簡易檢索 / 詳目顯示

研究生: 盧冠廷
Kuan-Ting Lu
論文名稱: 通過氫鍵和混摻n型分子提升高分子半導體性能之研究
Investigation of Performance Enhancement for The Semiconducting Polymers via Hydrogen Bonding and Blended n-Type Molecule
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 李文亞
Wen-Ya Lee
胡哲嘉
Che-Chia Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 91
中文關鍵詞: 共軛聚合物氫鍵電荷遷移率有機場效應電晶體電荷存儲能力自修復半導體非易失有機場效應電晶體型記憶體
外文關鍵詞: conjugated polymers, hydrogen bonding, charge mobility, organic field-effect transistor, charge storage, self-healing semiconductor, nonvolatile organic field-effect transistor memory
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract i 中文摘要 iii Content iv Table Caption vii Figure Caption viii Chapter 1 1 1.1 Basic Concept of Organic Field-Effect Transistor devices 1 1.1.1 Device structure and characterization of OFETs 2 1.1.2 Device structure and characterization of OFET-based memories 7 1.2 Literature review 13 1.2.1 Intrinsically stretchable semiconducting polymer for OFET 15 1.2.2 Stretchable semiconducting polymer by backbone engineering 16 1.2.3 Stretchable semiconducting polymer by side-chain engineering 19 1.2.4 Stretchable semiconducting polymer by soft crosslinkers 21 1.2.5 Stretchable semiconducting polymer by conjugation- break spacers 23 1.2.6 Stretchable semiconducting polymer by dynamic bonding 25 1.2.7 Stretchable semiconducting polymer by elastomer blending 27 1.3 Stretchable and self- healable semiconducting polymer for OFET 29 1.4 Motivation and Research Objectives 33 Chapter 2 Investigation of hydrogen bonding in semiconductor polymers 35 2.1 Introduction 35 2.2 Experimental section 38 2.2.1 Material 38 2.2.2 Device fabrication 38 2.2.3 Characterization 39 2.3 Result and discussion 40 2.3.1 OFET electrical characteristics 40 2.3.2 Atomic force microscopy (AFM) 43 2.3.3 GIWAXS analysis 45 2.4 Conclusions 48 Chapter 3 Application of n-type blended self-healable and stretchable semiconductor in nonvolatile OFET memory 49 3.1 Introduction 49 3.2 Experimental section 52 3.2.1 Materials 52 3.2.2 Device fabrication 52 3.2.3 Characterization 53 3.3 Result and discussion 54 3.3.1 OFET-based memory electrical characteristics 54 3.3.2 OFET-based memory electrical characteristics 56 3.3.2 Atomic force microscopy (AFM) 58 3.3.2 Characteristics with self-healing composite 61 3.3.3 Memory performances of composite after recovery 64 3.4 Conclusions 72 References 73

    [1] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
    [2] A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater. 2018, 30, 1801079.
    [3] B. Kumar, B. K. Kaushik, Y. S. Negi, Polym. Rev. 2014, 54, 33.
    [4] G. Horowitz, Adv. Mater. 1998, 10, 365.
    [5] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Brédas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
    [6] D. A. Neamen, Semiconductor physics and devices: basic principles, New York, NY: McGraw-Hill, 2012.
    [7] J. T. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, J. Mater. Chem. C 2017, 5, 8654.
    [8] Y.-H. Chou, H.-C. Chang, C.-L. Liu, W.-C. Chen, Polym. Chem. 2015, 6, 341.
    [9] Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
    [10] K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus, D.-Y. Kim, Adv. Funct. Mater. 2010, 20, 224.
    [11] C.-C. Shih, Y.-C. Chiu, W.-Y. Lee, J.-Y. Chen, W.-C. Chen, Adv. Funct. Mater. 2015, 25, 1511.
    [12] K.-J. Baeg, Y.-Y. Noh, J. Ghim, B. Lim, D.-Y. Kim, Adv. Funct. Mater. 2008, 18, 3678.
    [13] Y.-C. Chiu, T.-Y. Chen, C.-C. Chueh, H.-Y. Chang, K. Sugiyama, Y.-J. Sheng, A. Hirao, W.-C. Chen, J. Mater. Chem. C 2014, 2, 1436.
    [14] R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. de Leeuw, Nat. Mater. 2005, 4, 243.
    [15] L.-C. Hsu, T. Isono, Y.-C. Lin, S. Kobayashi, Y.-C. Chiang, D.-H. Jiang, C.-C. Hung, E. Ercan, W.-C. Yang, H.-C. Hsieh, ACS Appl. Mater. Interfaces 2021, 13, 2932.
    [16] W.-Y. Lee, H.-C. Wu, C. Lu, B. D. Naab, W.-C. Chen, Z. Bao, Adv. Mater. 2017, 29, 1605166.
    [17] J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. Bao, S. Park, Adv. Mater. 2019, 31, 1904765.
    [18] D. H. Kim, J. Xiao, J. Song, Y. Huang, J. A. Rogers, Adv. Mater. 2010, 22, 2108.
    [19] H.-C. Tien, Y.-W. Huang, Y.-C. Chiu, Y.-H. Cheng, C.-C. Chueh, W.-Y. Lee, J. Mater. Chem. C 2021, 9, 2660.
    [20] J. Mun, Y. Ochiai, W. Wang, Y. Zheng, Y.-Q. Zheng, H.-C. Wu, N. Matsuhisa, T. Higashihara, J. B.-H. Tok, Y. Yun, Nat. Commun. 2021, 12, 1.
    [21] B. O’Connor, E. P. Chan, C. Chan, B. R. Conrad, L. J. Richter, R. J. Kline, M. Heeney, I. McCulloch, C. L. Soles, D. M. DeLongchamp, ACS Nano 2010, 4, 7538.
    [22] B. O'Connor, R. J. Kline, B. R. Conrad, L. J. Richter, D. Gundlach, M. F. Toney, D. M. DeLongchamp, Adv. Funct. Mater. 2011, 21, 3697.
    [23] C. Müller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. J. Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus, P. Smith, N. Stingelin-Stutzmann, Adv. Funct. Mater. 2007, 17, 2674.
    [24] J.-S. Kim, J.-H. Kim, W. Lee, H. Yu, H. J. Kim, I. Song, M. Shin, J. H. Oh, U. Jeong, T.-S. Kim, B. J. Kim, Macromolecules 2015, 48, 4339.
    [25] R. Peng, B. Pang, D. Hu, M. Chen, G. Zhang, X. Wang, H. Lu, K. Cho, L. Qiu, J. Mater. Chem. C 2015, 3, 3599.
    [26] C. Lu, W.-Y. Lee, X. Gu, J. Xu, H.-H. Chou, H. Yan, Y.-C. Chiu, M. He, J. R. Matthews, W. Niu, J. B.-H. Tok, M. F. Toney, W.-C. Chen, Z. Bao, Adv. Electron. Mater. 2017, 3, 1600311.
    [27] G.-J. N. Wang, L. Shaw, J. Xu, T. Kurosawa, B. C. Schroeder, J. Y. Oh, S. J. Benight, Z. Bao, Adv. Funct. Mater. 2016, 26, 7254.
    [28] J. Mun, G.-J. N. Wang, J. Y. Oh, T. Katsumata, F. L. Lee, J. Kang, H.-C. Wu, F. Lissel, S. Rondeau-Gagné, J. B.-H. Tok, Z. Bao, Adv. Funct. Mater. 2018, 28, 1804222.
    [29] J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W.-G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. H. Tok, Z. Bao, Nature 2016, 539, 411.
    [30] J. Xu, S. Wang, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J. W. F. To, S. Rondeau-Gagné, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y.-H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B.-H. Tok, J. W. Chung, Z. Bao, Science 2017, 355, 59.
    [31] J. Y. Oh, D. Son, T. Katsumata, Y. Lee, Y. Kim, J. Lopez, H.-C. Wu, J. Kang, J. Park, X. Gu, J. Mun, N. G.-J. Wang, Y. Yin, W. Cai, Y. Yun, J. B.-H. Tok, Z. Bao, Sci. Adv. 2019, 5, eaav3097.
    [32] S. Zhang, Y.-H. Cheng, L. Galuska, A. Roy, M. Lorenz, B. Chen, S. Luo, Y.-T. Li, C.-C. Hung, Z. Qian, P. B. J. St. Onge, G. T. Mason, L. Cowen, D. Zhou, S. I. Nazarenko, R. F. Storey, B. C. Schroeder, S. Rondeau-Gagné, Y.-C. Chiu, X. Gu, Adv. Funct. Mater. 2020, 30, 2000663.
    [33] S. Savagatrup, A. D. Printz, T. F. O’Connor, A. V. Zaretski, D. J. Lipomi, Chem. Mater. 2014, 26, 3028.
    [34] S. Zhang, A. Alesadi, M. Selivanova, Z. Cao, Z. Qian, S. Luo, L. Galuska, C. Teh, M. U. Ocheje, G. T. Mason, Adv. Funct. Mater. 2020, 30, 2002221.
    [35] R. Noriega, J. Rivnay, K. Vandewal, F. P. Koch, N. Stingelin, P. Smith, M. F. Toney, A. Salleo, Nat. Mater. 2013, 12, 1038.
    [36] H.-F. Wen, H.-C. Wu, J. Aimi, C.-C. Hung, Y.-C. Chiang, C.-C. Kuo, W.-C. Chen, Macromolecules 2017, 50, 4982.
    [37] J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, Z. Bao, J. Am. Chem. Soc. 2011, 133, 20130.
    [38] S. Riera‐Galindo, F. Leonardi, R. Pfattner, M. Mas‐Torrent, Adv. Mater. Technol. 2019, 4, 1900104.
    [39] J. Yao, C. Yu, Z. Liu, H. Luo, Y. Yang, G. Zhang, D. Zhang, J. Am. Chem. Soc. 2016, 138, 173.
    [40] M. U. Ocheje, M. Selivanova, S. Zhang, T. H. Van Nguyen, B. P. Charron, C.-H. Chuang, Y.-H. Cheng, B. Billet, S. Noori, Y.-C. Chiu, Polym. Chem. 2018, 9, 5531.
    [41] S. S. Zalesskiy, V. P. Ananikov, Organometallics 2012, 31, 2302.
    [42] S. Zhang, M. U. Ocheje, S. Luo, D. Ehlenberg, B. Appleby, D. Weller, D. Zhou, S. Rondeau-Gagné, X. Gu, Macromol. Rapid Commun. 2018, 39, 1800092.
    [43] S. Zhang, M. U. Ocheje, L. Huang, L. Galuska, Z. Cao, S. Luo, Y.-H. Cheng, D. Ehlenberg, R. B. Goodman, D. Zhou, Y. Liu, Y.-C. Chiu, J. D. Azoulay, S. Rondeau-Gagné, X. Gu, Adv. Electron. Mater. 2019, 5, 1800899.
    [44] M. U. Ocheje, B. P. Charron, Y.-H. Cheng, C.-H. Chuang, A. Soldera, Y.-C. Chiu, S. Rondeau-Gagné, Macromolecules 2018, 51, 1336.
    [45] Y. Zheng, M. Ashizawa, S. Zhang, J. Kang, S. Nikzad, Z. Yu, Y. Ochiai, H.-C. Wu, H. Tran, J. Mun, Chem. Mater. 2020, 32, 5700.
    [46] J. Rivnay, S. C. Mannsfeld, C. E. Miller, A. Salleo, M. F. Toney, Chem. Rev. 2012, 112, 5488.
    [47] J. L. Baker, L. H. Jimison, S. Mannsfeld, S. Volkman, S. Yin, V. Subramanian, A. Salleo, A. P. Alivisatos, M. F. Toney, Langmuir 2010, 26, 9146.
    [48] A.-N. Au-Duong, C.-C. Kuo, Y.-C. Chiu, Polym. J. 2018, 50, 649.
    [49] Y. Qian, X. Zhang, L. Xie, D. Qi, B. K. Chandran, X. Chen, W. Huang, Adv. Mater. 2016, 28, 9243.
    [50] F. A. Viola, A. Spanu, P. C. Ricci, A. Bonfiglio, P. Cosseddu, Sci. Rep. 2018, 8, 8073.
    [51] H. Liu, S. Zheng, K. Nie, Macromolecules 2005, 38, 5088.
    [52] X.-D. Zhuang, Y. Chen, B. Zhang, Y. Li, B. Yu, W. Qiao, New J. Chem. 2010, 34, 1120.
    [53] Y. Shao, G.-Z. Yin, X. Ren, X. Zhang, J. Wang, K. Guo, X. Li, C. Wesdemiotis, W.-B. Zhang, S. Yang, M. Zhu, B. Sun, RSC Adv. 2017, 7, 6530.

    無法下載圖示 全文公開日期 2031/09/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE