簡易檢索 / 詳目顯示

研究生: 余琬婷
Wan-Ting Yu
論文名稱: 氧化石墨烯/聚乙二醇/絲素蛋白混合基質薄膜於氣體分離之應用
GO/PEG/silk fibroin mixed matrix membranes for application in gas separation
指導教授: 胡蒨傑
Chien-Chieh Hu
口試委員: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
孫一明
Yi-Ming Sun
黃書賢
Shu-Hsien Huang
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 88
中文關鍵詞: 二氧化碳捕捉氣體分離薄膜絲素蛋白聚乙二醇氧化石墨烯
外文關鍵詞: CO2 capture, Gas separation membrane, Silk fibroin, Polyethylene glycol, Graphene oxide
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在科技迅速發展的工業化時代,人類活動所造成的環境危害變得日趨嚴重,因此發展解決此問題的新技術越來越受到重視。絲素蛋白為一種無毒且具生物相容性的純天然高分子,利用其製作薄膜可解決環境污染問題,並達成永續發展的目的,絲素蛋白 (Silk fibroin, SF) 薄膜因其機械性能差、易溶於水,難以應用於薄膜分離程序,本研究提出一種新的方法,利用聚乙二醇 (Polyethylene glycol, PEG) 混摻以調控絲素蛋白的結晶型態並提高薄膜的穩定性,此外由於CO2與 PEG 分子鏈中醚基之間的強相互作用力,聚乙二醇/絲素蛋白混合基質薄膜呈現很高的CO2溶解係數,使PEG2.0/SF 之薄膜有最高氣體透過係數,CO2透過係數達124.08 Barrer,O2透過係數達7.07 Barrer,N2透過係數達2.89 Barrer,且CO2/N2及O2/N2選擇係數分別為43.0及2.5。
為了解決在分離過程中氣體透過係數和選擇係數之間存在trade-off問題,並進一步提升薄膜的氣體分離效能,本研究將氧化石墨烯 (Graphene oxide, GO) 添加於聚乙二醇/絲素蛋白混合基質薄膜中,利用聚合物和奈米填充材各自的優點來調控氣體分離薄膜的氣體透過係數和選擇係數,使GO0.1/PEG2.0/SF薄膜有最佳的氣體分離性能,CO2透過係數達136.46 Barrer,O2透過係數為5.85 Barrer,N2透過係數則為2.44 Barrer,CO2/N2選擇係數顯著提升至56.0,以上表明在氣體分離過程中,使用GO奈米片摻合聚乙二醇與絲素蛋白薄膜具有發展潛力。


In the rapidly developing period of technology and industrialization, the environmental impacts caused by human activities have become increasingly severe. Therefore, the development of new technologies to solve these issues is becoming more and more important. Silk fibroin (SF) is a biocompatible natural polymer and using it to make a membrane can achieve the goal of environmental protection and sustainable development. However, silk fibroin membranes are difficult to be applied in membrane separation technology due to their poor mechanical properties and high solubility in water. In this study, polyethylene glycol (PEG) was blended into silk fibroin to improve the stability of the membrane by controlling the crystalline state of silk fibroin, which was successfully used in gas separation procedures. Due to the strong interaction between CO2 and the ether groups in PEG molecules, PEG/silk fibroin mixed matrix membranes have high CO2 solubility. The PEG2.0/SF membrane exhibited the highest gas separation performance with CO2 permeability of 124.08 Barrer, O2 permeability of 7.07 Barrer, and N2 permeability of 2.89 Barrer. The CO2/N2 and O2/N2 ideal selectivity were 43.0 and 2.5, respectively.
In order to solve the trade-off effect between permeability and selectivity, graphene oxide (GO) was added into the mixed matrix membrane to improve the permeability and selectivity of the PEG/silk fibroin membrane by taking the advantages of combining polymers and fillers. The GO0.1/PEG2.0/SF membrane exhibited improved gas separation performance with CO2 permeability of 136.46 Barrer, O2 permeability of 5.85 Barrer, N2 permeability of 2.44 Barrer, and CO2/N2 ideal selectivity was significantly enhanced to 56.0. The potential application of GO/PEG/silk fibroin membranes for gas separation process was confirmed in this study.

摘要 II Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究架構與方法 1 第二章 文獻回顧 3 2.1 二氧化碳捕捉 3 2.2 薄膜分離技術 4 2.2.1 薄膜常見之材料 4 2.2.2 薄膜結構及製備方法 5 2.2.3 薄膜分離程序 6 2.3 氣體分離薄膜 7 2.4 蠶絲蛋白 14 2.5 聚乙二醇 20 2.6 氧化石墨烯 22 第三章 研究材料與方法 25 3.1 研究流程圖 25 3.2 實驗材料 25 3.3 實驗儀器 26 3.4 實驗方法 27 3.4.1 薄膜製備 27 (1) 絲素蛋白之萃取 27 (2) 絲素蛋白溶液之製備 27 (3) 聚乙二醇/絲素蛋白混合基質薄膜之製備 28 (4) 氧化石墨烯/聚乙二醇/絲素蛋白混合基質薄膜之製備 29 3.4.2 薄膜與材料鑑定 30 (1) 高解析度場發射掃描式電子顯微鏡 (FESEM) 30 (2) 全反射式傅立葉轉換紅外線光譜儀 (ATR-FTIR) 31 (3) 桌上型拉力試驗機 32 (4) X光繞射分析儀 (XRD) 32 (5) 熱重分析儀 (TGA) 33 (6) 動態熱機械分析儀 (DMA) 34 (7) 正電子湮滅光譜儀 (PALS) 34 (8) 高精度微量天平 (Cahn) 36 (9) 動態光散射儀 (DLS) 37 3.4.3 效能測試簡介 37 (1) 氣體透過測試 37 第四章 結果與討論 41 4.1 聚乙二醇/絲素蛋白混合基質薄膜 41 4.1.1 薄膜之鑑定 41 4.1.2 薄膜之氣體溶解度測試 49 4.1.3 不同PEG混摻比例薄膜之氣體分離效能 50 4.1.4 操作壓力對薄膜氣體分離效能的影響 52 4.1.5 操作溫度對薄膜氣體分離效能的影響 53 4.2 氧化石墨烯/聚乙二醇/絲素蛋白混合基質薄膜 55 4.2.1 薄膜之鑑定 55 4.2.2 薄膜之氣體溶解係數測試 60 4.2.3 添加氧化石墨烯薄膜之氣體分離效能 61 4.2.4 操作壓力對薄膜氣體分離效能的影響 63 4.2.5 操作溫度對薄膜氣體分離效能的影響 64 第五章 結論 65 參考文獻 66

[1] T. Durmaz, The economics of CCS: Why have CCS technologies not had an international breakthrough?, Renewable and Sustainable Energy Reviews 95 (2018) 328-340.
[2] S. Kim, H. Shi, J.Y. Lee, CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent, International Journal of Greenhouse Gas Control 45 (2016) 181-188.
[3] K. Gonzalez, L. Boyer, D. Almoucachar, B. Poulain, E. Cloarec, C. Magnon, F. de Meyer, CO2 and H2S absorption in aqueous MDEA with ethylene glycol: Electrolyte NRTL, rate-based process model and pilot plant experimental validation, Chemical Engineering Journal 451 (2023) 138948.
[4] F. Meng, T. Ju, S. Han, L. Lin, J. Li, K. Chen, J. Jiang, Novel monoethanolamine absorption using ionic liquids as phase splitter for CO2 capture in biogas upgrading: High CH4 purity and low energy consumption, Chemical Engineering Journal 462 (2023) 142296.
[5] S. Foong, Y. Chan, C. Yiin, S. Lock, A. Loy, J. Lim, P. Yek, W.W. Mahari, R. Liew, W. Peng, Sustainable CO2 capture via adsorption by chitosan-based functional biomaterial: A review on recent advances, challenges, and future directions, Renewable and Sustainable Energy Reviews 181 (2023) 113342.
[6] M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Feng, Y. Ding, Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review, Separation and Purification Technology 299 (2022) 121734.
[7] D. Chen, K. Wang, Z. Yuan, Z. Lin, M. Zhang, Y. Li, J. Tang, Z. Liang, Y. Li, L. Chen, Boosting membranes for CO2 capture toward industrial decarbonization, Carbon Capture Science & Technology 7 (2023) 100117.
[8] J.E. Shin, S.K. Lee, Y.H. Cho, H.B. Park, Effect of PEG-MEA and graphene oxide additives on the performance of Pebax® 1657 mixed matrix membranes for CO2 separation, Journal of Membrane Science 572 (2019) 300-308.
[9] C.Y. Park, C.I. Kong, E.Y. Kim, C.H. Lee, K.S. Kim, J.H. Lee, J. Lee, S.Y. Moon, High flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment, Chemical Engineering Journal 455 (2023) 140883.
[10] J. Lillepärg, P. Georgopanos, S. Shishatskiy, Stability of blended polymeric materials for CO2 separation, Journal of Membrane Science 467 (2014) 269-278.
[11] 賴君義, 薄膜科技概論 Introduction to membrane science and technology, 五南圖書出版股份有限公司, 台灣 (2019).
[12] H. Yuan, J. Liu, X. Zhang, L. Chen, Q. Zhang, L. Ma, Recent advances in membrane-based materials for desalination and gas separation, Journal of Cleaner Production 387 (2023) 135845.
[13] D.M. Wang, J.Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation, Current Opinion in Chemical Engineering 2(2) (2013) 229-237.
[14] A.R. Kamble, C.M. Patel, Z. Murthy, A review on the recent advances in mixed matrix membranes for gas separation processes, Renewable and Sustainable Energy Reviews 145 (2021) 111062.
[15] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, Journal of Membrane Science 107(1-2) (1995) 1-21.
[16] N. Prasetya, N.F. Himma, P.D. Sutrisna, I.G. Wenten, B.P. Ladewig, A review on emerging organic-containing microporous material membranes for carbon capture and separation, Chemical Engineering Journal 391 (2020) 123575.
[17] P. Taheri, A. Raisi, M.S. Maleh, CO2-selective poly (ether-block-amide)/polyethylene glycol composite blend membrane for CO2 separation from gas mixtures, Environmental Science and Pollution Research 28 (2021) 38274-38291.
[18] M.S. Maleh, A. Raisi, Comparison of porous and nonporous filler effect on performance of poly (ether-block-amide) mixed matrix membranes for gas separation applications, Chemical Engineering Research and Design 147 (2019) 545-560.
[19] E.V. Perez, C. Karunaweera, I.H. Musselman, K.J. Balkus Jr, J.P. Ferraris, Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations, Processes 4(3) (2016) 32.
[20] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, Journal of Membrane Science 62(2) (1991) 165-185.
[21] L.M. Robeson, The upper bound revisited, Journal of Membrane Science 320(1-2) (2008) 390-400.
[22] X. Niu, G. Dong, D. Li, Y. Zhang, Y. Zhang, Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: A comparative study on the microstructure-performance relationships, Journal of Membrane Science 664 (2022) 121103.
[23] S. Norouzbahari, R. Gharibi, An investigation on structural and gas transport properties of modified cross-linked PEG-PU membranes for CO2 separation, Reactive and Functional Polymers 151 (2020) 104585.
[24] C. Yu, Y. Jia, K. Fang, Y. Qin, N. Deng, Y. Liang, Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation, Journal of Membrane Science 663 (2022) 121036.
[25] M. Mondal, K. Trivedy, K.S. Nirmal, The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review, Caspian Journal of Environmental Sciences 5(2) (2007) 63-76.
[26] C. Vepari, D.L. Kaplan, Silk as a biomaterial, Progress in Polymer Science 32(8-9) (2007) 991-1007.
[27] L.D. Koh, Y. Cheng, C.P. Teng, Y.W. Khin, X.J. Loh, S.Y. Tee, M. Low, E. Ye, H.D. Yu, Y.W. Zhang, Structures, mechanical properties and applications of silk fibroin materials, Progress in Polymer Science 46 (2015) 86-110.
[28] M.K. DeBari, R.D. Abbott, Microscopic considerations for optimizing silk biomaterials, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 11(2) (2019) e1534.
[29] C.Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, Fine organization of Bombyx mori fibroin heavy chain gene, Nucleic Acids Research 28(12) (2000) 2413-2419.
[30] K. Yamaguchi, Y. Kikuchi, T. Takagi, A. Kikuchi, F. Oyama, K. Shimura, S. Mizuno, Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis, Journal of Molecular Biology 210(1) (1989) 127-139.
[31] W. Sun, D.A. Gregory, M.A. Tomeh, X. Zhao, Silk fibroin as a functional biomaterial for tissue engineering, International Journal of Molecular Sciences 22(3) (2021) 1499.
[32] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials, Biomaterials 24(3) (2003) 401-416.
[33] D.A. Frauchiger, A. Tekari, M. Wöltje, G. Fortunato, L.M. Benneker, B. Gantenbein, A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair, European Cells & Materials 34 (2017) 271-290.
[34] K. Yazawa, K. Hidaka, Pressure-and humidity-induced structural transition of silk fibroin, Polymer 211 (2020) 123082.
[35] X. Li, S. Yan, J. Qu, M. Li, D. Ye, R. You, Q. Zhang, D. Wang, Soft freezing-induced self-assembly of silk fibroin for tunable gelation, International Journal of Biological Macromolecules 117 (2018) 691-695.
[36] X. Hu, K. Shmelev, L. Sun, E.S. Gil, S.H. Park, P. Cebe, D.L. Kaplan, Regulation of silk material structure by temperature-controlled water vapor annealing, Biomacromolecules 12(5) (2011) 1686-1696.
[37] K. Kaewprasit, T. Kobayashi, S. Damrongsakkul, Thai silk fibroin gelation process enhancing by monohydric and polyhydric alcohols, International Journal of Biological Macromolecules 118 (2018) 1726-1735.
[38] M. Ibrahim, E. Ramadan, N.E. Elsadek, S.E. Emam, T. Shimizu, H. Ando, Y. Ishima, O.H. Elgarhy, H.A. Sarhan, A.K. Hussein, Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products, Journal of Controlled Release 351 (2022) 215-230.
[39] Q. Zhang, Investigating polymer conformation in poly(ethylene oxide)(PEO) based systems for pharmaceutical applications a raman spectroscopic study of the hydration process, Chalmers (2011).
[40] S.L. Liu, L. Shao, M.L. Chua, C.H. Lau, H. Wang, S. Quan, Recent progress in the design of advanced PEO-containing membranes for CO2 removal, Progress in Polymer Science 38(7) (2013) 1089-1120.
[41] T.T. Hoang Thi, E.H. Pilkington, D.H. Nguyen, J.S. Lee, K.D. Park, N.P. Truong, The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation, Polymers 12(2) (2020) 298.
[42] N. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Advances in high permeability polymeric membrane materials for CO2 separations, Energy & Environmental Science 5(6) (2012) 7306-7322.
[43] J.H. Kim, V. Vijayakumar, D.J. Kim, S.Y. Nam, Preparation and characterization of POSS-PEG high performance membranes for gas separation, Journal of Membrane Science 606 (2020) 118115.
[44] S. Yu, S.J. An, K.J. Kim, J.H. Lee, W.S. Chi, High-loading poly (ethylene glycol)-blended poly (acrylic acid) membranes for CO2 separation, ACS Omega (2023) 2119-2127.
[45] J.M. Luque-Alled, C. Moreno, P. Gorgojo, Two-dimensional materials for gas separation membranes, Current Opinion in Chemical Engineering 39 (2023) 100901.
[46] F. Moghadam, H.B. Park, Two-dimensional materials: an emerging platform for gas separation membranes, Current Opinion in Chemical Engineering 20 (2018) 28-38.
[47] L. Huang, H. Lin, Engineering sub-nanometer channels in two-dimensional materials for membrane gas separation, Membranes 8(4) (2018) 100.
[48] K. Sainath, A. Modi, J. Bellare, CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance, Chemical Engineering Journal Advances 5 (2021) 100074.
[49] X. Fu, J. Lin, Z. Liang, R. Yao, W. Wu, Z. Fang, W. Zou, Z. Wu, H. Ning, J. Peng, Graphene oxide as a promising nanofiller for polymer composite, Surfaces and Interfaces (2023) 102747.
[50] S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, Journal of Nanostructure in Chemistry 8 (2018) 123-137.
[51] O.C. Compton, S. Kim, C. Pierre, J.M. Torkelson, S.T. Nguyen, Crumpled graphene nanosheets as highly effective barrier property enhancers, Advanced Materials 22(42) (2010) 4759-4763.
[52] R.K. Layek, A.K. Das, M.U. Park, N.H. Kim, J.H. Lee, Layer-structured graphene oxide/polyvinyl alcohol nanocomposites: dramatic enhancement of hydrogen gas barrier properties, Journal of Materials Chemistry A 2(31) (2014) 12158-12161.
[53] R.A. Roslan, W.J. Lau, G.S. Lai, A.K. Zulhairun, Y.F. Yeong, A.F. Ismail, T. Matsuura, Impacts of multilayer hybrid coating on psf hollow fiber membrane for enhanced gas separation, Membranes 10(11) (2020) 335.
[54] K. Zahri, K. Wong, P. Goh, A. Ismail, Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation, RSC Advances 6(92) (2016) 89130-89139.
[55] S. Anastasiou, N. Bhoria, J. Pokhrel, K.S.K. Reddy, C. Srinivasakannan, K. Wang, G.N. Karanikolos, Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation, Materials Chemistry and Physics 212 (2018) 513-522.
[56] N. Marturi, Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope, Université de Franche-Comté (2013).
[57] X. Hu, D. Kaplan, P. Cebe, Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy, Macromolecules 39(18) (2006) 6161-6170.
[58] D. Henry, N. Eby, J. Goodge, D. Mogk, X-ray reflection in accordance with Bragg's Law, Integrating Research and Education (2012).
[59] T. Song, P. Zhang, C. Zhang, L. Gong, X. Cao, B. Wang, R. Yu, W. Zhou, Pore structure of the polyethyleneimine/SBA-15 nanocomposites studied by positron annihilation lifetime spectroscopy, Microporous and Mesoporous Materials 334 (2022) 111761.
[60] C.C. Hu, K.R. Lee, R.C. Ruaan, Y. Jean, J.Y. Lai, Gas separation properties in cyclic olefin copolymer membrane studied by positron annihilation, sorption, and gas permeation, Journal of Membrane Science 274(1-2) (2006) 192-199.
[61] F. Babick, Dynamic light scattering (DLS), Characterization of Nanoparticles, (2020) 137-172.
[62] Y. Ji, X. Yang, Z. Ji, L. Zhu, N. Ma, D. Chen, X. Jia, J. Tang, Y. Cao, DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components, ACS Omega 5(15) (2020) 8572-8578.
[63] Y. Zhang, R. Wu, A. Patil, L. Ma, R. Yu, W. Dong Yu, X. Yang Liu, Enhanced mechanical performance of biocompatible silk fibroin films through mesoscopic construction of hierarchical structures, Textile Research Journal 91(9-10) (2021) 1146-1154.
[64] R. Kumar, Y. Alex, B. Nayak, S. Mohanty, Effect of poly (ethylene glycol) on 3D printed PLA/PEG blend: A study of physical, mechanical characterization and printability assessment, Journal of the Mechanical Behavior of Biomedical Materials 141 (2023) 105813.
[65] I.C. Um, H. Kweon, Y.H. Park, S. Hudson, Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid, International Journal of Biological Macromolecules 29(2) (2001) 91-97.
[66] L. Dong, Y. Wang, M. Chen, D. Shi, X. Li, C. Zhang, H. Wang, Enhanced CO2 separation performance of P(PEGMA-co-DEAEMA-co-MMA) copolymer membrane through the synergistic effect of EO groups and amino groups, RSC Advances 6(65) (2016) 59946-59955.
[67] H. Wang, S. He, X. Qin, C. Li, T. Li, Interfacial engineering in metal–organic framework-based mixed matrix membranes using covalently grafted polyimide brushes, Journal of the American Chemical Society 140(49) (2018) 17203-17210.
[68] M. Raouf, R. Abedini, M. Omidkhah, E. Nezhadmoghadam, A favored CO2 separation over light gases using mixed matrix membrane comprising polysulfone/polyethylene glycol and graphene hydroxyl nanoparticles, Process Safety and Environmental Protection 133 (2020) 394-407.
[69] P. Li, T. Chung, D. Paul, Gas sorption and permeation in PIM-1, Journal of Membrane Science 432 (2013) 50-57.
[70] E. Lasseuguette, R. Malpass-Evans, M. Carta, N.B. McKeown, M.C. Ferrari, Temperature and pressure dependence of gas permeation in a microporous Tröger’s base polymer, Membranes 8(4) (2018) 132.
[71] M.M. Stylianakis, D.M. Kosmidis, K. Anagnostou, C. Polyzoidis, M. Krassas, G. Kenanakis, G. Viskadouros, N. Kornilios, K. Petridis, E. Kymakis, Emphasizing the operational role of a novel graphene-based ink into high performance ternary organic solar cells, Nanomaterials 10(1) (2020) 89.
[72] Y. Wang, R. Ma, K. Hu, S. Kim, G. Fang, Z. Shao, V.V. Tsukruk, Dramatic enhancement of graphene oxide/silk nanocomposite membranes: increasing toughness, strength, and Young’s modulus via annealing of interfacial structures, ACS Aplied Mterials & Iterfaces 8(37) (2016) 24962-24973.
[73] K. Cao, Z. Jiang, X. Zhang, Y. Zhang, J. Zhao, R. Xing, S. Yang, C. Gao, F. Pan, Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix, Journal of Membrane Science 490 (2015) 72-83.
[74] H. Koolivand, A. Sharif, M.R. Kashani, M. Karimi, M.K. Salooki, M.A. Semsarzadeh, Functionalized graphene oxide/polyimide nanocomposites as highly CO2-selective membranes, Journal of Polymer Research 21 (2014) 1-12.

無法下載圖示 全文公開日期 2025/08/23 (校內網路)
全文公開日期 2025/08/23 (校外網路)
全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE