簡易檢索 / 詳目顯示

研究生: Ashenafi Zeleke Melaku
Ashenafi Zeleke Melaku
論文名稱: 自組裝超分子聚合物輔助二維奈米材料的可擴展液相剝離和分散
Scalable Liquid Phase Exfoliation and Dispersion of Two-Dimensional Nanomaterials Assisted by Self-Assembled Supramolecular Polymers
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 謝永堂
Yeong-Tarng Shieh
楊長謀
Chang-Mou Yang
戴子安
Chi-An Dai
莊偉綜
Jem-Kun Chen
陳建光
Wei-Tsung Chuang
鄭智嘉
Chih-Chia Cheng
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 170
外文關鍵詞: Supramolecular polymer, environmental friendly, controlled layer thickness, dispersion stability, Self- assembly
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期,二維 (2D) 奈米材料在許多應用領域中展現出十足的潛力,如石墨烯、過渡金屬二硫屬化物 (TMDCs)、六方氮化硼 (h-BN) 等,已應用於各種光電元件、傳感器、電容器、太陽能電池等方面。此等材料雖只有單顆或數顆原子之厚,卻擁有在塊材型態不具備的優越特性,使其在未來廣泛的科技研究中展現出色前景。然而,材料性能固然出色,工業級大量生產高質量的二維奈米材料卻非易事,而液相脫層程序正是合適的因應之道,透過界面活性劑與溶劑的搭配,可以簡單、環保的方式有效地大規模產生薄層二維材料。在本文研究中,我們分別在石墨與二硫化鉬(MoS2)兩系統中加入超分子聚合物作為界面活性劑,經由超音波震盪的處理,將兩材料由三維(3D)大型分子轉為二維形式並大量生產。
    在研究的第一部分,利用添加腺嘌呤功能化的生物可降解低聚物(3A-PCL),將塊狀結晶的石墨脫層為具導電性、良好物理特性且高度有序結構的石墨烯奈米片,經檢驗後可證明,因3A-PCL對石墨表面具有高親和性,可於其表面自行組裝為層狀奈米結構,在有機溶劑裡脫層並形成穩定懸浮的石墨烯奈米片。而在移除溶劑後,此複合材料在黏性與彈性狀態間顯示出持久的熱可逆相變行為,並可透過調整複合材料內的聚合物比例,進而調控脫層石墨烯的厚度。此石墨烯複合材料最大的特色在於電阻率低,測得之數值為1.5 ± 0.7 mΩ·cm,比原始石墨烯低一個數量級以上。綜合第一實驗系統的研究,選用液相脫層程序製備多功能超分子與石墨的奈米複合材料,因其生產過程簡單,製成之材料具有良好的物理特性與導電性,適合在導電元件領域發展應用。
    本研究的第二部分,我們以鄰二氯苯(ODCB)為溶劑,腺嘌呤功能化聚丙二醇(A-PPG)為界面活性劑,設計一種能將石墨脫層為厚度可控之高質量石墨烯的實驗系統。首先我們先在溶劑ODCB中,把天然石墨剝離為數層有序的脫層石墨(EG)奈米片,此視為一次脫層;而在二次脫層中,在EG溶液中加入A-PPG,此時具氫鍵官能基的腺嘌呤發揮關鍵作用,使A-PPG能在石墨烯奈米片表面自行組裝為長而有序的奈米結構,進而增加EG在ODCB中的長期分散穩定性,且透過調整複合材料中A-PPG的含量,可製備出具特定結構特徵的石墨烯奈米片。此以超分子聚合物作非共價官能化的石墨烯表現非凡,經由簡單、有效的一次及二次脫層,可自由調控石墨烯的所需厚度,在各項潛在應用中發揮作用。
    最後一實驗系統,則是以水為溶劑,胞嘧啶功能化聚丙二醇(Cy-PPG)為界面活性劑,搭配二次脫層程序,將MoS2剝離為超薄層的奈米片。首先,利用水相環境將原始的MoS2初步分散為數層的奈米片,接著於二次脫層期間加入Cy-PPG,與數層MoS2的水溶液進行一小時以上的超音波震盪,此過程中,自組裝為有序層狀奈米結構的Cy-PPG會因強物理作用力而吸附在奈米片的表面,並形成可調節的超薄層MoS2,而透過仔細調整Cy-PPG的用量,可以大幅改善MoS2在水溶液的長期穩定分散性,從而保持其固有的特性,最後利用光譜及顯微鏡分析脫層奈米片的形貌與物理性質,證明MoS2奈米片表面確實有Cy-PPG的存在,而在導電率測試中,測得之數值則較原始MoS2高出127 µS/cm。綜觀以上,此實驗系統能夠有效以環保方法生產超薄層MoS2奈米片,對於講求材料精準的研究領域至關重要。


    Recently, two-dimensional (2D) nanomaterials like graphene, transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), and others have shown promising potentials for various electronic and optoelectronics device, sensors, capacitors, solar cells and others more. These are just one or few atoms thick materials with outstanding properties that do not exist in their bulk counterparts that make it a perfect candidate for a wide variety of future flexible technologies. However, upscale production of high-quality 2D nanomaterials is a key bottleneck in the development of a wide range of industrial applications. Nowadays, a facile, efficient and eco-friendly, liquid phase exfoliation approaches with appropriate exfoliating agent and solvent provide a promising mass production of these nanomaterials. This study is therefore devoted to the mass production of graphene and molybdenum disulfide (MoS2) from respective three-dimensional macromolecules (3D) by liquid phase exfoliation in the presence of supramolecular polymer as a vibrant exfoliation agent under ultra-sonication treatment.
    In the first part of the study, bulk crystalline graphite was directly exfoliated with an adenine-functionalized biodegradable oligomer (3A-PCL) resulting electrically conductive and highly disordered graphene nanosheets with well-tailored structural and physical properties. It was confirmed that 3A-PCL self-assembled into hierarchical nanostructures on the surface of graphite due to its high affinity for the graphite surface, resulting in direct exfoliation of graphite into well-suspended graphene nanosheets in an organic solvent. Furthermore, the dried composites show persistent thermoreversible phase transition behavior between viscous and elastic states, and the thickness of exfoliated graphene layers can be controlled by tuning the polymer loading ratio within the composite. Importantly, this newly developed graphene composites possess a low electrical resistivity of 1.5 ± 0.7 mΩ·cm at a graphite loading of 23 wt%, which is more than an order of magnitude lower than that of pristine graphite. This design provides a highly efficient process for the fabrication of multifunctional supramolecular graphene nanosheets with great potential for conductive device applications due to the simplicity of the production process, well-tailored physical properties, and excellent conductive performance.
    In the second work, we designed a facile exfoliation of graphite into high-quality graphene nanosheets with wide-range tunable layer thickness achieved through a combination of first and second exfoliations using the halogenated solvent ortho-dichlorobenzene (ODCB) and an adenine-functionalized supramolecular polymer (A-PPG). In this study, we demonstrated that natural graphite can be exfoliated directly into well-dispersed, dozen-layer exfoliated graphite (EG) nanosheets in ODCB with relatively weak interlayer interactions; this is defined as first exfoliation. When A-PPG is added to the EG solution (i.e., defined as second exfoliation), the hydrogen-bonded adenine moieties operate as essential key units, manipulating the self-assembly behavior of the A-PPG polymers to efficiently construct long-range ordered lamellar nanostructures on the surface of the graphene nanosheets. This approach increases the long-term dispersion stability of EG in ODCB and enables the fabrication of exfoliated graphene nanosheets with the required structural characteristics by adjusting the A-PPG content of the composites. These excellent properties of non-covalently functionalized graphene with a supramolecular polymer are extremely unusual, but tremendously appealing for the production of physically tailored graphene based on combined first and second exfoliation processes. As a result, this advancement provides a simple, highly efficient graphene production process with potential applications in a variety of applications.
    Third, we developed a simple and effective approach for sequential two-step exfoliation of molybdenum disulfide into tunable ultrathin layer nanosheets using cytosine-functionalized polypropylene glycol (Cy-PPG) and an environmentally safe aqueous solution. Initially, dispersed few layers of MoS2 nanosheets were obtained by direct liquid phase exfoliation of pristine bulk MoS2 in aqueous solution. The sequential addition of Cy-PPG into a few layer MoS2 solution, followed by one hour of additional sonication treatment in the second exfoliation, results in the attachment of ordered lamellar microstructure of self-assembled polymer on the surface of nanosheets through strong physical interaction and the formation of tunable ultrathin MoS2 layer. Second exfoliation significantly enhances long-term dispersion and tunable ultrathin layer of MoS2 nanosheets through carefully managing the amount of polymer used while retaining its fundamental qualities. Furthermore, spectroscopic and microscopic investigations of exfoliated nanosheets revealed the presence of self-assembled polymer on the surface of molybdenum disulfide nanosheets, which aided in the delamination of a stably dispersed ultrathin tunable layer of nanosheets. Surprisingly, the ultra-low concentration of supramolecular MoS2 composite (Cy-80 %) demonstrated increased electrical conductivity of 127 S/cm when compared to pristine MoS2. In general, this study reveals an efficient method for creating ultrathin layer MoS2 nanosheets while being environmentally benign, which is vital for the creation of custom-tailored devices.

    no patent

    1. Tran, B. N.; Thickett, S. C.; Agarwal, V.; Zetterlund, P. B., Influence of Polymer Matrix on Polymer/Graphene Oxide Nanocomposite Intrinsic Properties. ACS Applied Polymer Materials 2021, 3 (10), 5145-5154.
    2. Zhang, C.; Tan, J.; Pan, Y.; Cai, X.; Zou, X.; Cheng, H.-M.; Liu, B., Mass production of 2D materials by intermediate-assisted grinding exfoliation. National Science Review 2020, 7 (2), 324-332.
    3. Han, S. A.; Bhatia, R.; Kim, S.-W., Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence 2015, 2 (1), 17.
    4. Yadav, P.; Das, A.; Sharma, M. K.; Ash, S.; Ganguli, A. K., A biodegradable polymer-assisted efficient and universal exfoliation route to a stable few layer dispersion of transition metal dichalcogenides. Materials Chemistry and Physics 2022, 276, 125347.
    5. Hu, C.-X.; Shin, Y.; Read, O.; Casiraghi, C., Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale 2021, 13 (2), 460-484.
    6. Le, T. H.; Oh, Y.; Kim, H.; Yoon, H., Exfoliation of 2D materials for energy and environmental applications. Chemistry–A European Journal 2020, 26 (29), 6360-6401.
    7. Qin, L.; Maciejewska, B. M.; Subroto, T.; Morton, J. A.; Porfyrakis, K.; Tzanakis, I.; Eskin, D. G.; Grobert, N.; Fezzaa, K.; Mi, J., Ultrafast synchrotron X-ray imaging and multiphysics modelling of liquid phase fatigue exfoliation of graphite under ultrasound. Carbon 2022, 186, 227-237.
    8. Eredia, M. In 2D materials : exfoliation in liquid-phase and electronics applications, 2019.
    9. Silveri, F.; Della Pelle, F.; Rojas, D.; Bukhari, Q. U. A.; Ferraro, G.; Fratini, E.; Compagnone, D., (+)-Catechin-assisted graphene production by sonochemical exfoliation in water. A new redox-active nanomaterial for electromediated sensing. Microchimica Acta 2021, 188 (11), 369.
    10. Yu, J.; Li, J.; Zhang, W.; Chang, H., Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chemical Science 2015, 6 (12), 6705-6716.
    11. Zhang, X.; Lai, Z.; Tan, C.; Zhang, H., Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angewandte Chemie International Edition 2016, 55 (31), 8816-8838.
    12. Chen, S.; Xu, R.; Liu, J.; Zou, X.; Qiu, L.; Kang, F.; Liu, B.; Cheng, H.-M., Simultaneous Production and Functionalization of Boron Nitride Nanosheets by Sugar-Assisted Mechanochemical Exfoliation. Advanced Materials 2019, 31 (10), 1804810.
    13. Kelly Adam, G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily Amir, S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A.; Kinge, S.; Siebbeles Laurens, D. A.; Duesberg Georg, S.; Coleman Jonathan, N., All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356 (6333), 69-73.
    14. Ott, S.; Lakmann, M.; Backes, C., Impact of Pretreatment of the Bulk Starting Material on the Efficiency of Liquid Phase Exfoliation of WS2. Nanomaterials 2021, 11 (5).
    15. Skaltsas, T.; Karousis, N.; Yan, H.-J.; Wang, C.-R.; Pispas, S.; Tagmatarchis, N., Graphene exfoliation in organic solvents and switching solubility in aqueous media with the aid of amphiphilic block copolymers. Journal of Materials Chemistry 2012, 22 (40), 21507-21512.
    16. Coleman, J. N., Liquid Exfoliation of Defect-Free Graphene. Accounts of Chemical Research 2013, 46 (1), 14-22.
    17. Kakuta, T.; Baba, Y.; Yamagishi, T.-a.; Ogoshi, T., Supramolecular exfoliation of layer silicate clay by novel cationic pillar[5]arene intercalants. Scientific Reports 2021, 11 (1), 10637.
    18. Zhao, S.; Xie, S.; Zhao, Z.; Zhang, J.; Li, L.; Xin, Z., Green and High-Efficiency Production of Graphene by Tannic Acid-Assisted Exfoliation of Graphite in Water. ACS Sustainable Chemistry & Engineering 2018, 6 (6), 7652-7661.
    19. Martín-Gomis, L.; Karousis, N.; Fernández-Lázaro, F.; Petsalakis, I. D.; Ohkubo, K.; Fukuzumi, S.; Tagmatarchis, N.; Sastre-Santos, Á., Exfoliation and supramolecular functionalization of graphene with an electron donor perylenediimide derivative. Photochemical & Photobiological Sciences 2017, 16 (4), 596-605.
    20. Liu, L.-H.; Lerner, M. M.; Yan, M., Derivitization of Pristine Graphene with Well-Defined Chemical Functionalities. Nano Letters 2010, 10 (9), 3754-3756.
    21. Zhou, X.; Sun, H.; Bai, X., Two-Dimensional Transition Metal Dichalcogenides: Synthesis, Biomedical Applications and Biosafety Evaluation. Frontiers in Bioengineering and Biotechnology 2020, 8, 236.
    22. Huang, F.; Scherman, O. A., Supramolecular polymers. Chemical Society Reviews 2012, 41 (18), 5879-5880.
    23. Muhabie, A. A.; Cheng, C.-C.; Huang, J.-J.; Liao, Z.-S.; Huang, S.-Y.; Chiu, C.-W.; Lee, D.-J., Non-Covalently Functionalized Boron Nitride Mediated by a Highly Self-Assembled Supramolecular Polymer. Chemistry of Materials 2017, 29 (19), 8513-8520.
    24. Cheng, C.-C.; Chang, F.-C.; Wang, J.-H.; Chen, J.-K.; Yen, Y.-C.; Lee, D.-J., Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers. Nanoscale 2016, 8 (2), 723-728.
    25. Muhabie, A. A.; Ho, C.-H.; Gebeyehu, B. T.; Huang, S.-Y.; Chiu, C.-W.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C., Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. Chemical Science 2018, 9 (24), 5452-5460.
    26. Melaku, A. Z.; Chuang, W.-T.; Shieh, Y.-T.; Chiu, C.-W.; Lee, D.-J.; Lai, J.-Y.; Cheng, C.-C., Programmed exfoliation of hierarchical graphene nanosheets mediated by dynamic self-assembly of supramolecular polymers. Materials Chemistry Frontiers 2021, 5 (18), 6998-7011.
    27. Khan, K.; Tareen, A. K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. J. J. o. M. C. C., Recent developments in emerging two-dimensional materials and their applications. 2020, 8 (2), 387-440.
    28. Witomska, S.; Leydecker, T.; Ciesielski, A.; Samorì, P., Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Advanced Functional Materials 2019, 29 (22), 1901126.
    29. Rafiei-Sarmazdeh, Z.; Zahedi-Dizaji, S. M.; Kang, A. K., Two-dimensional nanomaterials. In Nanostructures, IntechOpen: 2019.
    30. Cai, X.; Luo, Y.; Liu, B.; Cheng, H.-M., Preparation of 2D material dispersions and their applications. Chemical Society Reviews 2018, 47 (16), 6224-6266.
    31. Chen, R.-S.; Tang, C.-C.; Shen, W.-C.; Huang, Y.-S., Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers. Nanotechnology 2014, 25 (41), 415706.
    32. Raza, A.; Qumar, U.; Haider, A.; Naz, S.; Haider, J.; Ul-Hamid, A.; Ikram, M.; Ali, S.; Goumri-Said, S.; Kanoun, M. B., Liquid-phase exfoliated MoS2 nanosheets doped with p-type transition metals: a comparative analysis of photocatalytic and antimicrobial potential combined with density functional theory. Dalton Transactions 2021, 50 (19), 6598-6619.
    33. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS 2 transistors. Nature nanotechnology 2011, 6 (3), 147-150.
    34. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today 2017, 20 (3), 116-130.
    35. Jeon, J.; Jang, S. K.; Jeon, S. M.; Yoo, G.; Jang, Y. H.; Park, J.-H.; Lee, S. J. N., Layer-controlled CVD growth of large-area two-dimensional MoS 2 films. 2015, 7 (5), 1688-1695.
    36. Oh, N. K.; Lee, H. J.; Choi, K.; Seo, J.; Kim, U.; Lee, J.; Choi, Y.; Jung, S.; Lee, J. H.; Shin, H. S. J. C. o. M., Nafion-mediated liquid-phase exfoliation of transition metal dichalcogenides and direct application in hydrogen evolution reaction. 2018, 30 (14), 4658-4666.
    37. Sun, Z.; Zhao, Q.; Zhang, G.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. J. R. a., Exfoliated MoS 2 supported Au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. 2015, 5 (14), 10352-10357.
    38. Anbazhagan, R.; Wang, H.-J.; Tsai, H.-C.; Jeng, R.-J. J. R. A., Highly concentrated MoS 2 nanosheets in water achieved by thioglycolic acid as stabilizer and used as biomarkers. 2014, 4 (81), 42936-42941.
    39. Yang, H.; Giri, A.; Moon, S.; Shin, S.; Myoung, J.-M.; Jeong, U. J. C. o. m., Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. 2017, 29 (14), 5772-5776.
    40. Rodriguez, C. L.; Muñoz, P. A.; Donato, K. Z.; Seixas, L.; Donato, R. K.; Fechine, G. J. J. P. C. C. P., Understanding the unorthodox stabilization of liquid phase exfoliated molybdenum disulfide (MoS 2) in water medium. 2020, 22 (3), 1457-1465.
    41. Bharech, S.; Kumar, R., A review on the properties and applications of graphene. J Mater Sci Mech Eng 2015, 2 (10), 70.
    42. Chen, R.-S.; Tang, C.-C.; Shen, W.-C.; Huang, Y.-S. J. N., Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers. 2014, 25 (41), 415706.
    43. Lemme, M. C.; Echtermeyer, T. J.; Baus, M.; Kurz, H., A Graphene Field-Effect Device. IEEE Electron Device Letters 2007, 28 (4), 282-284.
    44. Wang, X.; Xing, W.; Feng, X.; Song, L.; Hu, Y., MoS2/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews 2017, 57 (3), 440-466.
    45. Chang, K.; Chen, W., l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries. ACS Nano 2011, 5 (6), 4720-4728.
    46. Yang, L.; Chen, W.; Yu, Q.; Liu, B., Mass production of two-dimensional materials beyond graphene and their applications. Nano Research 2021, 14 (6), 1583-1597.
    47. Anju, S.; Mohanan, P. V., Biomedical applications of transition metal dichalcogenides (TMDCs). Synthetic Metals 2021, 271, 116610.
    48. Cheng, L.; Wang, X.; Gong, F.; Liu, T.; Liu, Z., 2D Nanomaterials for Cancer Theranostic Applications. Advanced Materials 2020, 32 (13), 1902333.
    49. Le, T.-H.; Oh, Y.; Kim, H.; Yoon, H., Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry – A European Journal 2020, 26 (29), 6360-6401.
    50. Cohen-Tanugi, D.; Grossman, J. C., Water Desalination across Nanoporous Graphene. Nano Letters 2012, 12 (7), 3602-3608.
    51. Ai, K.; Ruan, C.; Shen, M.; Lu, L., MoS2 Nanosheets with Widened Interlayer Spacing for High-Efficiency Removal of Mercury in Aquatic Systems. Advanced Functional Materials 2016, 26 (30), 5542-5549.
    52. Zhang, X.; Teng, S. Y.; Loy, A. C.; How, B. S.; Leong, W. D.; Tao, X., Transition Metal Dichalcogenides for the Application of Pollution Reduction: A Review. Nanomaterials 2020, 10 (6).
    53. Le, T.-H.; Oh, Y.; Kim, H.; Yoon, H., Exfoliation of 2D Materials for Energy and Environmental Applications. 2020, 26 (29), 6360-6401.
    54. Cao, S.; Liu, T.; Hussain, S.; Zeng, W.; Peng, X.; Pan, F., Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Materials Letters 2014, 129, 205-208.
    55. Ciesielski, A.; Samori, P. J. A. m., Supramolecular Approaches to Graphene: From Self‐Assembly to Molecule‐Assisted Liquid‐Phase Exfoliation. 2016, 28 (29), 6030-6051.
    56. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature nanotechnology 2009, 4 (1), 25-29.
    57. Costa, M. C. F. d.; Ribeiro, H. B.; Kessler, F.; Souza, E. A. T. d.; Fechine, G. J. M., Micromechanical exfoliation of two-dimensional materials by a polymeric stamp. Materials Research Express 2016, 3 (2), 025303.
    58. Niu, L.; Coleman, J. N.; Zhang, H.; Shin, H.; Chhowalla, M.; Zheng, Z., Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small 2016, 12 (3), 272-293.
    59. Yang, H.; Withers, F.; Gebremedhn, E.; Lewis, E.; Britnell, L.; Felten, A.; Palermo, V.; Haigh, S.; Beljonne, D.; Casiraghi, C., Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics. 2D Materials 2014, 1 (1), 011012.
    60. An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K. M.; Washington, M.; Nayak, S. K.; Talapatra, S.; Kar, S., Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications. Nano Letters 2010, 10 (11), 4295-4301.
    61. Soong, Y.-C.; Li, J.-W.; Chen, Y.-F.; Chen, J.-X.; Lee Sanchez, W. A.; Tsai, W.-Y.; Chou, T.-Y.; Cheng, C.-C.; Chiu, C.-W., Polymer-Assisted Dispersion of Boron Nitride/Graphene in a Thermoplastic Polyurethane Hybrid for Cooled Smart Clothes. ACS Omega 2021, 6 (43), 28779-28787.
    62. Pan, X.-r.; Wang, M.; Qi, X.-d.; Zhang, N.; Huang, T.; Yang, J.-h.; Wang, Y., Fabrication of sandwich-structured PPy/MoS2/PPy nanosheets for polymer composites with high dielectric constant, low loss and high breakdown strength. Composites Part A: Applied Science and Manufacturing 2020, 137, 106032.
    63. Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. J. N., Supramolecular self-assemblies as functional nanomaterials. 2013, 5 (16), 7098-7140.
    64. Cheng, C.-C.; Chang, F.-C.; Wang, J.-H.; Chen, J.-K.; Yen, Y.-C.; Lee, D.-J. J. N., Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers. 2016, 8 (2), 723-728.
    65. Muhabie, A. A.; Cheng, C.-C.; Huang, J.-J.; Liao, Z.-S.; Huang, S.-Y.; Chiu, C.-W.; Lee, D.-J. J. C. o. M., Non-covalently functionalized boron nitride mediated by a highly self-assembled supramolecular polymer. 2017, 29 (19), 8513-8520.
    66. Cheng, C. C.; Chang, F. C.; Wang, J. H.; Chen, J. K.; Yen, Y. C.; Lee, D. J., Functionalized graphene nanomaterials: new insight into direct exfoliation of graphite with supramolecular polymers. Nanoscale 2016, 8 (2), 723-8.
    67. Backes, C.; Berner, N. C.; Chen, X.; Lafargue, P.; LaPlace, P.; Freeley, M.; Duesberg, G. S.; Coleman, J. N.; McDonald, A. R. J. A. C. I. E., Functionalization of liquid‐exfoliated two‐dimensional 2H‐MoS2. 2015, 54 (9), 2638-2642.
    68. Wang, G.; Yu, D.; Kelkar, A. D.; Zhang, L. J. P. i. P. S., Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. 2017, 75, 73-107.
    69. Lee, K.-S.; Kim, D. S.; Kim, B. S., Biodegradable molecularly imprinted polymers based on poly (ε-caprolactone). Biotechnology and Bioprocess Engineering 2007, 12 (2), 152-156.
    70. Cheng, C.-C.; Chang, F.-C.; Wang, J.-H.; Chu, Y.-L.; Wang, Y.-S.; Lee, D.-J.; Chuang, W.-T.; Xin, Z. J. R. a., Large-scale production of ureido-cytosine based supramolecular polymers with well-controlled hierarchical nanostructures. 2015, 5 (93), 76451-76457.
    71. Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R., High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Letters 2009, 9 (10), 3460-3462.
    72. Ma, H.; Shen, Z.; Ben, S. J. J. o. c.; science, i., Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water. 2018, 517, 204-212.
    73. Cai, X.; Jiang, Z.; Zhang, X.; Zhang, X., Effects of Tip Sonication Parameters on Liquid Phase Exfoliation of Graphite into Graphene Nanoplatelets. Nanoscale Research Letters 2018, 13 (1), 241.
    74. Li, L.; Zhou, M.; Jin, L.; Liu, L.; Mo, Y.; Li, X.; Mo, Z.; Liu, Z.; You, S.; Zhu, H., Research Progress of the Liquid-Phase Exfoliation and Stable Dispersion Mechanism and Method of Graphene. Frontiers in Materials 2019, 6, 325.
    75. Yi, M.; Shen, Z., A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 2015, 3 (22), 11700-11715.
    76. Bhuyan, M. S. A.; Uddin, M. N.; Islam, M. M.; Bipasha, F. A.; Hossain, S. S., Synthesis of graphene. International Nano Letters 2016, 6 (2), 65-83.
    77. Zhou, C.; Chen, S. H.; Lou, J. Z.; Chen, Z. C.; Xu, G.; Yang, C. Y., Recent Advances in Graphene Preparation Methods. Materials Science Forum 2015, 814, 3-12.
    78. Zhao, W.; Fang, M.; Wu, F.; Wu, H.; Wang, L.; Chen, G., Preparation of graphene by exfoliation of graphite using wet ball milling. Journal of Materials Chemistry 2010, 20 (28), 5817-5819.
    79. Wang, J.; Zhang, W.; Wang, Y.; Zhu, W.; Zhang, D.; Li, Z.; Wang, J., Enhanced Exfoliation Effect of Solid Auxiliary Agent On the Synthesis of Biofunctionalized MoS2 Using Grindstone Chemistry. Particle & Particle Systems Characterization 2016, 33 (11), 825-832.
    80. Tao, H.; Zhang, Y.; Gao, Y.; Sun, Z.; Yan, C.; Texter, J., Scalable exfoliation and dispersion of two-dimensional materials – an update. Physical Chemistry Chemical Physics 2017, 19 (2), 921-960.
    81. Haider, T. P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F. R., Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie International Edition 2019, 58 (1), 50-62.
    82. Uysal Unalan, I.; Wan, C.; Trabattoni, S.; Piergiovanni, L.; Farris, S., Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Advances 2015, 5 (34), 26482-26490.
    83. Paredes, J. I.; Villar-Rodil, S., Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications. Nanoscale 2016, 8 (34), 15389-15413.
    84. Niaraki Asli, A. E.; Guo, J.; Lai, P. L.; Montazami, R.; Hashemi, N. N., High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns. Biosensors 2020, 10 (1).
    85. Li, X.; Xu, W.; Xin, Y.; Yuan, J.; Ji, Y.; Chu, S.; Liu, J.; Luo, Q., Supramolecular Polymer Nanocomposites for Biomedical Applications. Polymers 2021, 13 (4).
    86. Haar, S.; Ciesielski, A.; Clough, J.; Yang, H.; Mazzaro, R.; Richard, F.; Conti, S.; Merstorf, N.; Cecchini, M.; Morandi, V.; Casiraghi, C.; Samorì, P., A Supramolecular Strategy to Leverage the Liquid-Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids. Small 2015, 11 (14), 1691-1702.
    87. Eredia, M.; Ciesielski, A.; Samorì, P., 6. Graphene via Molecule-Assisted Ultrasound- Induced Liquid-Phase Exfoliation: A Supramolecular Approach
    Chemistry of Carbon Nanostructures. Muellen, K.; Feng, X., Eds. De Gruyter: 2017; pp 173-193.
    88. Shim, H. W.; Ahn, K.-J.; Im, K.; Noh, S.; Kim, M.-S.; Lee, Y.; Choi, H.; Yoon, H., Effect of Hydrophobic Moieties in Water-Soluble Polymers on Physical Exfoliation of Graphene. Macromolecules 2015, 48 (18), 6628-6637.
    89. Wilson, A. J., Non-covalent polymer assembly using arrays of hydrogen-bonds. Soft Matter 2007, 3 (4), 409-425.
    90. Mollet, B. B.; Comellas-Aragonès, M.; Spiering, A. J. H.; Söntjens, S. H. M.; Meijer, E. W.; Dankers, P. Y. W., A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. Journal of Materials Chemistry B 2014, 2 (17), 2483-2493.
    91. Dankers, P. Y. W.; Boomker, J. M.; Huizinga-van der Vlag, A.; Wisse, E.; Appel, W. P. J.; Smedts, F. M. M.; Harmsen, M. C.; Bosman, A. W.; Meijer, W.; van Luyn, M. J. A., Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials 2011, 32 (3), 723-733.
    92. Edelwirth, M.; Freund, J.; Sowerby, S. J.; Heckl, W. M., Molecular mechanics study of hydrogen bonded self-assembled adenine monolayers on graphite. Surface Science 1998, 417 (2), 201-209.
    93. Lin, I. H.; Cheng, C.-C.; Yen, Y.-C.; Chang, F.-C., Synthesis and Assembly Behavior of Heteronucleobase-Functionalized Poly(ε-caprolactone). Macromolecules 2010, 43 (3), 1245-1252.
    94. Wang, D.; Su, Y.; Jin, C.; Zhu, B.; Pang, Y.; Zhu, L.; Liu, J.; Tu, C.; Yan, D.; Zhu, X., Supramolecular Copolymer Micelles Based on the Complementary Multiple Hydrogen Bonds of Nucleobases for Drug Delivery. Biomacromolecules 2011, 12 (4), 1370-1379.
    95. Cheng, C.-C.; Huang, J.-J.; Liao, Z.-S.; Huang, S.-Y.; Lee, D.-J.; Xin, Z., Nucleobase-functionalized supramolecular polymer films with tailorable properties and tunable biodegradation rates. Polymer Chemistry 2017, 8 (9), 1454-1459.
    96. Cortese, J.; Soulié-Ziakovic, C.; Tencé-Girault, S.; Leibler, L., Suppression of Mesoscopic Order by Complementary Interactions in Supramolecular Polymers. Journal of the American Chemical Society 2012, 134 (8), 3671-3674.
    97. Cheng, C.-C.; Chang, F.-C.; Wang, J.-H.; Chu, Y.-L.; Wang, Y.-S.; Lee, D.-J.; Chuang, W.-T.; Xin, Z., Large-scale production of ureido-cytosine based supramolecular polymers with well-controlled hierarchical nanostructures. RSC Advances 2015, 5 (93), 76451-76457.
    98. George, S. J.; Ajayaghosh, A., Self-Assembled Nanotapes of Oligo(p-phenylene vinylene)s: Sol–Gel-Controlled Optical Properties in Fluorescent π-Electronic Gels. Chemistry – A European Journal 2005, 11 (11), 3217-3227.
    99. Sivakova, S.; Bohnsack, D. A.; Mackay, M. E.; Suwanmala, P.; Rowan, S. J., Utilization of a Combination of Weak Hydrogen-Bonding Interactions and Phase Segregation to Yield Highly Thermosensitive Supramolecular Polymers. Journal of the American Chemical Society 2005, 127 (51), 18202-18211.
    100. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008, 3 (2), 101-105.
    101. Johnson, D. W.; Dobson, B. P.; Coleman, K. S., A manufacturing perspective on graphene dispersions. Current Opinion in Colloid & Interface Science 2015, 20 (5), 367-382.
    102. Furukawa, M.; Tanaka, H.; Kawai, T., Formation mechanism of low-dimensional superstructure of adenine molecules and its control by chemical modification: a low-temperature scanning tunneling microscopy study. Surface Science 2000, 445 (1), 1-10.
    103. Cheng, C.-C.; Wang, J.-H.; Chuang, W.-T.; Liao, Z.-S.; Huang, J.-J.; Huang, S.-Y.; Fan, W.-L.; Lee, D.-J., Dynamic supramolecular self-assembly: hydrogen bonding-induced contraction and extension of functional polymers. Polymer Chemistry 2017, 8 (21), 3294-3299.
    104. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18), 187401.
    105. Park, K. H.; Kim, B. H.; Song, S. H.; Kwon, J.; Kong, B. S.; Kang, K.; Jeon, S., Exfoliation of Non-Oxidized Graphene Flakes for Scalable Conductive Film. Nano Letters 2012, 12 (6), 2871-2876.
    106. Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H., Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews 2018, 47 (5), 1822-1873.
    107. Dresselhaus, M. S.; Jorio, A.; Souza Filho, A. G.; Saito, R., Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368 (1932), 5355-5377.
    108. Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C., Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters 2012, 12 (8), 3925-3930.
    109. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Physics Reports 2009, 473 (5), 51-87.
    110. Backes, C.; Higgins, T. M.; Kelly, A.; Boland, C.; Harvey, A.; Hanlon, D.; Coleman, J. N., Guidelines for Exfoliation, Characterization and Processing of Layered Materials Produced by Liquid Exfoliation. Chemistry of Materials 2017, 29 (1), 243-255.
    111. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
    112. Cheng, C.-C.; Muhabie, A. A.; Huang, S.-Y.; Wu, C.-Y.; Gebeyehu, B. T.; Lee, A.-W.; Lai, J.-Y.; Lee, D.-J., Dual stimuli-responsive supramolecular boron nitride with tunable physical properties for controlled drug delivery. Nanoscale 2019, 11 (21), 10393-10401.
    113. Yavari, F.; Fard, H. R.; Pashayi, K.; Rafiee, M. A.; Zamiri, A.; Yu, Z.; Ozisik, R.; Borca-Tasciuc, T.; Koratkar, N., Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives. The Journal of Physical Chemistry C 2011, 115 (17), 8753-8758.
    114. Furukawa, M.; Tanaka, H.; Kawai, T., Scanning tunneling microscopy observation of two-dimensional self-assembly formation of adenine molecules on Cu(111) surfaces. Surface Science 1997, 392 (1), L33-L39.
    115. McNutt, A.; Haq, S.; Raval, R., RAIRS investigations on the orientation and intermolecular interactions of adenine on Cu(110). Surface Science 2003, 531 (2), 131-144.
    116. Mu, Z.; Rubner, O.; Bamler, M.; Blömker, T.; Kehr, G.; Erker, G.; Heuer, A.; Fuchs, H.; Chi, L., Temperature-Dependent Self-Assembly of Adenine Derivative on HOPG. Langmuir 2013, 29 (34), 10737-10743.
    117. Lu, J. P., Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letters 1997, 79 (7), 1297-1300.
    118. Börrnert, F.; Barreiro, A.; Wolf, D.; Katsnelson, M. I.; Büchner, B.; Vandersypen, L. M. K.; Rümmeli, M. H., Lattice Expansion in Seamless Bilayer Graphene Constrictions at High Bias. Nano Letters 2012, 12 (9), 4455-4459.
    119. Zhang, W.; Cao, Y.; Tian, P.; Guo, F.; Tian, Y.; Zheng, W.; Ji, X.; Liu, J., Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants. ACS Applied Materials & Interfaces 2016, 8 (47), 32440-32449.
    120. Achee, T. C.; Sun, W.; Hope, J. T.; Quitzau, S. G.; Sweeney, C. B.; Shah, S. A.; Habib, T.; Green, M. J., High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Scientific Reports 2018, 8 (1), 14525.
    121. Chua, C. K.; Pumera, M., Covalent chemistry on graphene. Chemical Society Reviews 2013, 42 (8), 3222-3233.
    122. Shojaeenezhad, S. S.; Farbod, M.; Kazeminezhad, I., Effects of initial graphite particle size and shape on oxidation time in graphene oxide prepared by Hummers' method. Journal of Science: Advanced Materials and Devices 2017, 2 (4), 470-475.
    123. Strom, T. A.; Dillon, E. P.; Hamilton, C. E.; Barron, A. R., Nitrene addition to exfoliated graphene: a one-step route to highly functionalized graphene. Chemical Communications 2010, 46 (23), 4097-4099.
    124. Qiu, X.; Bouchiat, V.; Colombet, D.; Ayela, F., Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip’. RSC Advances 2019, 9 (6), 3232-3238.
    125. Wei, Y.; Sun, Z., Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Current Opinion in Colloid & Interface Science 2015, 20 (5), 311-321.
    126. Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hägele, C.; Scalia, G.; Judele, R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M., Discotic Liquid Crystals: From Tailor-Made Synthesis to Plastic Electronics. Angewandte Chemie International Edition 2007, 46 (26), 4832-4887.
    127. He, H.; Gao, C., General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry. Chemistry of Materials 2010, 22 (17), 5054-5064.
    128. Cai, M.; Thorpe, D.; Adamson, D. H.; Schniepp, H. C., Methods of graphite exfoliation. Journal of Materials Chemistry 2012, 22 (48), 24992-25002.
    129. Liu, W. W.; Wang, J. N., Direct exfoliation of graphene in organic solvents with addition of NaOH. Chemical Communications 2011, 47 (24), 6888-6890.
    130. Narayan, R.; Kim, S. O., Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence 2015, 2 (1), 20.
    131. Nu Thanh Ton, N.; Ha, M.-Q.; Ikenaga, T.; Thakur, A.; Dam, H.-C.; Taniike, T., Solvent screening for efficient chemical exfoliation of graphite. 2D Materials 2020, 8 (1), 015019.
    132. Qi, X.; Zhang, H.-B.; Xu, J.; Wu, X.; Yang, D.; Qu, J.; Yu, Z.-Z., Highly Efficient High-Pressure Homogenization Approach for Scalable Production of High-Quality Graphene Sheets and Sandwich-Structured α-Fe2O3/Graphene Hybrids for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (12), 11025-11034.
    133. Wang, S.; Wang, C.; Ji, X., Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Advances 2017, 7 (82), 52252-52260.
    134. Zhang, W.; Li, Y.; Peng, S., Facile Synthesis of Graphene Sponge from Graphene Oxide for Efficient Dye-Sensitized H2 Evolution. ACS Applied Materials & Interfaces 2016, 8 (24), 15187-15195.
    135. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008, 3 (9), 563-568.
    136. Haar, S.; El Gemayel, M.; Shin, Y.; Melinte, G.; Squillaci, M. A.; Ersen, O.; Casiraghi, C.; Ciesielski, A.; Samorì, P., Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene. Scientific Reports 2015, 5 (1), 16684.
    137. Du, W.; Jiang, X.; Zhu, L., From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene. Journal of Materials Chemistry A 2013, 1 (36), 10592-10606.
    138. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. J. s., Large-area synthesis of high-quality and uniform graphene films on copper foils. 2009, 324 (5932), 1312-1314.
    139. Ciesielski, A.; Samorì, P., Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews 2014, 43 (1), 381-398.
    140. Xu, X.; Luo, Q.; Lv, W.; Dong, Y.; Lin, Y.; Yang, Q.; Shen, A.; Pang, D.; Hu, J.; Qin, J.; Li, Z., Functionalization of Graphene Sheets by Polyacetylene: Convenient Synthesis and Enhanced Emission. Macromolecular Chemistry and Physics 2011, 212 (8), 768-773.
    141. Matsumoto, M.; Saito, Y.; Park, C.; Fukushima, T.; Aida, T., Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. Nature Chemistry 2015, 7 (9), 730-736.
    142. Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R., Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Research 2010, 3 (2), 138-145.
    143. Pedireddi, V. R.; Ranganathan, A.; Ganesh, K. N., Cyanurate Mimics of Hydrogen-Bonding Patterns of Nucleic Bases:  Crystal Structure of a 1:1 Molecular Complex of 9-Ethyladenine and N-Methylcyanuric Acid. Organic Letters 2001, 3 (1), 99-102.
    144. Jiao, X.; Qiu, Y.; Zhang, L.; Zhang, X., Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Advances 2017, 7 (82), 52337-52344.
    145. Sayah, A.; Habelhames, F.; Bahloul, A.; Nessark, B.; Bonnassieux, Y.; Tendelier, D.; El Jouad, M., Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. Journal of Electroanalytical Chemistry 2018, 818, 26-34.
    146. Lin, Y.-K.; Chen, R.-S.; Chou, T.-C.; Lee, Y.-H.; Chen, Y.-F.; Chen, K.-H.; Chen, L.-C., Thickness-Dependent Binding Energy Shift in Few-Layer MoS2 Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2016, 8 (34), 22637-22646.
    147. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 2013, 5 (4), 263-275.
    148. Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V., Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Physical Review B 2010, 82 (7), 075415.
    149. McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L., Defect-Dominated Doping and Contact Resistance in MoS2. ACS Nano 2014, 8 (3), 2880-2888.
    150. Tilgner, A., Zonal Wind Driven by Inertial Modes. Physical Review Letters 2007, 99 (19), 194501.
    151. Pimenta, M. L. M.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Physics Reports 2009, 473, 51-87.
    152. Ma, R.; Sasaki, T., Two-Dimensional Oxide and Hydroxide Nanosheets: Controllable High-Quality Exfoliation, Molecular Assembly, and Exploration of Functionality. Accounts of Chemical Research 2015, 48 (1), 136-143.
    153. Satapathy, A. K.; Behera, S. K.; Yadav, A.; Mahour, L. N.; Yelamaggad, C. V.; Sandhya, K. L.; Sahoo, B., Tuning the fluorescence behavior of liquid crystal molecules containing Schiff-base: Effect of solvent polarity. Journal of Luminescence 2019, 210, 371-375.
    154. Liu, M.; Cowley, J. M., Structures of carbon nanotubes studied by HRTEM and nanodiffraction. Ultramicroscopy 1994, 53 (4), 333-342.
    155. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., Single-layer MoS2 transistors. Nature Nanotechnology 2011, 6 (3), 147-150.
    156. Tamulewicz, M.; Kutrowska-Girzycka, J.; Gajewski, K.; Serafińczuk, J.; Sierakowski, A.; Jadczak, J.; Bryja, L.; Gotszalk, T. P., Layer number dependence of the work function and optical properties of single and few layers MoS2: effect of substrate. Nanotechnology 2019, 30 (24), 245708.
    157. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS2. Nano Letters 2011, 11 (12), 5111-5116.
    158. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F., Emerging Photoluminescence in Monolayer MoS2. Nano Letters 2010, 10 (4), 1271-1275.
    159. Sim, H.; Lee, J.; Park, B.; Kim, S. J.; Kang, S.; Ryu, W.; Jun, S. C., High-concentration dispersions of exfoliated MoS2 sheets stabilized by freeze-dried silk fibroin powder. Nano Research 2016, 9 (6), 1709-1722.
    160. Sun, J.; Li, X.; Guo, W.; Zhao, M.; Fan, X.; Dong, Y.; Xu, C.; Deng, J.; Fu, Y., Synthesis Methods of Two-Dimensional MoS2: A Brief Review. 2017, 7 (7), 198.
    161. Liu, W.; Zhao, C.; Zhou, R.; Zhou, D.; Liu, Z.; Lu, X., Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. Nanoscale 2015, 7 (21), 9919-9926.
    162. Ma, H.; Shen, Z.; Ben, S., Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water. Journal of colloid and interface science 2018, 517, 204-212.
    163. Ma, H.; Ben, S.; Shen, Z.; Zhang, X.; Wu, C.; Liao, S.; An, F., Investigating the exfoliation behavior of MoS2 and graphite in water: A comparative study. Applied Surface Science 2020, 512, 145588.
    164. Ma, H.; Shen, Z.; Ben, S., Surfactant-free exfoliation of multilayer molybdenum disulfide nanosheets in water. Journal of Colloid and Interface Science 2019, 537, 28-33.
    165. Lee, J.; Hahnkee Kim, R.; Yu, S.; Babu Velusamy, D.; Lee, H.; Park, C.; Cho, S. M.; Jeong, B.; Sol Kang, H.; Park, C., Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites. 2D Materials 2017, 4 (4), 041002.
    166. Karunakaran, S.; Pandit, S.; Basu, B.; De, M., Simultaneous Exfoliation and Functionalization of 2H-MoS2 by Thiolated Surfactants: Applications in Enhanced Antibacterial Activity. Journal of the American Chemical Society 2018, 140 (39), 12634-12644.
    167. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. Journal of the American Chemical Society 2008, 130 (18), 5856-5857.
    168. Zhang, M.; Howe, R. C.; Woodward, R. I.; Kelleher, E. J.; Torrisi, F.; Hu, G.; Popov, S. V.; Taylor, J. R.; Hasan, T. J. N. R., Solution processed MoS 2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: fiber laser. 2015, 8 (5), 1522-1534.
    169. Cheng, C.-C.; Liang, M.-C.; Liao, Z.-S.; Huang, J.-J.; Lee, D.-J., Self-Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy. Macromolecular Bioscience 2017, 17 (5), 1600370.
    170. Kaur, J.; Singh, M.; Dell‘Aversana, C.; Benedetti, R.; Giardina, P.; Rossi, M.; Valadan, M.; Vergara, A.; Cutarelli, A.; Montone, A. M. I. J. S. r., Biological interactions of biocompatible and water-dispersed MoS 2 nanosheets with bacteria and human cells. 2018, 8 (1), 1-15.
    171. Sahoo, D.; Kumar, B.; Sinha, J.; Ghosh, S.; Roy, S. S.; Kaviraj, B. J. S. R., Cost effective liquid phase exfoliation of MoS 2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. 2020, 10 (1), 1-12.
    172. Sim, H.; Lee, J.; Park, B.; Kim, S. J.; Kang, S.; Ryu, W.; Jun, S. C. J. N. R., High-concentration dispersions of exfoliated MoS 2 sheets stabilized by freeze-dried silk fibroin powder. 2016, 9 (6), 1709-1722.
    173. Guan, G.; Zhang, S.; Liu, S.; Cai, Y.; Low, M.; Teng, C. P.; Phang, I. Y.; Cheng, Y.; Duei, K. L.; Srinivasan, B. M. J. J. o. t. A. C. S., Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. 2015, 137 (19), 6152-6155.
    174. Muhabie, A. A.; Ho, C.-H.; Gebeyehu, B. T.; Huang, S.-Y.; Chiu, C.-W.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C. J. C. s., Dynamic tungsten diselenide nanomaterials: supramolecular assembly-induced structural transition over exfoliated two-dimensional nanosheets. 2018, 9 (24), 5452-5460.
    175. Huang, J.; Akselrod, G. M.; Ming, T.; Kong, J.; Mikkelsen, M. H. J. A. P., Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities. 2018, 5 (2), 552-558.
    176. Yang, X.; Li, B., Monolayer MoS2 for nanoscale photonics. Nanophotonics 2020, 9 (7), 1557-1577.
    177. Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J. Z. J. C. S. R., Synthesis, properties, and optoelectronic applications of two-dimensional MoS 2 and MoS 2-based heterostructures. 2018, 47 (16), 6101-6127.
    178. Liu, Y.; Li, R. J. U. S., Study on ultrasound-assisted liquid-phase exfoliation for preparing graphene-like molybdenum disulfide nanosheets. 2020, 63, 104923.
    179. Cao, P.; Peng, J.; Liu, S.; Cui, Y.; Hu, Y.; Chen, B.; Li, J.; Zhai, M. J. S. r., Tuning the composition and structure of amorphous molybdenum sulfide/carbon black nanocomposites by radiation technique for highly efficient hydrogen evolution. 2017, 7 (1), 1-11.
    180. Tian, Q.; Wu, W.; Yang, S.; Liu, J.; Yao, W.; Ren, F.; Jiang, C. J. N. r. l., Zinc oxide coating effect for the dye removal and photocatalytic mechanisms of flower-like MoS 2 nanoparticles. 2017, 12 (1), 221.
    181. Wang, X.; Xing, W.; Feng, X.; Song, L.; Hu, Y. J. P. R., MoS2/polymer nanocomposites: preparation, properties, and applications. 2017, 57 (3), 440-466.
    182. Lee, J.; Kim, R. H.; Yu, S.; Velusamy, D. B.; Lee, H.; Park, C.; Cho, S. M.; Jeong, B.; Kang, H. S.; Park, C. J. D. M., Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites. 2017, 4 (4), 041002.
    183. Maity, N.; Mandal, A.; Nandi, A. K. J. J. o. M. C. C., High dielectric poly (vinylidene fluoride) nanocomposite films with MoS 2 using polyaniline interlinker via interfacial interaction. 2017, 5 (46), 12121-12133.
    184. Feng, X.; Wen, P.; Cheng, Y.; Liu, L.; Tai, Q.; Hu, Y.; Liew, K. M. J. C. P. A. A. S.; Manufacturing, Defect-free MoS2 nanosheets: Advanced nanofillers for polymer nanocomposites. 2016, 81, 61-68.
    185. Wang, D.; Wu, F.; Song, Y.; Li, C.; Zhou, L., Large-scale production of defect-free MoS2 nanosheets via pyrene-assisted liquid exfoliation. Journal of Alloys and Compounds 2017, 728, 1030-1036.
    186. Huang, J.-H.; Chen, H.-H.; Liu, P.-S.; Lu, L.-S.; Wu, C.-T.; Chou, C.-T.; Lee, Y.-J.; Li, L.-J.; Chang, W.-H.; Hou, T.-H., Large-area few-layer MoS2deposited by sputtering. Materials Research Express 2016, 3 (6), 065007.
    187. Wu, C.-Y.; Zeleke Melaku, A.; Chuang, W.-T.; Cheng, C.-C., Manipulating the self-assembly behavior of graphene nanosheets via adenine-functionalized biodegradable polymers. Applied Surface Science 2022, 572, 151437.
    188. Li, X.; Zhu, H., Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics 2015, 1 (1), 33-44.
    189. Su, S.; Hao, Q.; Yan, Z.; Dong, R.; Yang, R.; Zhu, D.; Chao, J.; Zhou, Y.; Wang, L., A molybdenum disulfide@Methylene Blue nanohybrid for electrochemical determination of microRNA-21, dopamine and uric acid. Microchimica Acta 2019, 186 (9), 607.
    190. Kim, M.; Kim, Y. K.; Kim, J.; Cho, S.; Lee, G.; Jang, J., Fabrication of a polyaniline/MoS2 nanocomposite using self-stabilized dispersion polymerization for supercapacitors with high energy density. RSC Advances 2016, 6 (33), 27460-27465.
    191. Feng, X.; Wang, X.; Xing, W.; Zhou, K.; Song, L.; Hu, Y., Liquid-exfoliated MoS2 by chitosan and enhanced mechanical and thermal properties of chitosan/MoS2 composites. Composites Science and Technology 2014, 93, 76-82.
    192. Shen, T.; Valencia, D.; Wang, Q.; Wang, K.-C.; Povolotskyi, M.; Kim, M. J.; Klimeck, G.; Chen, Z.; Appenzeller, J., MoS2 for Enhanced Electrical Performance of Ultrathin Copper Films. ACS Applied Materials & Interfaces 2019, 11 (31), 28345-28351.
    193. Santa Ana, M. A.; Benavente, E.; Gómez-Romero, P.; González, G., Poly(acrylonitrile)–molybdenum disulfide polymer electrolyte nanocomposite. Journal of Materials Chemistry 2006, 16 (30), 3107-3113.

    無法下載圖示 全文公開日期 2025/01/20 (校內網路)
    全文公開日期 2027/01/20 (校外網路)
    全文公開日期 2027/01/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE