簡易檢索 / 詳目顯示

研究生: 粘純嫣
Chun-Yen Nien
論文名稱: 以RAFT活自由基溶液聚合法合成用於不飽和聚酯及乙烯基酯樹脂具核殼型結構的高分子接枝之氧化石墨烯及高分子接枝之熱脫層氧化石墨烯之抗收縮劑及增韌劑
Synthesis of polymer-grafted graphene oxide and polymer-grafted thermally reduced graphene oxide with core-shell structure as low-profile additives and tougheners for unsaturated polyester and vinyl ester resins by RAFT living free radical solution polymerizations
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
Wen-Yen Chiu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 207
中文關鍵詞: 高分子接枝之氧化石墨烯抗收縮劑 (LPA)可逆加成-斷裂鏈轉移聚合法(RAFT)氧化石墨烯體積收縮機械性質增韌劑乙烯基酯樹脂(VER)
外文關鍵詞: polymer grafted graphene oxide, low-profile additive (LPA), reversible addition-fragmentation chain transfer (RAFT), graphite oxide(GO), volume shrinkage, mechanical properties, toughener, vinyl ester resins (VER)
相關次數: 點閱:608下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討用作熱固性樹脂抗收縮劑及增韌劑之具核殼型結構(CSS)高分子接枝之氧化石墨烯的合成,其對低收縮乙烯基酯樹脂在聚合固化後之樣品微觀型態結構、体積收縮特性及機械性質的影響。
    這些核殼型結構(CSS),以GO-polymer標示之,係以氧化石墨烯(GO)為核心及有機高分子為外殼,以Z支撐的可逆加成-斷裂鏈轉移聚合法(RAFT),利用S-Benzyl S'-trimethoxysilylpropyl trithiocarbonate (BTPT)作為可偶合的RAFT鏈轉移試劑合成而得。其中,層間距為0.75nm的氧化石墨烯是以modified Hummers 方法將天然石墨氧化合成,而GO -polymer核殼型結構的高分子外殼為丙烯酸甲酯(MA)與甲基丙烯酸環丙氧烷酯(GMA)的共聚合物(poly(MA-co-GMA))、及聚丙烯酸丁酯與丙烯酸甲酯(MA)及甲基丙烯酸環丙氧烷酯(GMA)的共聚合物之團聯共聚合物(PBA-b-poly(MA-co-GMA))。
    GO、TRGO、BTPT及GO-Polymer的結構,吾人以FTIR、1H-NMR、13C-NMR、GPC、TGA及XRD鑑定之。本文中,吾人亦探討GO-Polymer對苯乙烯(St)/乙烯基酯(VER)/GO-Polymer之三成分系統於120℃聚合固化後之微觀型態結構、體積收縮及機械性質。


    Synthesis of polymer grafted graphene oxide with core-shell structure (CSS) as low-profile additives (LPA) and tougheners for thermoset resins, and their effects on the cured sample morphology, volume shrinkage characteristics and mechanical properties for low-shrink vinyl ester resins (VER) during the cure were investigated.
    These CSS designated as GO-polymer, which contained graphene oxide(GO) as the core and organic polymer as the shell, were synthesized by the Z supported reversible addition-fragmentation chain transfer (RAFT) graft polymerization using S-Benzyl S'-trimethoxysilyl propyl trithio-carbonate (BTPT) as the coupable RAFT chain transfer agent (CTA). The graphene oxide (GO) was synthesized from natural graphite powder by a modified Hummers method. The grafted polymer as the shell structure of the GO-polymer was made from copolymer of MA and glycidyl methacrylate(poly(MA-co-GMA)),and poly(butylacrylate)-block-poly(methyl acrylate-co-glycidyl methacrylate)(PBA-block-poly(MA-co-GMA).
    Structure characterizations of BTPT, GO, TRGO,and GO-polymer have been performed by using FTIR, 1H-NMR, 13C-NMR, GPC, TGA and XRD. In this work, the effects of GO-polymer on the volume shrinkage characteristics and mechanical properties of the styrene(St)/ vinyl ester(VER)/ GO-polymer ternary systems during the cure have also been explored.

    摘要 III Abstract V 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XVI 緒論 1 1.1 石墨烯 1 1.2 高分子複合材料 7 1.3不飽和聚酯 (Unsaturated polyester, UP) 8 1.4環氧樹脂 (Epoxy Resin )[19-24] 9 1.5乙烯基酯樹脂 (Vinyl Ester Resin, VER) 12 1.6抗收縮劑 (Low Profile Additive, LPA) 13 1.7增韌劑 13 1.8研究範疇 15 第一章 文獻回顧 16 2.1石墨烯/高分子奈米複合材料之研究 16 2.2 氧化石墨烯(GO)及熱還原氧化石墨(TRGO)的製備 17 2.3 自由基聚合法 19 2.4溶液聚合法 (Solution Polymerization)[49] 22 2.5活性自由基聚合法(living polymerization)[50] 23 2.5.1原子轉移自由基聚合法 (ATRP) 25 2.5.2穩定自由基聚合法 (SFRP) 27 2.5.3 可逆加成-斷裂鏈轉移聚合法 (RAFT) [30]-[32][59]-[61] 29 2.6不飽和聚酯與苯乙烯之交聯共聚合反應 32 2.7以RAFT聚合法合成高分子接枝之氧化石墨烯 35 第二章 實驗方法及設備 36 3.1 實驗藥品 36 3.2 實驗儀器 40 3.2.1 傅立葉轉換紅外線光譜儀 (FTIR) 40 3.2.2 凝膠滲透層析儀 (GPC) 42 3.2.3 核磁共振光譜儀 (NMR) 43 3.2.4 熱重分析儀 (TGA) 44 3.2.5 廣角度X光繞射儀 (XRD) 45 3.2.6 電子比重計 (ED) 46 3.2.7 高溫爐 47 3.2.8 掃描式電子顯微鏡(SEM) 48 3.2.9 穿透式電子顯微鏡(TEM) 49 3.2.10耐衝擊測試機 51 3.2.11萬用材料試驗機 52 3.3 實驗方法[67] 53 3.3.1 氧化石墨之製備[43-44] 53 3.3.2熱脫層氧化石墨烯(TRGO)之製備[44][68] 54 3.3.3 鏈轉移試劑S -Benzyl S'-trimethoxysilyl propyl trithiocarbonate (BTPT)之合成[33] 55 3.3.4 氧化石墨接枝聚合物[46] (GO-Polymer)之合成 57 3.3.5 St/VER(n=2)/抗收縮劑(LPA)三成分系統之固化試片製作[69] 63 3.3.6 體積變化量測-密度法 65 第三章 結果與討論 66 4.1 氧化石墨烯(GO) 66 4.1.1 氧化石墨烯(GO) 之FTIR鑑定 66 4.1.2 氧化石墨烯(GO) 之TGA鑑定 68 4.2 鏈轉移劑S-Benzyl S'-trimethoxy silylpropyl trithiocarbonate (BTPT)之合成 69 4.2.1探討鏈轉移劑(BTPT)實驗步驟 69 4.2.2 鏈轉移試劑(BTPT)之GPC鑑定 70 4.2.3 鏈轉移試劑(BTPT)之FTIR鑑定 71 4.2.4鏈轉移試劑(BTPT) 之NMR鑑定[33] 79 4.3 大分子的鏈轉移試劑(macro-RAFT agent of BTPT-P(MA-co-GMA))之鑑定 82 4.3.1 大分子的鏈轉移試劑(BTPT-P(MA-co-GMA))之NMR鑑定 82 4.3.2 大分子的鏈轉移試劑(BTPT-P(MA-co-GMA))之GPC鑑定 90 4.4 接枝高分子之氧化石墨烯 (GO-Polymer) 之合成與分析 93 4.4.1 溶液中自由相高分子(free polymer)之NMR鑑定 94 4.4.2 溶液中自由相高分子(free polymer)、固相接枝高分子(grafted polymer)之GPC鑑定 99 4.4.3 接枝高分子之氧化石墨(GO-polymer)之TGA鑑定 103 4.5 接枝高分子之氧化石墨烯 (GO-Polymer) 之XRD鑑定 108 4.6熱脫層之氧化石墨烯 (TRGO) 之FTIR鑑定 113 4.6.1 TRGO-400C之FTIR鑑定 113 4.6.2 TRGO-700C之FTIR鑑定 117 4.7體積收縮特性 121 4.7.1 St/VER(n=2)/GO三成分系統固化後之體積收縮特性 121 4.7.2 St/VER(n=2)/TRGO-400C三成分系統固化後之體積收縮特性 123 4.7.3 St/VER(n=2)/TRGO-700C三成分系統固化後之體積收縮特性 125 4.7.4 St/VER(n=2)/GO-PBA-b-P(MA-co-GMA10)三成分系統固化後之體積收縮特性 128 4.7.5 St/VER(n=2)/GO-PBA-b-P(MA-co-GMA20)三成分系統固化後之體積收縮特性 130 4.8 SEM微觀型結構 133 4.8.1 St/VER(n=2)二成分系統 133 4.8.2 St/VER(n=2)/GO三成分系統 135 4.8.3 St/VER(n=2)/TRGO-400C三成分系統 138 4.8.4 St/VER(n=2)/TRGO-700C三成分系統 140 4.8.5 St/VER(n=2)/GO-PBA-b-P(MA-co-GMA10)三成分系統 142 4.8.6 St/VER(n=2)/GO-PBA-b-P(MA-co-GMA20)三成分系統 145 4.9機械性質研究 148 4.9.1 St/VER(n=2)/GO-PBA-b-P(MA-co-GMA10)三成分系統 148 4.9.2 St/VER(n=2)/GO-PBA-b-P(MA-co-GMA20)三成分系統 156 第四章 結論 167 第五章 未來工作 170 第六章 參考文獻 171 第七章 附錄 175 8.1 以甲苯為溶劑製備大分子鏈轉移試劑(macro-raft agent of BTPT-P(MA-co-GMA))之鑑定 175 8.1.1以甲苯為溶劑的大分子鏈轉移試劑(BTPT-P(MA-co-GMA10))之NMR鑑定 175 8.1.2以甲苯為溶劑的大分子鏈轉移試劑(BTPT-P(MA-co-GMA10))之GPC鑑定 178 8.2以甲苯為溶劑接枝高分子氧化石墨烯 (GO-Polymer) 之合成與分析 180 8.2.1溶液中自由相高分子(free polymer)之NMR鑑定(甲苯溶劑) 180 8.2.2溶液中自由相高分子(free polymer)、固相接枝高分子(grafted polymer)之GPC鑑定(甲苯溶劑) 183 8.2.3 接枝高分子之氧化石墨(GO-polymer)之TGA鑑定(甲苯溶劑) 187

    [1] H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.
    [2] R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982
    [3] K. E. Atkins, H. G. Kia, Sheet Molding Compounds: Science and Technology, Ch. 4, H.G. Kia, Hanser, New York 1993.
    [4] Y. J. Huang, C. M. Liang, Polymer 1996, 37, 401.
    [5] Y. J. Huang, C. J. Chu, J. P. Dong, Journal of Applied Polymer Science 2000, 78, 543.
    [6] Y.J. Huang, T.S. Chen, J.G. Huang, F. H. Lee, "Polym. Mater. Sci. Eng , 2000, 83, 493 .
    [7] Y.J. Huang, J.P. Dong, J.J. Yang, J.H. Lee, D. H. Lai, Polym. Mater. Sci. Eng. 85, 497 2001.
    [8] The B.F. Goodriche Co, WO93/21274, Oct. 28.1993.
    [9] E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer Science Part B: Polymer Physics 1993, 31, 619.
    [10] S. B. Pandit, V. M. Nadkarni, Industrial & Engineering Chemistry Research 1994, 33, 2778.
    [11] D. S. Kim, K. Cho, J. H. An, C. E. Park, Journal of Materials Science 1994, 29, 1854.
    [12] J. S. Ullett, R. P. Chartoff, Polymer Engineering & Science 1995, 35, 1086.
    [13] M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, Journal of Applied Polymer Science 1995, 58, 1825.
    [14] M. L. L. Maspoch, A. B. Martinez, Polymer Engineering & Science 1998, 38, 290.
    [15] N. A. Miller, C. D. Stirling, Polym. Polym. Comps. 2001 , 9, 31.
    [16] R. E. Young, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976.
    [17] M. E. Kelly, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 370.
    [18] F. Fekete, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 28.
    [19] B. Ellis, "Chemistry and Technology of Epoxy Resins", London: Blackie Academic and Professional 1993.
    [20] 陳東課, 環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
    [21] 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
    [22] 賴家聲, 環氧樹脂與硬化劑(上), 復漢出版社, 台灣, 1999.
    [23] S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer degradation and stability 1998, 60, 169.
    [24] 黃滄閔,碩士論文,國立成功大學,2001.
    [25] T. Mitani, H. Shiraishi, K. Honda, G. E. Owen, 44th Annual Conference Composite Institute, the Society of the Plastics Industry, session RF (Reb3-9) 1989.
    [26] W. Li, L. J. Lee, Polymer 1998, 39, 5677.
    [27] M. Kinkelaar, S. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 823.
    [28] R. R. Hill, S. V. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 852.
    [29] W. Crc for Polymers Pty. Ltd., WO97,43339 Nov 20,1997.
    [30] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
    [31] G. M. T. P. Le, S. H. T. E. Rizzardo, PCT Int. Appl. WO9801478 A1980115 1998.
    [32] D. J. Keddie, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 2012, 45, 5321.
    [33] Y. Zhao and S. Perrier," Macromolecules, 2007, 40, 9116-9124.
    [34] H. Kim, Y. Miura, C. W. Macosko, Chemistry of Materials 2010, 22, 3441.
    [35] H. Kim, C. W. Macosko, Macromolecules 2008, 41, 3317.
    [36] W. Huang, X. Ouyang, L. J. Lee, ACS Nano, 6, 10178, 2012.
    [37] J. Z. Xu, C. Chen, Y. Wang, H. Tang, Z. M. Li, B. S. Hsiao, Macromolecules, 2011, 44, 2808.
    [38] J.R.Potts, O.Shankar, L. Du, and R.S. Ruoff, Macromolecules 2012, 45, 6045.
    [39] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules, 2009, 42, 5251.
    [40] S. Ganguli, A. K. Roy, D. P. Anderson, Carbon 2008, 46, 806.
    [41] M. Martin-Gallego, R. Verdejo, M. A. Lopez-Manchado, M. Sangermano, Polymer 2011, 52, 4664.
    [42] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
    [43] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
    [44] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, The Journal of Physical Chemistry B 2006, 110, 8535.
    [45] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H. Zhao, Langmuir 2009, 25, 11808
    [46] F.Beckert,C.Friedrich, R.Thomann, R.Mulhaupt , Macromolecules 2012, 45, 1346
    [47] 彭俊昇,碩士論文,國立台灣科技大學,2000.
    [48] H. R. Allcock, F. W. Lampe, "Contemporary Polymer Chemistry, 2nd Ed." Prentice-Hall, New Jersey, 1990, p.50.
    [49] C.S.Brazel and S.L. Rosen, "Fundamental Principles of Polymeric Materials, 3rd Ed." Wiley, New York, 2012.
    [50] 張容瑋,碩士論文,國立台灣科技大學, 2008.
    [51] M. Szwarc, Nature, 178, 1168, London, 1956.
    [52] T. Otsu, M. Yoshida, Makromol Chem Rapid Commun. 1982, 3, 127, 542.
    [53] K. Matyjaszewski, J. Xia, Chemical Reviews 2001, 101, 2921.
    [54] J. S. Wang, K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614.
    [55] M. Kamigaito, T. Ando, M. Sawamoto, Chemical Reviews 2001, 101, 3689.
    [56] D. H. Solomon, E. Rizzardo, P. Cacioli, US Patent, 4, 581, 429, 1985.
    [57] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 1993, 26, 2987.
    [58] R. Francis, D. Taton, J. L. Logan, P. Masse, Y. Gnanou, R. S. Duran, Macromolecules 2003, 36, 8253.
    [59] P. Takolpuckdee, C. A. Mars, S. Perrier, Organic letters 2005, 7, 3449.
    [60] Y. Tsujii, M. Ejaz, K. Sato, A. Goto, T. Fukuda, Macromolecules 2001, 34, 8872.
    [61] R. Narain, S. P. Armes, Macromolecules 2003, 36, 4675.
    [62] Y. S. Yang, L. J. Lee, Polymer 1988, 29, 1793.
    [63] K. Horie, I. Mita, H. Kambe, Journal of Polymer Science Part A: Polymer Chemistry 1969, 7, 2561.
    [64] 江文慶,碩士論文,國立台灣科技大學,1996.
    [65] Y. Zhao, and S. Perrier, Macromolecules 2006, 39, 8603.
    [66] K. Jiang, C. Ye, P. Zhuang, X. Wang, and Y. Zhao, Macromolecules 2012, 45, 1346.
    [67] 林怡均,碩士論文,國立台灣科技大學,2016.
    [68] 王妤榛,碩士論文,國立台灣科技大學,2016.
    [69] 鍾宛倫,碩士論文,國立台灣科技大學,2014.
    [70] L. Hlalele, and B. Klumperman, Macromolecules 2011, 44, 7100.

    QR CODE