簡易檢索 / 詳目顯示

研究生: 游輝震
Hui-Chen Yu
論文名稱: 矽摻雜石墨烯蕭特基二極體氨氣感測特性
Si-doped Graphene Based Schottky Diode for Ammonia Gas Sensing
指導教授: 周賢鎧
Shyan-kay Jou
口試委員: 周賢鎧
黃柏仁
章詠湟
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 171
中文關鍵詞: 矽摻雜石墨烯蕭特基元件氨氣氣體感測
外文關鍵詞: Silicon doped, graphene, schottky diode, Ammonia, gas sensing
相關次數: 點閱:225下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此研究主要為三部分,第一部分是透過化學氣相沉積方式且利用加熱帶加熱聚二甲基矽烷之前驅物生長出矽摻雜石墨烯,與純石墨烯作為比較,探討其性質。石墨烯以Raman光譜、UV-vis光譜以及XPS進行分析。在Raman光譜中,可以發現純石墨烯(Pristine graphene, PG)以及矽摻雜石墨烯(Si-doped graphene, SiG)中有存在著差異,SiG之D band強度較PG高,且G band有多出G’ band支側鋒。這些差異可歸咎於矽摻雜石墨烯中,造成晶格變形之缺陷導致的。
在第二部分中著重石墨烯元件對於氨氣響應表現,先將純石墨烯及矽摻雜石墨烯製備成蕭特基二極體元件並將其放入自製真空腔體內通入稀釋氨氣,以量測其氣體感測效應。在室溫真空暗室下量測I-V曲線,藉由熱離子發射模型計算得出PG/n-Si及SiG/n-Si蕭特基元件之能障分別為0.735 eV和0.750 eV。隨後進一步將元件放入具有不同濃度下之氨氣進行動態及靜態分析,觀察兩者於高至低濃度下能障會有微量上升。PG/n-Si蕭特基元件於不同濃度氨氣之動態響應下,高濃度500 ppm之響應度約為7.3%,低濃度5 ppm響應約為1.5%;SiG/n-Si蕭特基元件則在高濃度500 ppm下有將近約11%的響應度且在低濃度也有將近約2%之響應度。固定於10 ppm氨氣定量動態循環分析,觀察到其響應時間和恢復時間為238 s及229 s,其響應度為5.4%。PG則為3.4%左右。從這邊可知道SiG/n-Si元件對於NH¬3有較高響應度。
第三部分則為照射UV及IR LED光源之氣體感測分析,從實驗結果發現光效應會阻礙元件對於氨氣之吸引,導致其元件響應度大幅度下降且響應時間也增長。SiG/n-Si蕭特基在-1V偏壓下,持續照射365 nm UV之響應時間和恢復時間分別為256.9 s和242 s。但在850 nm IR照射下則為125.9 s和238.4 s。


This study is divided into three parts. The first part is to grow silicon-doped graphene by chemical vapor deposition using polydimethylsilane precursor by the heating belt melted. Graphene films were analyzed by Raman spectroscopy, UV-vis spectroscopy, and X-ray phototeletron spectroscopy. In the Raman spectrum, it can be found that there are differences between pure graphene (PG) and Si-doped graphene (SiG). The D band intensity for SiG is higher than for PG and the G band for SiG has a G' branch side. These differences in Raman spectra can be attributed to defects in lattice-deformed graphene.
The second part focuses on the response of graphene Schottky device to ammonia gas. PG and SiG are applied to PG/n-Si and SiG/n-Si Schottky diodes and placed in a self-made vacuum chamber to dilute ammonia gas to measure their gas sensing effect. The I-V curves were measured under dark in a vacuum chamber at room temperature. The Schottky barrier height of the PG/n-Si and SiG/n-Si Schottky device were calculated by the thermionic emission theory were 0.735 eV and 0.750 eV, respectively. The Schottky devices were further placed into ammonia gas environment with different concentrations for dynamic and static analysis. The Schottky barrier height of the two devices increased slightly when the NH3 gas was changed from high to low concentrations. PG/n-Si Schottky device has a response of about 7.3% at a high concentration of 500 ppm and a response of about 1.5% at a low concentration of 5 ppm in dynamic response measurement; SiG/n-Si Schottky device has a responsivity of approximately 11% at a high concentration of 500 ppm and a responsivity of approximately 2% at a low concentration. For quantitative dynamic cycle analysis with NH3 of 5 ppm to 10 ppm, the response time and recovery time were observed to be 238 s and 229 s, and the response was 5.4% for the SiG/n-Si. The response for PG/n-Si is around 3.4%. Consequently, SiG/n-Si device has a good response to NH3 then the PG/n-Si.
For the third part, we analyze sensor response under UV and IR ligh. From the experimental results, the light irradiation hinders the adsorption of ammonia gas to the device, resulting in a large decrease in the responsiveness of the component and an increase in the response time.

摘要 Abstract 致謝 第一章、緒論 1.1石墨烯演進 1.2石墨烯晶體結構及電性 第二章、文獻回顧 2.1 石墨烯製備方法 2.1.1 機械剝離法(Mechanical Exfoliation) 2.1.2 磊晶成長法(Epitaxial Growth) 2.1.3 石墨烯氧化還原法(Graphene Oxide Reduction) 2.1.4 化學氣相沉積(Chemical Vapor Deposition,CVD) 2.2 石墨烯轉移製程 2.3 摻雜石墨烯之探討 2.3.1 表面摻雜(Surface Transfer Doping) 2.3.2 取代摻雜(Substitutional Doping) 2.3 石墨烯於蕭特基元件之應用探討 2.4 石墨烯應用於氣體感測元件之探討 2.5 研究動機 第三章、實驗儀器與步驟 3.1 實驗設備與分析儀器 3.2 實驗藥品與材料規格 3.3 石墨烯及矽摻雜石墨烯製備 3.3.1 實驗流程 3.3.2 實驗步驟 3.4 實驗分析設備及原理 3.4.1 化學氣相沉積系統(Chemical Vapoer Deposition System) 3.4.2 拉曼光譜儀(Raman Spectroscopy) 3.4.3 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 3.4.4 紫外光可見光譜儀(UV-vis Spectrophotometer) 3.4.5 氣體感測量測系統 3.4.6 磁控式濺鍍系統 第四章、結果與討論 4.1 石墨烯與矽摻雜石墨烯性質探討 4.1.1 Raman分析 4.1.2 UV-vis穿透度量測分析 4.1.3 XPS量測分析 4.2.1 蕭特基元件於紫外下之預處理 4.2.2 蕭特基元件之室溫真空暗室下電性分析 4.2.3 蕭特基元件之室溫真空暗室下氨氣感測分析 第五章、結論 第六章、未來展望 參考文獻 附錄

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348) (1991) 56.
[2] H.W. Kroto, A. Allaf, S. Balm, C60: Buckminsterfullerene, Chemical Reviews 91(6) (1991) 1213-1235.
[3] N.D. Mermin, Crystalline order in two dimensions, Physical Review 176(1) (1968) 250.
[4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696) (2004) 666-669.
[5] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature 446(7131) (2007) 60.
[6] A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics 81(1) (2009) 109.
[7] 林永昌, 呂俊頡, 鄭碩方, 邱博文, 石墨烯之電子能帶特性與其元件應用, 物理雙月刊 33(2) (2011) 191-202.
[8] B. Guo, L. Fang, B. Zhang, J.R. Gong, Graphene doping: a review, InSciences Journal. 1(2) (2011) 80-89.
[9] K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146(9-10) (2008) 351-355.
[10] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881) (2008) 1308-1308.
[11] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters 8(3) (2008) 902-907.
[12] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457(7230) (2009) 706.
[13] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887) (2008) 385-388.
[14] C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, The Journal of Physical Chemistry B 108(52) (2004) 19912-19916.
[15] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Electronic confinement and coherence in patterned epitaxial graphene, Science 312(5777) (2006) 1191-1196.
[16] X. Li, W. Cai, L. Colombo, R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Letters 9(12) (2009) 4268-4272.
[17] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(5932) (2009) 1312-1314.
[18] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources, Nature 468(7323) (2010) 549.
[19] Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, J. Hou, Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources, ACS Nano 5(4) (2011) 3385-3390.
[20] G. Ruan, Z. Sun, Z. Peng, J.M. Tour, Growth of graphene from food, insects, and waste, ACS Nano 5(9) (2011) 7601-7607.
[21] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Letters 9(12) (2009) 4359-4363.
[22] F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials 6(9) (2007) 652.
[23] I. Gierz, C. Riedl, U. Starke, C.R. Ast, K. Kern, Atomic hole doping of graphene, Nano Letters 8(12) (2008) 4603-4607.
[24] H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene, Journal of Materials Chemistry 21(10) (2011) 3335-3345.
[25] C. Xu, X. Wang, J. Zhu, Graphene−metal particle nanocomposites, The Journal of Physical Chemistry C 112(50) (2008) 19841-19845.
[26] S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review, Sensors and Actuators B: Chemical 221 (2015) 1170-1181.
[27] P.A. Denis, Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur, Chemical Physics Letters 492(4-6) (2010) 251-257.
[28] Z. Wang, P. Li, Y. Chen, J. Liu, W. Zhang, Z. Guo, M. Dong, Y. Li, Synthesis, characterization and electrical properties of silicon-doped graphene films, Journal of Materials Chemistry C 3(24) (2015) 6301-6306.
[29] R. Lv, M.C. dos Santos, C. Antonelli, S. Feng, K. Fujisawa, A. Berkdemir, R. Cruz‐Silva, A.L. Elías, N. Perea‐Lopez, F. López‐Urías, Large‐area Si‐doped graphene: Controllable synthesis and enhanced molecular sensing, Advanced Materials 26(45) (2014) 7593-7599.
[30] S. Zhang, S. Lin, X. Li, X. Liu, H. Wu, W. Xu, P. Wang, Z. Wu, H. Zhong, Z. Xu, Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells, Nanoscale 8(1) (2016) 226-232.
[31] X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Letters 8(1) (2008) 323-327.
[32] C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, L.-J. Li, Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells, Acs Nano 6(6) (2012) 5031-5039.
[33] C.-C. Chen, M. Aykol, C.-C. Chang, A. Levi, S.B. Cronin, Graphene-silicon Schottky diodes, Nano Letters 11(5) (2011) 1863-1867.
[34] Z. Zhang, Y. Guo, X. Wang, D. Li, F. Wang, S. Xie, Direct growth of nanocrystalline graphene/graphite transparent electrodes on Si/SiO2 for metal‐free Schottky junction photodetectors, Advanced Functional Materials 24(6) (2014) 835-840.
[35] C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, Monolayer graphene film/silicon nanowire array Schottky junction solar cells, Applied Physics Letters 99(13) (2011) 133113.
[36] T. Feng, D. Xie, Y. Lin, Y. Zang, T. Ren, R. Song, H. Zhao, H. Tian, X. Li, H. Zhu, Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate, Applied Physics Letters 99(23) (2011) 233505.
[37] X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, Graphene‐on‐silicon Schottky junction solar cells, Advanced Materials 22(25) (2010) 2743-2748.
[38] X. An, F. Liu, Y.J. Jung, S. Kar, Tunable graphene–silicon heterojunctions for ultrasensitive photodetection, Nano Letters 13(3) (2013) 909-916.
[39] X. Wang, D. Li, Q. Zhang, L. Zou, F. Wang, J. Zhou, Z. Zhang, Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon, Thin Solid Films 592 (2015) 281-286.
[40] S.S. Varghese, S. Lonkar, K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene based gas sensors, Sensors and Actuators B: Chemical 218 (2015) 160-183.
[41] J.L. Johnson, A. Behnam, S. Pearton, A. Ural, Hydrogen sensing using Pd‐functionalized multi‐layer graphene nanoribbon networks, Advanced Materials 22(43) (2010) 4877-4880.
[42] I. Karaduman, E. Er, H. Çelikkan, N. Erk, S. Acar, Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles, Journal of Alloys and Compounds 722 (2017) 569-578.
[43] M.A. Uddin, A.K. Singh, T.S. Sudarshan, G. Koley, Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity, Nanotechnology 25(12) (2014) 125501.
[44] H. Song, X. Li, P. Cui, S. Guo, W. Liu, X. Wang, Sensitivity investigation for the dependence of monolayer and stacking graphene NH3 gas sensor, Diamond and Related Materials 73 (2017) 56-61.
[45] H.-Y. Kim, K. Lee, N. McEvoy, C. Yim, G.S. Duesberg, Chemically modulated graphene diodes, Nano Letters 13(5) (2013) 2182-2188.
[46] C.-M. Yang, T.-C. Chen, Y.-C. Yang, M.-C. Hsiao, M. Meyyappan, C.-S. Lai, Ultraviolet illumination effect on monolayer graphene-based resistive sensor for acetone detection, Vacuum 140 (2017) 89-95.
[47] Z. Luo, N.J. Pinto, Y. Davila, A. Charlie Johnson, Controlled doping of graphene using ultraviolet irradiation, Applied Physics Letters 100(25) (2012) 253108.
[48] R. Lv, G. Chen, Q. Li, A. McCreary, A. Botello-Méndez, S. Morozov, L. Liang, X. Declerck, N. Perea-López, D.A. Cullen, Ultrasensitive gas detection of large-area boron-doped graphene, Proceedings of the National Academy of Sciences 112(47) (2015) 14527-14532.
[49] J. Dai, J. Yuan, P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study, Applied Physics Letters 95(23) (2009) 232105.
[50] Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng, H.-L. Zhang, Y. Peng, Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study, Nanotechnology 20(18) (2009) 185504.
[51] F. Niu, L.-M. Tao, Y.-C. Deng, Q.-H. Wang, W.-G. Song, Phosphorus doped graphene nanosheets for room temperature NH3 sensing, New Journal of Chemistry 38(6) (2014) 2269-2272.
[52] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80(6) (1958) 1339-1339.
[53] A. Inaba, K. Yoo, Y. Takei, K. Matsumoto, I. Shimoyama, Ammonia gas sensing using a graphene field – effect transistor gated by ionic liquid, Sensors and Actuators B: Chemical 195 (2014) 15-21.
[54] M. Gautam, A.H. Jayatissa, Graphene based field effect transistor for the detection of ammonia, Journal of Applied Physics 112(6) (2012) 064304.
[55] A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Tunable reverse‐biased graphene/silicon heterojunction Schottky diode sensor, Small 10(8) (2014) 1555-1565.
[56] 郭修安, 矽摻雜石墨烯及其蕭特基光感測特性, 碩士論文, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2016, p. 124.
[57] H.J. Bowley, D.L. Gerrard, J.D. Louden, G. Turrell, Practical Raman Spectroscopy, Springer Science & Business Media 2012.
[58] A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications 143(1-2) (2007) 47-57.
[59] D.J. O'Connor, B.A. Sexton, R.S. Smart, Surface Analysis Methods in Materials Science, Springer Science & Business Media 2013.
[60] Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, Controllable growth of 1–7 layers of graphene by chemical vapour deposition, Carbon 73 (2014) 252-258.
[61] H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, Z. Liu, Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition, Small 9(8) (2013) 1316-1320.
[62] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Synthesis of nitrogen‐doped graphene using embedded carbon and nitrogen sources, Advanced Materials 23(8) (2011) 1020-1024.
[63] 劉佳宜, 硼摻雜及硼氮共摻雜石墨烯之蕭特基光感測特性研究, 碩士論文, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2017.
[64] 毛姿穎, 氮摻雜石墨烯以及矽摻雜石墨烯之研究, 碩士論文, 材料科學與工程系, 國立臺灣科技大學, 台北市, 2017.
[65] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology 5(8) (2010) 574.
[66] I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami, T. Takaoka, M. Nishitani-Gamo, T. Ando, XPS study of nitridation of diamond and graphite with a nitrogen ion beam, Surface Science 492(3) (2001) 315-328.
[67] O. Rosseler, M. Sleiman, V.N. Montesinos, A. Shavorskiy, V. Keller, N. Keller, M.I. Litter, H. Bluhm, M. Salmeron, H. Destaillats, Chemistry of NOx on TiO2 Surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water, and Coadsorbed K+, The Journal of Physical Chemistry Letters 4(3) (2013) 536-541.
[68] A. Thøgersen, J.H. Selj, E.S. Marstein, Oxidation effects on graded porous silicon anti-reflection coatings, Journal of The Electrochemical Society 159(5) (2012) D276-D281.
[69] X.-r.P.S.X.R. Pages. http://www.xpsfitting.com/search/label/carbon.
[70] A. Singh, M.A. Uddin, T. Sudarshan, G. Koley, Gas sensing by graphene/silicon hetrostructure, IEEE, 2013, pp. 1-4.
[71] B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, Y. Chen, All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide, Sensors and Actuators B: Chemical 194 (2014) 142-148.
[72] T. Polichetti, F. Ricciardella, F. Fedi, M.L. Miglietta, R. Miscioscia, E. Massera, G. Di Francia, M.A. Nigro, G. Faggio, A. Malara, Graphene-Si Schottky diode in environmental conditions at low NH3 ppm level, Nanotechnology Materials and Devices Conference (NMDC), 2014 IEEE 9th, IEEE, 2014, pp. 23-26.
[73] A. Singh, M. Uddin, T. Sudarshan, G. Koley, Tunable reverse‐biased graphene/silicon heterojunction Schottky diode sensor, Small 10(8) (2014) 1555-1565.
[74] G. Lu, S. Park, K. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, J. Chen, Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations, ACS Nano 5(2) (2011) 1154-1164.
[75] A. Shrivastava, V.B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chronicles of Young Scientists 2(1) (2011) 21.

QR CODE