Cutting-Edge Enabling Technologies for Regenerative Medicine: 245-269.
    [25] Badylak, S. F. (2007). "The extracellular matrix as a biologic scaffold material." Biomaterials 28(25): 3587-3593.
    [26] Blais, M., et al. (2013). "Concise review: tissue-engineered skin and nerve regeneration in burn treatment." Stem cells translational medicine 2(7): 545-551.
    [27] Shapiro, D. L., et al. (1978). "Phospholipid biosynthesis and secretion by a cell line (A549) which resembles type II alveolar epithelial cells." Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 530(2): 197-207.
    [28] Masuda, T., et al. (2008). "Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells." Journal of biotechnology 133(2): 231-238.
    [29] Wang, J. H.-C., et al. (2005). "Controlling cell responses to cyclic mechanical stretching." Annals of biomedical engineering 33(3): 337-342.
    [30] Stucki, A. O., et al. (2015). "A lung-on-a-chip array with an integrated bio-inspired respiration mechanism." Lab on a Chip 15(5): 1302-1310.
    [31] Shimizu, K., et al. (2011). "Development of a biochip with serially connected pneumatic balloons for cell-stretching culture." Sensors and Actuators B: Chemical 156(1): 486-493.
    [32] Katanosaka, Y., et al. (2008). "Analysis of cyclic-stretching responses using cell-adhesion-patterned cells." Journal of biotechnology 133(1): 82-89.
    [33] Tseng, S.-J., et al. (2021). "Studies of osteoblast-like MG-63 cellular proliferation and differentiation with cyclic stretching cell culture system on biomimetic hydrophilic layers modified polydimethylsiloxane substrate." Biochemical Engineering Journal 168: 107946.
    [34] Chu, J., et al. (2013). "Biphasic regulation of myosin light chain phosphorylation by p21-activated kinase modulates intestinal smooth muscle contractility." Journal of Biological Chemistry 288(2): 1200-1213.
    [35] Wang, J. H.-C., et al. (2001). "Specificity of endothelial cell reorientation in response to cyclic mechanical stretching." Journal of biomechanics 34(12): 1563-1572.
    [36] Wang, J. H.-C., et al. (2001). "Specificity of endothelial cell reorientation in response to cyclic mechanical stretching." Journal of biomechanics 34(12): 1563-1572.
    [37] Hatamzadeh, M., et al. (2016). "Novel nanofibrous electrically conductive scaffolds based on poly (ethylene glycol) s-modified polythiophene and poly (ε-caprolactone) for tissue engineering applications." Polymer 107: 177-190.
    [38] Sabir, M. I., et al. (2009). "A review on biodegradable polymeric materials for bone tissue engineering applications." Journal of materials science 44(21): 5713-5724.
    [39] Albuquerque, P., et al. (2016). "Approaches in biotechnological applications of natural polymers."
    [40] Lee, O. J., et al. (2012). "Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations." Journal of Biomedical Materials Research Part A 100(8): 2018-2026.
    [41] Meinel, L., et al. (2005). "The inflammatory responses to silk films in vitro and in vivo." Biomaterials 26(2): 147-155.
    [42] Mauney, J. R., et al. (2007). "Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds." Biomaterials 28(35): 5280-5290.
    [43] Kim, M. H. and W. H. Park (2016). "Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility." International journal of nanomedicine 11: 2967.
    [44] DEPALMA, A. F., et al. (1966). "23 Process of Repair of Articular Cartilage Demonstrated by Histology and Autoradiography With Tritiated Thymidine." Clinical Orthopaedics and Related Research® 48: 229-242.
    [45] Messner, K. and W. Maletius (1996). "The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes." Acta Orthopaedica Scandinavica 67(2): 165-168.
    [46] Grogan, S. P., et al. (2013). "Digital micromirror device projection printing system for meniscus tissue engineering." Acta biomaterialia 9(7): 7218-7226.
    [47] Xue, D., et al. (2019). "Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness." ACS Biomaterials Science & Engineering 5(9): 4825-4833.
    [48] Altman, G. H., et al. (2003). "Silk-based biomaterials." Biomaterials 24(3): 401-416.
    [49] Malucelli, G., et al. (1997). "Synthesis of poly (propylene‐glycol‐diacrylates) and properties of the photocured networks." Journal of applied polymer science 65(3): 491-497.
    [50] Ekici, S. and D. Saraydin (2007). "Interpenetrating polymeric network hydrogels for potential gastrointestinal drug release." Polymer International 56(11): 1371-1377.
    [51] Petrović, Z. S. and J. Ferguson (1991). "Polyurethane elastomers." Progress in Polymer Science 16(5): 695-836.
    [52] Gong, J. (2003). "y. Katsuyama, T. Kurokawa, y. osada." Adv. Mater 15: 1155.
    [53] Chen, H., et al. (2018). "Precise nanomedicine for intelligent therapy of cancer." Science China Chemistry 61(12): 1503-1552.
    [54] Ekici, S. and D. Saraydin (2007). "Interpenetrating polymeric network hydrogels for potential gastrointestinal drug release." Polymer International 56(11): 1371-1377.
    [55] Pan, Y., et al. (2012). "A fast mask projection stereolithography process for fabricating digital models in minutes." Journal of Manufacturing Science and Engineering 134(5).
    [56] Russo, M. A., et al. (2017). "The physiological effects of slow breathing in the healthy human." Breathe 13(4): 298-309.
    [57] Suesca, E., et al., Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Materials Science and Engineering: C, 2017. 77: p. 333-341.

    無法下載圖示 全文公開日期 2024/08/24 (校內網路)
    全文公開日期 2024/08/24 (校外網路)
    全文公開日期 2024/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE