簡易檢索 / 詳目顯示

研究生: 張恆禕
Hearn-Yie Chang
論文名稱: 濺鍍鋯基金屬玻璃濾紙於太陽光熱轉換純水收集
Sputtered Zirconium-based Metallic Glass on Filter Paper for Solar Heat Conversion Water Harvesting
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳建光
Jem-Kun Chen
黃智峯
Chih-Feng Huang
賴君義
Juin-Yih Lai
郭紹偉
Shiao-Wei Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 97
中文關鍵詞: 磁控濺鍍鋯基金屬玻璃光熱轉換
外文關鍵詞: Magnetron sputtering, Zirconium-based metallic glass, Photothermal conversion
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究選擇含鋯銅鋁鎳組成之金屬玻璃作為光熱轉換材料。濾紙基材為水通道載體,在上方以不同射頻磁控濺鍍時間(1、3、5小時)做出鍍有金屬玻璃的 fp1、fp3、fp5樣品。開發漂浮型太陽能水蒸發系統,以作為海水淡化之應用。fp1、fp3、fp5樣品全都會漂浮在水面上,三種樣品仍然維持有開放孔結構,可以作為漂浮型太陽能水蒸發系統。
以XPS全譜分析與縱深分析探討金屬玻璃薄膜表面與不同深度之化學組成;毛細管流動分析儀分析複合薄膜之孔洞尺寸分布;水接觸角顯示表面潤濕性;由UV-Vis/NIR光譜儀評估光學性質;拉伸試驗評估機械強度耐用性。探討金屬玻璃濺鍍時間對多孔通道之孔洞尺寸分布、表面潤濕性、吸光性、機械強度、表面與不同深度之化學組成之影響。
在溫度20-22°C及相對濕度60-65% 的條件下,太陽能水蒸發效能實驗結果顯示蒸發速率和光熱轉換效率均隨濺鍍時間而增加 (fp5 > fp3 > fp1 > fp0) 。以 fp5 在氙燈照射下蒸發去離子水揮發速率為 849 g-m-2-h-1 ,光熱轉換效率可以達到66%。氙燈照射下蒸發模擬海水,fp5之揮發速率為685 g-m-2-h-1;光熱轉換效率可以達到53%。此外在不同環境下,分別以自製的太陽能蒸發器進行模擬海水蒸發試驗,探討模擬海水之冷凝淨水收集速率。室內氙燈照射下以及戶外太陽光照射下,fp5之冷凝淨水收集速率分別可達 414 g-m-2-h-1 與 593 g-m-2-h-1。


In this study, the metallic glass consisting of zirconium, copper, aluminum and nickel was selected as the photo-thermal conversion material. The filter paper substrate was the water carrier, and the fp1, fp3, and fp5 samples coated with metallic glass are prepared with different RF magnetron sputtering times (1, 3, and 5 hours). Samples were used as floating solar water evaporation systems for seawater desalination. The fp1, fp3, and fp5 samples could float on the water. The three samples still maintain an open pore structure, which can be used as a floating solar energy water evaporation system.
The XPS full spectra and depth profiling spectra could explore the metallic glass composition at different depths. Capillary flow analyzer could analyze the pore size distribution. Water contact angle could show the surface wettability. UV-Vis/NIR Spectrometer could evaluate the optical properties. Tensile test could evaluate mechanical strength. The effects of sputtering time on the pore size distribution of porous channels, surface wettability, solar absorptance, durability, chemical composition at different depths are also discussed.
Under the condition of 20-22°C temperature and 60-65% relative humidity, the experimental results of solar water evaporation efficiency show that both the evaporation rate and the photo-thermal conversion efficiency increase with the sputtering time (fp5> fp3> fp1> fp0). Under xenon lamp irradiation, deionized water with fp5 had the evaporation rate of 849 g-m-2-h-1, and its photo-thermal conversion efficiency could reach 66%. Under xenon lamp irradiation, deionized water with fp5 had the evaporation rate of 685 g-m-2-h-1, and its photo-thermal conversion efficiency could reach 53%. In addition, under different environments, the simulated seawater evaporation test was conducted with a handmade solar evaporator, and the water harvesting rate of the simulated seawater was discussed. Under indoor xenon lamp irradiation and outdoor sunlight irradiation, the water harvesting rate of fp5 could reach 414 g-m-2-h-1 and 593 g-m-2-h-1 respectively.

摘要 4 Abstract 5 致謝 7 目錄 8 圖目錄 11 表目錄 14 1. 研究背景 15 2. 文獻回顧 16 2.1. 太陽能吸收 16 2.2. 海水淡化 23 2.2.1. 金屬的太陽能驅動蒸汽生成 24 2.2.2. 光熱轉化材料製作方法 26 2.2.2.1. 分散型太陽能水蒸發系統 26 2.2.2.2. 漂浮型太陽能水蒸發系統 26 2.3. 金屬表面的水潤濕性 29 2.4. 濺鍍 30 3. 實驗 32 3.1. 步驟 32 3.1.1. 射頻磁控濺鍍 32 3.1.2. 樣品鑑定 35 3.1.2.1. 掃描電子影像與元素分布 35 3.1.2.2. X 射線繞射 36 3.1.2.3. X 射線光電子能譜 36 3.1.2.4. 漂浮實驗 37 3.1.2.5. 接觸角量測 38 3.1.2.6. 孔徑分布 38 3.1.2.7. 光學性質 39 3.1.2.8. 熱傳導性質 41 3.1.2.9. 機械性質 42 3.1.3. 光熱蒸發實驗 43 3.1.3.1. 室內光熱蒸發實驗 43 3.1.3.1.1. 蒸發實驗 43 3.1.3.1.2. 水收集實驗 45 3.1.3.2. 室外光熱蒸發收集水實驗 45 4. 結果與討論 46 4.1. 掃描電子影像與元素分布 46 4.2. X 射線繞射 49 4.3. X 射線光電子能譜 51 4.3.1. 表面全譜分析 51 4.3.2. 蝕刻不同時間之縱深分析 52 4.3.2.1. 鋯 3d 軌域 52 4.3.2.2. 銅 2p 軌域 55 4.3.2.3. 鋁 2p 軌域 58 4.3.2.4. 鎳2p軌域 61 4.4. 漂浮特性 64 4.5. 接觸角 65 4.6. 孔徑分布 66 4.7. 光學性質 68 4.8. 熱傳導性質 71 4.9. 機械強度 74 4.10. 光熱蒸發實驗 76 4.10.1. 室內光熱蒸發實驗 76 4.10.1.1. 以去離子水進行之太陽能水蒸發試驗 76 4.10.1.2. 以模擬海水進行之光熱蒸發試驗 78 4.10.1.3. 水收集實驗 80 4.10.2. 室外光熱蒸發收集水實驗 86 5. 結論 88 6. 參考資料 89

[1] Woodruff, S. D., Slutz, R. J., Jenne, R. L., & Steurer, P. M. (1987). A comprehensive ocean-atmosphere data set. Bulletin of the American meteorological society, 68(10), 1239-1250.
[2] Zhou, D., Zhu, L., Fu, Y., Zhu, M., & Xue, L. (2015). Development of lower cost seawater desalination processes using nanofiltration technologies—A review. Desalination, 376, 109-116.
[3] Dudchenko, A. V., Chen, C., Cardenas, A., Rolf, J., & Jassby, D. (2017). Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nature nanotechnology, 12(6), 557.
[4] Yan, K. K., Jiao, L., Lin, S., Ji, X., Lu, Y., & Zhang, L. (2018). Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination, 437, 26-33.
[5] Chen, C., Kuang, Y., & Hu, L. (2019). Challenges and opportunities for solar evaporation. Joule, 3(3), 683-718..
[6] Riordan, C., & Hulstron, R. (1990). What is an air mass 1.5 spectrum? (Solar cell performance calculations). In IEEE Conference on Photovoltaic Specialists (p. 1085-1088). IEEE.
[7] Reference Air Mass 1.5 Spectra,https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html。
[8] Tabor, H. Z. (1964). U.S. Patent No. 3,129,703. Washington, DC: U.S. Patent and Trademark Office.
[9] Maxwell, J. C. (1861). Xxv. on physical lines of force: Part i.–the theory of molecular vortices applied to magnetic phenomena. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(139), 161-175.
[10] Khoza, N., Nuru, Z. Y., Sackey, J., Kotsedi, L., Matinise, N., Ndlangamandla, C., & Maaza, M. (2019). Structural and optical properties of ZrOx/Zr/ZrOx/AlxOy multilayered coatings as selective solar absorbers. Journal of Alloys and Compounds, 773, 975-979.
[11] Chen, F., Wang, S. W., Liu, X., Ji, R., Li, Z., Chen, X., ... & Lu, W. (2016). Colorful solar selective absorber integrated with different colored units. Optics Express, 24(2), A92-A103.
[12] Barshilia, H. C., Selvakumar, N., Vignesh, G., Rajam, K. S., & Biswas, A. (2009). Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings. Solar Energy Materials and Solar Cells, 93(3), 315-323.
[13] Grilli, M. L., Vernhes, R., Hu, G., Di Sarcina, I., Dikonimos, T., Sytchkova, A., ... & Piegari, A. (2019). Characteristics of Ultrathin Ni Films. physica status solidi (a), 216(7), 1800728.
[14] Zhao, F., Zhou, X., Shi, Y., Qian, X., Alexander, M., Zhao, X., ... & Yu, G. (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature nanotechnology, 13(6), 489-495.
[15] Fujiwara, M., & Imura, T. (2015). Photo induced membrane separation for water purification and desalination using azobenzene modified anodized alumina membranes. ACS nano, 9(6), 5705-5712.
[16] Zielinski, M. S., Choi, J. W., La Grange, T., Modestino, M., Hashemi, S. M. H., Pu, Y., ... & Psaltis, D. (2016). Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano letters, 16(4), 2159-2167.
[17] Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., ... & Zhu, J. (2016). Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science advances, 2(4), e1501227.
[18] Bae, K., Kang, G., Cho, S. K., Park, W., Kim, K., & Padilla, W. J. (2015). Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature communications, 6(1), 1-9.
[19] Wang, Z., Liu, Y., Tao, P., Shen, Q., Yi, N., Zhang, F., ... & Deng, T. (2014). Bio‐inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small, 10(16), 3234-3239.
[20] Yu, F., Chen, Y., Liang, X., Xu, J., Lee, C., Liang, Q., ... & Deng, T. (2017). Dispersion stability of thermal nanofluids. Progress in natural science: Materials International, 27(5), 531-542.
[21] Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International reviews in physical chemistry, 19(3), 409-453.
[22] Xia, Y., & Halas, N. J. (2005). Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS bulletin, 30(5), 338-348.
[23] Link, S., & El-Sayed, M. A. (1999). Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212-4217.
[24] Cortie, M. B., & McDonagh, A. M. (2011). Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chemical reviews, 111(6), 3713-3735.
[25] Brown, K. R., Walter, D. G., & Natan, M. J. (2000). Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials, 12(2), 306-313.
[26] Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.
[27] Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., ... & Murray, C. B. (2012). Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS nano, 6(3), 2804-2817.
[28] Oldenburg, S. J., Averitt, R. D., Westcott, S. L., & Halas, N. J. (1998). Nanoengineering of optical resonances. Chemical Physics Letters, 288(2-4), 243-247.
[29] Payne, E. K., Shuford, K. L., Park, S., Schatz, G. C., & Mirkin, C. A. (2006). Multipole plasmon resonances in gold nanorods. The Journal of Physical Chemistry B, 110(5), 2150-2154.
[30] Liu, L., Dao, T. D., Kodiyath, R., Kang, Q., Abe, H., Nagao, T., & Ye, J. (2014). Plasmonic janus‐composite photocatalyst comprising Au and C–TiO2 for enhanced aerobic oxidation over a broad visible‐light range. Advanced Functional Materials, 24(48), 7754-7762.
[31] Neumann, O., Urban, A. S., Day, J., Lal, S., Nordlander, P., & Halas, N. J. (2013). Solar vapor generation enabled by nanoparticles. ACS nano, 7(1), 42-49.
[32] Neumann, O., Feronti, C., Neumann, A. D., Dong, A., Schell, K., Lu, B., ... & Nordlander, P. (2013). Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences, 110(29), 11677-11681.
[33] Baffou, G., & Quidant, R. (2013). Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat. Laser & Photonics Reviews, 7(2), 171-187.
[35] Taylor, R. A., Phelan, P. E., Otanicar, T. P., Walker, C. A., Nguyen, M., Trimble, S., & Prasher, R. (2011). Applicability of nanofluids in high flux solar collectors. Journal of Renewable and Sustainable Energy, 3(2), 023104.
[36] Li, Y., Verbiest, T., Strobbe, R., & Vankelecom, I. F. (2014). Silver nanoparticles as localized “nano-heaters” under LED light irradiation to improve membrane performance. Journal of Materials Chemistry A, 2(9), 3182-3189.
[37] Zeng, Y., Yao, J., Horri, B. A., Wang, K., Wu, Y., Li, D., & Wang, H. (2011). Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy & Environmental Science, 4(10), 4074-4078.
[38] Wang, Z., Ye, Q., Liang, X., Xu, J., Chang, C., Song, C., ... & Deng, T. (2017). based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry A, 5(31), 16359-16368.
[39] Chen, R., Wu, Z., Zhang, T., Yu, T., & Ye, M. (2017). Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC advances, 7(32), 19849-19855.
[40] Wang, Y., Wang, C., Song, X., Megarajan, S. K., Jiang, H. (2018). A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. Journal of Materials Chemistry A, 6, 963-971.
[41] Ding, D., Huang, W., Song, C., Yan, M., Guo, C., Liu, S. (2017). Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications, 53, 6744-6747.
[42] Liu, Y., Chen, J., Guo, D., Cao, M., Jiang, L. (2015). Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS applied materials & interfaces, 7, 13645-13652.
[43] Yao, J., Zheng, Z., Yang, G. (2018). Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Nanoscale, 10, 2876-2886.
[44] Shuai, C., Yunkai, D., & Xiangjun, Z. (2007). Study of the influence of apparent contact angle on regular rough surface considering liquid wetting properties. Mechanical Science and Technology for Aerospace Engineering, 7.
[45] Deng, Z., Liu, P. F., Zhou, J., Miao, L., Peng, Y., Su, H., ... & Sun, L. (2018). A Novel Ink‐Stained Paper for Solar Heavy Metal Treatment and Desalination. Solar RRL, 2, 1800073.
[46] Lou, J., Liu, Y., Wang, Z., Zhao, D., Song, C., Wu, J., ... & Shang, W. (2016). Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS applied materials & interfaces, 8, 14628-14636.
[47] Chen, R., Zhu, K., Gan, Q., Yu, Y., Zhang, T., Liu, X., ... & Yin, Y. (2017). Interfacial solar heating by self-assembled Fe3O4@C film for steam generation. Materials Chemistry Frontiers, 1, 2620-2626.
[48] Li, H., He, Y., Liu, Z., Jiang, B., Huang, Y. (2017). A flexible thin-film membrane with broadband Ag@ TiO2 nanoparticle for high-efficiency solar evaporation enhancement. Energy, 139, 210-219.
[49] Guo, A., Ming, X., Fu, Y., Wang, G., Wang, X. (2017). Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation. ACS Applied Materials & Interfaces, 9, 29958-29964.
[50] Liu, Y., Yu, S., Feng, R., Bernard, A., Liu, Y., Zhang, Y., ... & Deng, T. (2015). A bioinspired, reusable, paper‐based system for high‐performance large‐scale evaporation. Advanced Materials, 27, 2768-2774.
[51] Dai, Z. R., Pan, Z. W., Wang, Z. L. (2003). Novel nanostructures of functional oxides synthesized by thermal evaporation. Advanced Functional Materials, 13, 9-24.
[52] Zhou, L., Zhuang, S., He, C., Tan, Y., Wang, Z., Zhu, J. (2017). Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 32, 195-200.
[53] O'Hayre, R. (2015). Materials Kinetics Fundamentals. John Wiley & Sons.
[54] Chu, J. H., Lee, J., Chang, C. C., Chan, Y. C., Liou, M. L., Lee, J. W., ... & Duh, J. G. (2014). Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass. Surface and Coatings Technology, 259, 87-93.
[55] Kassa, S. T., Hu, C. C., Liao, Y. C., Chen, J. K., & Chu, J. P. (2019). Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane. Surface and Coatings Technology, 368, 33-41.
[56] Makhlouf, A. S. H., & Barhoum, A. (Eds.). (2018). Fundamentals of nanoparticles: classifications, synthesis methods, properties and characterization. William Andrew.
[57] Kelly, P. J., & Arnell, R. D. (2000). Magnetron sputtering: a review of recent developments and applications. Vacuum, 56(3), 159-172.
[58] Window, B., & Savvides, N. (1986). Charged particle fluxes from planar magnetron sputtering sources. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(2), 196-202.
[59] Balaceanu, M., Petreus, T., Braic, V., Zoita, C. N., Vladescu, A., Cotrutz, C. E., & Braic, M. (2010). Characterization of Zr-based hard coatings for medical implant applications. Surface and Coatings Technology, 204(12-13), 2046-2050.
[60] Kang, S. J., Rittgen, K. T., Kwan, S. G., Park, H. W., Bennewitz, R., & Caron, A. (2017). Importance of surface oxide for the tribology of a Zr-based metallic glass. Friction, 5(1), 115-122.
[61] Shin, K., Acri, T., Geary, S., & Salem, A. K. (2017). Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine. Tissue Engineering Part A, 23(19-20), 1169-1180.
[62] Shekhawat, M. S., Tak, S. K., & Mangal, R. (2013). The Transient Plane Source Technique to Measure Thermal Conductivity of Clays of Bikaner Region. In International Journal of Modern Physics: Conference Series (Vol. 22, pp. 42-50). World Scientific Publishing Company.
[63] Wang, Y., Zhang, L., Wang, P. (2016). Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering, 4, 1223-1230.
[64] Li, X., Zhu, B., Zhu, J. (2019). Graphene oxide based materials for desalination. Carbon, 146, 320-328.
[65] Wang, R., Fu, Y., Qin, M., Shao, Z., & Xu, Q. (2014). Homogeneous acylation and regioselectivity of cellulose with 2-chloro-2-phenylacetyl chloride in ionic liquid. BioResources, 9(3), 5134-5146.
[66] Khenblouche, A., Bechki, D., Gouamid, M., Charradi, K., Segni, L., Hadjadj, M., & Boughali, S. (2019). Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros, 29(1).
[67] Moulder, J. F., Chastain, J., & King, R. C. (1992). Handbook of X-ray photoelectron Spectroscopy: A Reference Book of Standard Spectra for 35 Identification and Interpretation of XPS Data. Perkin–Elmer Corporation: Physical Electronics Division, Eden Prairie, Minnesota, 261.
[68] J.E. Huheey, E.A. Keiter, and R.L. Keiter in Inorganic Chemistry : Principles of Structure and Reactivity, 4th edition, HarperCollins, New York, USA, 1993.
[69] Teeparthi, S. R., Awin, E. W., & Kumar, R. (2018). Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity. Scientific reports, 8(1), 1-11.
[70] Bespalov, I., Datler, M., Buhr, S., Drachsel, W., Rupprechter, G., & Suchorski, Y. (2015). Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study. Ultramicroscopy, 159, 147-151.
[71] Liu, Z., Duchoň, T., Wang, H., Grinter, D. C., Waluyo, I., Zhou, J., ... & Stacchiola, D. J. (2016). Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO 2 (111) catalysts: an in situ study of C–C and O–H bond scission. Physical Chemistry Chemical Physics, 18(25), 16621-16628.
[72] Munjal, S., & Khare, N. (2018). Electroforming free controlled bipolar resistive switching in Al/CoFe2O4/FTO device with self-compliance effect. Applied Physics Letters, 112(7), 073502.
[73] Fang, Q., Li, T., Chen, Z., Lin, H., Wang, P., Liu, F. (2019). Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media. ACS applied materials & interfaces, 11, 10672-10679.
[74] Weng, D., Xu, F., Li, X., Li, Y., & Sun, J. (2018). Bioinspired photothermal conversion coatings with self-healing superhydrophobicity for efficient solar steam generation. Journal of Materials Chemistry A, 6(47), 24441-24451.
[75] Ho, C. Y., Powell, R. W., & Liley, P. E. (1974). Thermal conductivity of the elements: a comprehensive review. National Standard Reference Data System.
[76] de Caland, L. B., Silveira, E. L. C., & Tubino, M. (2012). Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography. Analytica chimica acta, 718, 116-120.
[77] Liu, T., & Li, Y. (2016). Photocatalysis: plasmonic solar desalination. Nature Photonics, 10(6), 361-362.

無法下載圖示 全文公開日期 2025/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE