簡易檢索 / 詳目顯示

研究生: 蔣秉昌
Ping-chang Chiang
論文名稱: 掺鉺氧化鋅之成長與特性分析
Growth and Characterization of Erbium doped ZnO
指導教授: 趙良君
Liang-chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
李奎毅
Kuei-yi Lee
陳至信
Jyh-shin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 69
中文關鍵詞: 氧化鋅
外文關鍵詞: erbium, zinc oxide
相關次數: 點閱:205下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鉺摻雜氧化鋅已經由氣相轉換的過程製備。氧化鋅粉末、石墨粉末和氧化鉺的粉末混合置於高溫爐管中,然後加熱至1000°C並持溫1小時。摻鉺的氧化鋅沉積於接近混合粉末的矽基板上。摻鉺的氧化鋅樣品則用場發射掃描式電子顯微鏡(FE-SEM)、X光繞射譜線(XRD)、歐傑電子光譜儀(AES)、X光光電子能譜(XPS)、原子力顯微鏡(AFM)、及光激發螢光光譜(PL)分析。從FE-SEM照片中觀察到摻雜鉺的氧化鋅形成半球及甜甜圈奈米結構。半球狀半徑為200 nm ~ 400 nm。甜甜圈的外徑和內徑分別為420 nm ~ 580 nm及100 nm ~ 160 nm。半球及甜甜圈的成分經由歐傑電子光譜儀,X光光電子能譜分析得到Zn及O的原子比接近1:1。二次離子質譜儀對樣品做縱深分布、結果顯示鋅和氧為主要成分並且有極少量的鉺元素存在,其濃度約為0.05 at﹪。此外,光激發螢光光譜分析結果顯示,樣品在He-Cd雷射325 nm激發下,觀察到氧化鋅能隙發光於377 nm。在退火後,氧化鋅能隙發光消失而且觀察到綠色螢光於548 nm附近。這些綠色螢光是由於鉺的內層4f 電子由4S3/2 躍遷到4I15/2 和 4H3/2躍遷到4I15/2所致。


Erbium doped ZnO has been prepared by vapor-phase transport process. ZnO powder, graphite powder and Er2O3 powder were mixed and positioned in a tube furnace. The tube furnace is heated at 1000°C for 1 hour. Er:ZnO were deposition on silicon wafers located near by. Erbium doped ZnO samples were analyzed using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Secondary Ion Mass Spectroscopy (SIMS), and Photoluminescence (PL).
FE-SEM image shows that the as-deposited Er:ZnO has hemispherical and donut-shaped nanostructures. The radius of the hemispherical nanostructure varies from 200 nm ~ 400 nm. The outer radius and inner radius of the donut-shaped nanostructure is 42 0nm ~ 580 nm and 100 nm ~ 160 nm, respectively. The AES and XPS spectra show that the major composition element are Zn and O. The atomic ratio are approximately 1:1. SIMS analysis shows that Zn and O are major elements while the Er concentration is very low, approximately 0.05 at%. PL study of the as-prepared Er:ZnO sample using a He-Cd laser at 325nm shows strong ZnO bandgap emission at 377 nm. After annealed at 900°C for 30 minutes, bandgap emission disappears while green emissions near 548 nm were observed. These emissions are due to the intra-4f transition from 4S3/2 to 4I15/2 and from 4H3/2 to 4I15/2.

Abstract (in Chinese)-------------------------------------------------------------- Ⅰ Abstract (in English)-------------------------------------------------------------- Ⅲ Acknowledgement------------------------------------------------------------------ Ⅳ Contents ----------------------------------------------------------------------------- Ⅴ Figure captions ------------------------------------------------------------------- Ⅶ Chapter 1 Introduction ----------------------------------------------------------- 1 1.1 A brief introduction of zinc oxide ----------------------------------- 1 1.1.1 The characteristic and application of zinc oxide ----------------- 1 1.1.2 Luminescence mechanisms of ZnO ------------------------------- 2 1.2 A brief review of erbium doped semiconductor ------------------ 4 1.3 A brief introduction of erbium doped zinc oxide ----------------- 5 1.4 Literature review and relevant theory ------------------------------ 7 Chapter 2 Experiment------------------------------------------------------------- 8 2.1 Tube furnace ------------------------------------------------------------- 8 2.2 Experiment procedure ------------------------------------------------- 9 2.3 Characterization instruments --------------------------------------- 10 Chapter 3 Experimental results ---------------------------------------------- 13 3.1 ZnO nanostructure grown at low temperature ------------------ 13 3.1.1 SEM and EDS results--------------------------------------------- 13 3.1.2 XRD results------------------------------------------------------- 15 3.1.3 PL results---------------------------------------------------------- 16 3.1.4 Raman spectroscopy results-------------------------------------- 16 3.2 ZnO nanostructure and film grown in high temperature ----------- 17 3.2.1 FE-SEM results--------------------------------------------------- 17 3.2.2 XRD results------------------------------------------------------- 21 3.2.3 AES results-------------------------------------------------------- 24 3.2.4 XPS results-------------------------------------------------------- 31 3.2.5 SIMS results------------------------------------------------------- 36 3.2.6 AFM results------------------------------------------------------- 38 3.2.7 PL results---------------------------------------------------------- 44 Chapter4 Discussion and Conclusions -------------------------------------- 47 References ------------------------------------------------------------------------- 48

1. P. X. Gao and Z. L. Wang, “Nanoarchitectures of semiconducting and piezoelectric zinc oxide”, J. Appl. Phys. Vol.97, No.4, pp.044304-1 - 044304-7(2005).
2. D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, “p-ZnO/n-GaN heterostructure ZnO light-emitting diodes”, Appl. Phys. Lett. Vol.86, No.22, pp.222101-1 - 222101-3 (2005).
3. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, “Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE”, J. Crystal. Growth Vol.184, pp.605-609 (1998).
4. R. Martins, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, M. Bender, N. Katsarakis, V. Cimalla, and G. Kiriakidis, “Zinc oxide as an ozone sensor”, J. Appl. Phys. Vol.96, No.3, pp.1398-1408 (2004).
5. S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, “Field emission studies on thin films of zinc oxide nanowires”, Appl. Phys. Lett. Vol.83, No.23, pp.4821-4823 (2003).
6. Zhiyong Fan and Jia G. Lu, “Gate-refreshable nanowire chemical sensors”, Appl. Phys. Lett. Vol.86, No.12, pp.123510-1 - 123510-3 (2005).
7. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, ”Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting device”, Appl. Phys. Lett.Vol.83, No9, pp.1875-1877 (2003).
8. H. Kim and W. Sigmund, ”Zinc oxide nanowires on carbon nanotubes”, Appl. Phys. Lett. Vol.81, No.11, pp.2085-2087 (2002).
9. S. H. Jo, D. Banerjee, and Z. F. Ren, ”Field emission of Zinc oxide nanowires grown on carbon cloth”, Appl. Phys. Lett. Vol.85, No.8, pp.1407-1409 (2004).
10. R. C. Wang, C. P. Liu, and J. L. Huang, S.-J. Chen, ”ZnO hexagonal arrays of nanowires grown on nanorods”, Appl. Phys. Lett. Vol.86, No.25, pp.251104-1 - 251104-3 (2005).
11. C. X. Xu and X. W. Sun, ”Field emission from zinc oxide nanopins”, Appl. Phys. Lett. Vol.83, No.3, pp.3806-3808 (2003).
12. H. Yan, R. He, J. Johnson, M. Law, Richard J. Saykally, and P. Yang, ”Dendritic Nanowire Ultraviolet Laser Array”, J. Am. Chem. SOC. Vol.125, pp.4728-4729 (2003).
13. C. X. Xu, X. W. Sun, Z. L. Dong, and M. B. Yu, ”Zinc oxide nanodisk”, Appl. Phys. Lett. Vol.85, No.17, pp.3878-3880 (2004).
14. Jason B. Baxter, Feng Wu, and Eray S. Aydil, ”Growth mechanism and characterization of zinc oxide hexagonal columns”, Appl. Phys. Lett. Vol.83, No.18, pp.3797-3799 (2003).
15. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, ”Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, J. Appl. Phys. Vol.84, No.7, pp.3912-3918 (1998).
16. A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T. Yasuda, Y. Segawa, and H. Koinuma, “Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser”, Materials Science and Engineering, Vol.B56, pp.263-266 (1998).
17. K. Kihara and G. Donny, “Anharmonic thermal vibrations in ZnO”, The Canadian Mineralogist, Vol.23, pp.647-654 (1985).
18. J. J. Wu and S. C. Liu, ”Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater. Vol.14, pp.215-218 (2002).
19. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, ”Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach”, Appl. Phys. Lett. Vol.78, No.4, pp.407-409 (2001).
20. G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao,
W. G. Hu, Q. S. Zhu, and Z. G. Wang, “One-step growth of ZnO from film to vertically well-aligned nanorods and the morphology-dependent Raman scattering”, Appl. Phys. Lett. Vol.87, No.23, pp.231903-1- 231903-3 (2001).
21. Y. Chen, Z. Zhu, D. M. Bagnall, T. Sekiuchi, and T. Yao, “ZnO quantum pyramids grown on c-plane sapphire by plasma-assisted molecular beam epitaxy”, J. Crystal. Growth Vol.184/185, pp.269-273 (1998).
22. R. Tena-Zaera, M. C. Martinez-Tomas, S. Hassani, R. Triboulet, and V. Munoz– Sanjose, ”Study of the ZnO crystal growth by vapour transport methods”, J. Crystal Growth, Vol.270, pp.711-721 (2004).
23. J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, B. H. Zhao, Z. L. Wang, and S. Fujita, “ZnO quantum dots synthesized by a vapor phase transport process”, Appl. Phys. Lett. Vol.88, No.6, pp.063110-1 - 063110-3 (2006).
24. V. Craciun, J. Elders, J. G. E. Gardeniers, and I. W. Boyd, ”Characteristics of high quality ZnO thin films deposited by pulsed laser deposition” Appl. Phys. Lett. Vol.65, No.23, pp.2963-2965 (1994).
25. E. G. Bylander, “Surface effects on the low-energy cathodoluminescence of zinc oxide”, J. Appl. Phys. Vol.49, No.3, pp.1188-1195 (1978).
26. B. Lin, Z. Fu and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrate”, Appl. Phys. Lett. Vol.79, No.7, pp.943-945 (2001).
27. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors” Appl. Phys. Lett. Vol.68, No.3, pp.403-405 (1996).
28. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon”, Appl. Phys. Lett. Vol.43, No.10, pp.943-945 (1983).
29. H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy”, Appl. Phys. Lett. Vol.46, No.4, pp.381-383 (1985).
30. Y. H. Xie, E. A. Fitzgerald, and Y. J. Mii, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy”, J. Appl. Phys. No.4, Vol.46, pp.381-383 (1991).
31. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at λ= 1.54 µm from an erbium-doped silicon light-emitting diode”, Appl. Phys. Lett. Vol.64, No.21, pp.2842-844 (1994).
32. K. Takahei and A. Taguchi, “Selective formation of an efficient Er-O luminescence center in GaAs by metalorganic chemical vapor deposition under an atmosphere containing oxygen”, J. Appl. Phys. Vol.74, No.3, pp.1979-1982 (1993).
33. T. Oestereich, C. Swiatkowski, and I. Broser, “Erbium luminescence in doped amorphous silicon”, Appl. Phys. Lett. Vol.56, No.5, pp.446-447 (1990).
34. M. S. Bresler, O. B. Gusev, V. Kh. Kudoyarova, A. N. Kuznetsov, P. E. Pak, E. I. Terukov, I. N. Yassievich, B. P. Zakharchenya, W. Fuhs, and A. Sturm, “Room-temperature photoluminescence of erbium-doped hydrogenated amorphous silicon”, Appl. Phys. Lett. Vol.67, No.24, pp.3599-3601 (1995).
35. S. Lombardo, S. U. Campisano, G. N. van den Hoven, A. Cacciato, and A. Polman, “Room-temperature luminescence from Er-implanted semi-insulating polycrystalline silicon”, Appl. Phys. Lett. Vol.63, No.14, pp.1942-1944 (1993).
36. T. Kimura, A. Yokoi, H. Horiguchi, R. Saito, T. Ikoma, and A. Sato, “Electrochemical Er doping of porous silicon and its room-temperature luminescence at ~1.54 µm”, Appl. Phys. Lett. Vol.65, No.8, pp.983-985 (1994).
37. T. Oestereich, C. Swiatkowski, and I. Broser, “Erbium luminescence in doped amor- phous silicon”, Appl. Phys. Lett. Vol.56, No.5, pp.446-447 (1990).
38. M. S. Bresler, O. B. Gusev, V. K. Kudoyarova, A. N. Kuznetsov, P. E. Pak, E. I. Terukov, I. N. Yassievich, B. P. Zakharchenya, W. Fuhs, and A. Sturm, “Room- temperature photoluminescence of erbium-doped hydrogenated amorphous silicon”, Appl. Phys. Lett. Vol.67, No.24, pp.3599-3601 (1995).
39. S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “Time response of 1.54 µm emission from highly Er-doped nanocrystalline Si thin films prepared by laser ablation”, Appl. Phys. Lett. Vol.74, No.3, pp.377-379 (1999).
40. T. Asatsuma, P. Dodd, J. F. Donegan, J. G. Lunney, and J. Hegarty, ”Er3+-doped silicon prepared by laser doping”, Mater. Res. Soc. Symp. Proc. Vol.301, pp.67-72 (1993).
41. P. N. Favennec, H. L’Haridon, M. Salvi, D. Moutonnet, and Y. LeGuillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials”, Electron. Lett. Vol.25, No.11, pp.718-719 (1989).
42. A. J. Steckl, M. Garter, R. Birkhahn, and J. Scofield, “Green electroluminescence from Er-doped GaN Schottky barrier diodes, ”Appl. Phys. Lett. Vol.73, No.17, pp.2450-2452 (1998).
43. S. Komuro, T. Katsumata, T. Morkiawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “1.54 µm emission dynamics of erbium-doped zinc-oxide thin films”, Appl. Phys. Lett. Vol.76, No.26, pp.3935-3937 (2000).
44. Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, “The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition”, J. Appl. Phys. Vol.88, No.1, pp.498-502 (2000).
45. P. C. Rafael, G. L. Araceli, P. Y. Olivier, S. Wilfrid, R. M. Defourneau ,D. Defourneau, E. Millon, J. Perrière, P. Goldner, and B. Viana, “Er-doped ZnO thin films grown by pulsed-laser deposition”, J. Appl. Phys. Vol.97, No.5, pp.054905-1 - 054905-8 (2005).
46. K. Lorenz , E. Alves, E. Wendler, O. Bilani, W. Wesch, and M. Hayes, ”Damage formation and annealing at low temperatures in ion implanted ZnO”, Appl. Phys. Lett. Vol.87, No.19, pp.191904-1 - 191904-3 (2005).
47. X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, and X. W. Fan, ”Room-temperature blue luminescence from ZnO:Er thin films”, Thin Solid Films, Vol.413, pp.257-261 (2002).
48. H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li, and H. Cui, “Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation”, Vacuum, Vol.77, pp.57-62 (2004).
49. A. Goux, T. Pauporte, and D. Lincot, “Deposition of mixed zinc oxide/lanthanide films by electrochemical precipitation: The ZnO/Er system”, J. of Electroanalytical Chemistry Vol.587, pp.193-202 (2006).
50. N. Mais, J. P. Reithmaier, and A. Forchel, M. Kohls, L. Spanhel, and G. Mu¨ ller, “Er doped nanocrystalline ZnO planar waveguide structures for 1.55 µm amplifier applications”, Appl. Phys. Lett. Vol.75, No.14, pp.2005-2006 (1999).
51. S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, ”1.54 µm emission dynamics of erbium-doped zinc-oxide thin films”, Appl. Phys. Lett. Vol.76, No.26, pp.3935-3937 (2000).
52. X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, and X. W. Fan, “Room-temperature blue luminescence from ZnO:Er thin films”, Thin Solid Films Vol.413, pp.257-261 (2002).
53. B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett. Vol.81, No.4, pp.757-759 (2002).
54. R. S. Wanger and W. C. Ellis, ”Vapor-liquid-solide mechanism of single crystal grown”, Appl. Phys. Lett. Vol.4, No.5, pp.89-50 (1964).
55. C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array”, Appl. Phys. Lett. Vol.84, No.9, pp.1540-1542 (2004) .
56. M. Bouchard and D. C. Smith, ”Catalogue of 45 reference Raman spectra of minerals
concerning research in art history or archaeology, especially oncorroded metals and coloured glass”, Spectrochimica Acta Part A, Vol.59, pp.2247-2266(2003).
57. “Raman-Spektroskopie“ Protokoll zu Versuch F12.
58. Khan A. Alim, Vladimir A. Fonoberov, Manu Shamsa, and Alexander A. Balandin, ”Micro-Raman investigation of optical phonons in ZnO nanocrystals”, J. Appl. Phys. Vol.97, No.12, pp.124313-1 - 124313-3(2005).
59. M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, ”Optical phonon confinement in zinc oxide nanoparticles” J. Appl. Phys. Vol.87, No.5, pp.2445-2448 (2000).
60. K. A. Alim, V. A. Fonoberov, and A. A. Balandina, ”Origin of the optical phonon frequency shifts in ZnO quantum dots”, Appl. Phys. Lett. Vol.86, No.5, pp.053103-1 - 053103-3 (2001).
61. A. Balandin, ”Thermoelectric Applications of Low-Dimensional Structures with Acoustically Mismatched Boundaries”, Balandin, Phys. Low-Dim. Struct. 5/6, pp.73-91 (2000).
62. L. H. He, “Self-strain of solids with spherical nanovoids”, Appl. Phys. Lett. Vol.88, No.15, pp.151909-1 - 151909-3 (2006).
63. J. Chastain, R. C. King, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics. Inc. (1995).
64. M. Ishii, S. Komuro, T. Morikawa, and Y. Aoyagi,” Local structure analysis of an optically active center in Er-doped ZnO thin film”, J. Appl. Phys. Vol.89, No.7 pp.3679-3684 (2001).

無法下載圖示 全文公開日期 2011/06/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE