簡易檢索 / 詳目顯示

研究生: 劉宥成
Yu-Cheng Liu
論文名稱: 以磁控濺鍍法製備不同比例之生物活性玻璃薄膜研究與性質探討
Preparation and characterization of thin film bioactive glass with different ratios prepared by magnetron sputtering
指導教授: 周育任
Yu-Jen Chou
口試委員: 周育任
Yu-Jen Chou
施劭儒
Shao-Ju Shih
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 99
中文關鍵詞: 生物活性玻璃磁控濺鍍噴霧乾燥生物活性
外文關鍵詞: Magnetron sputtering, Spray drying, Thin film bioactive glass, Bioactivity
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來金屬植入物逐漸成為骨骼受損時用以代替骨骼的治療方案,在金屬材料鍍上具有生物活性的材料,使植入物擁有良好的機械性質及生物相容性,減少植入後的異物反應與副作用。目前擁有很多種方法製備薄膜,使用磁控濺鍍法製備之薄膜,具有良好的致密性、成分均一且無汙染的優勢。

    本實驗使用45S、58S和68S不同比例之生物活性玻璃,依照粉體中含有的SiO2的含量來區分,以磁控濺鍍的方式披覆於純鈦板上,提升其生物活性及相容性。首先將製備用於實驗的靶材,使用噴霧乾燥法,可以快速獲得大量生物活性玻璃粉末,藉由調整前驅物溶液配比達到不同比例的粉體,再透過冷壓法將粉末壓成生胚並送進高溫爐燒結後便可使用。爾後,使用X光繞射儀和傅立葉光譜儀,量測結晶結構及薄膜鍵結,並透過場發射雙束型聚焦離子束及奈米壓痕儀,分析薄膜化學組成、薄膜厚度及微硬度。最後進行生物活性測試及細胞毒性測試。

    本研究成功做出45S、58S及68S靶材,並藉由改變工作氣體壓力,使沉積的生物活性玻璃薄膜化學成分組成符合原本設定之比例。此外,透過體外生物活性測試,於鈦金屬表面發現具有氫氧基磷灰石生成,證明使用磁控濺鍍法製備之生物活性玻璃薄膜具有生物活性。


    In recent years, metal implants have gradually become a treatment option to replace bones when bones are damaged.When the metal material is covered with bioactive material which has good mechanical properties and biocompatibility that gives the implant less foreign body reaction and side effects after implantation. At present, there are many methods to prepare bioactive thin films. The thin films prepared by magnetron sputtering have the advantages of good density, uniform composition and no pollution.

    In this experiment, different ratio of bioactive glass taget was used. According to the content of SiO2 in the bioactive glass can be classified into 45S, 58S,and 68S.By using magnetron sputtering to improve bioactivity and compatibility with pure titanium plate. First, the target material for the experiment is prepared. Using the spray drying method, a large amount of powder can be quickly obtained. By adjusting the ratio of the precursor solution to achieve different proportions of powder, the powder is pressed into tablets by cold pressing and sent to sintering in a high temperature furnace. Then, X-ray diffractometer and Fourier transform spectrometer were used to measure the crystal structure and film bonding, and the chemical composition, film thickness, and microhardness were analyzed by dual-beam focused ion beam scsnning electron microscope and nanoindenter. In the end, in vitro tests and cytotoxicity tests were carried out.

    In this study, 45S, 58S, and 68S targets were successfully fabricated, and by changing the working gas pressure, the chemical composition of the deposited bioactive glass film conformed to the original ratio. In addition, in vitro test found that hydroxyapatite was formed on the surface of titanium substrate, which proved that the bioactive glass film prepared by magnetron sputtering had bioactivity.

    摘要 i Abstract iii 致謝 iv 目錄 v 圖目錄 vii 表目錄 x 第一章 實驗介紹 1 第二章 文獻回顧 3 2.1 生醫材料 3 2.1.1 生醫陶瓷 4 2.1.2 氫氧基磷灰石 5 2.1.3 生物活性玻璃 6 2.2 生物活性玻璃 7 2.2.1生物活性介紹 7 2.2.2 生物活性玻璃反應機制 10 2.2.3生物活性玻璃粉末製備 12 2.3生物活性玻璃薄膜製備方法 15 2.3.1溶膠凝膠法 15 2.3.2雷射脈衝沉積法 16 2.3.3電漿噴塗法 17 2.3.4 磁控濺鍍法 18 2.4 以磁控濺鍍法製備生物活性玻璃薄膜組成 24 第三章 實驗方法 29 3.1實驗設計及流程 29 3.2樣品製備流程 32 3.3實驗使用原料 35 3.4實驗儀器 36 3.5樣品性質與分析方法 37 3.6體外生物活性測試 41 3.7 細胞毒性測試 42 第四章 實驗結果 45 4.1 生物活性玻璃靶材製備 45 4.2生物活性玻璃薄膜性質分析 48 4.3生物活性測試結果 57 4.3.1 晶體結構 57 4.3.2 鍵結分析 58 4.3.3 表面形貌及元素分析 61 4.4 細胞存活率測試 67 第五章 實驗討論 71 5.1靶材製備 71 5.2薄膜成長機制及厚度 72 5.3薄膜成分 74 5.4生物活性探討 75 第六章 結論 77 第七章 未來工作 78 參考文獻 79

    [1] B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going,Annu. Rev. Biomed. Eng., 6 (2004) 41-75.
    [2] I. Sanli, J.J.C. Arts, J. Geurts, Clinical and radiologic outcomes of a fully hydroxyapatite-coated femoral revision stem: excessive stress shielding incidence and its consequences,The Journal of arthroplasty, 31 (2016) 209-214.
    [3] D.F. Williams, On the mechanisms of biocompatibility,Biomaterials, 29 (2008) 2941-2953.
    [4] C.J. Holmes, D. Faict, Peritoneal dialysis solution biocompatibility: definitions and evaluation strategies,Kidney Int., 64 (2003) S50-S56.
    [5] M. Niinomi, Recent metallic materials for biomedical applications,Metallurgical and materials transactions A, 33 (2002) 477-486.
    [6] M.Z. Ibrahim, A.A. Sarhan, F. Yusuf, M. Hamdi, Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants–A review article,J. Alloys Compd., 714 (2017) 636-667.
    [7] D. Vukajlovic, J. Parker, O. Bretcanu, K. Novakovic, Chitosan based polymer/bioglass composites for tissue engineering applications,Materials Science and Engineering: C, 96 (2019) 955-967.
    [8] B. Rahmati, A.A. Sarhan, W.J. Basirun, W. Abas, Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti6Al4V alloy,J. Alloys Compd., 676 (2016) 369-376.
    [9] S.V. Dorozhkin, Calcium orthophosphate bioceramics,Ceram. Int., 41 (2015) 13913-13966.
    [10] C. Piconi, A.A. Porporati, Bioinert ceramics: Zirconia and alumina, in: Handbook of Bioceramics and Biocomposites, Springer, 2016, pp. 59-89.
    [11] L.L. Hench, Bioceramics: from concept to clinic,J. Am. Ceram. Soc., 74 (1991) 1487-1510.
    [12] M. Metikoš-Huković, E. Tkalacec, A. Kwokal, J. Piljac, An in vitro study of Ti and Ti-alloys coated with sol-gel derived hydroxyapatite coatings,Surf. Coat. Technol., 165 (2003) 40-50.
    [13] J. Wang, Y. Chao, Q. Wan, K. Yan, Y. Meng, Fluoridated hydroxyapatite/titanium dioxide nanocomposite coating fabricated by a modified electrochemical deposition,J. Mater. Sci. Mater. Med., 20 (2009) 1047-1055.
    [14] X. Pei, J. Wang, Q. Wan, L. Kang, M. Xiao, H. Bao, Functionally graded carbon nanotubes/hydroxyapatite composite coating by laser cladding,Surf. Coat. Technol., 205 (2011) 4380-4387.
    [15] G.J. Cheng, D. Pirzada, M. Cai, P. Mohanty, A. Bandyopadhyay, Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser,Mater. Sci. Eng., C, 25 (2005) 541-547.
    [16] S. Bertazzo, W.F. Zambuzzi, D.D. Campos, T.L. Ogeda, C.V. Ferreira, C.A. Bertran, Hydroxyapatite surface solubility and effect on cell adhesion,Colloids Surf. B. Biointerfaces, 78 (2010) 177-184.
    [17] L.L. Hench, The story of Bioglass®,J. Mater. Sci. Mater. Med., 17 (2006) 967-978.
    [18] M. Ogino, L.L. Hench, Formation of calcium phosphate films on silicate glasses,Journal of Non-Crystalline Solids, 38 (1980) 673-678.
    [19] C. Pantano Jr, A. Clark Jr, L. Hench, Multilayer corrosion films on bioglass surfaces,J. Am. Ceram. Soc., 57 (1974) 412-413.
    [20] G.f. Hu, Copper stimulates proliferation of human endothelial cells under culture,J. Cell. Biochem., 69 (1998) 326-335.
    [21] S. Amudha, J.R. Ramya, K.T. Arul, A. Deepika, P. Sathiamurthi, B. Mohana, K. Asokan, C.-L. Dong, S.N. Kalkura, Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass,Composites Part B: Engineering, 196 (2020) 108099.
    [22] L. Hench, Bioactive ceramics: Theory and clinical applications, in: Bioceramics, Elsevier, 1994, pp. 3-14.
    [23] P. DUCHEYNE, Bioceramics: material characteristics versus in vivo behavior,J. Biomed. Mater. Res., 21 (1987) 219-236.
    [24] D. Sanders, L. Hench, Mechanisms of glass corrosion,J. Am. Ceram. Soc., 56 (1973) 373-377.
    [25] A. Clark Jr, C. Pantano Jr, L. Hench, Auger spectroscopic analysis of bioglass corrosion films,J. Am. Ceram. Soc., 59 (1976) 37-39.
    [26] L.L. Hench, An introduction to bioceramics, World scientific, 1993.
    [27] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing,J. Appl. Biomater., 2 (1991) 231-239.
    [28] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Controlled morphological structure of ceria nanoparticles prepared by spray pyrolysis,Procedia Engineering, 36 (2012) 186-194.
    [29] S.-J. Shih, L.-Y.S. Chang, C.-Y. Chen, K.B. Borisenko, D.J. Cockayne, Nanoscale yttrium distribution in yttrium-doped ceria powder,J. Nanopart. Res., 11 (2009) 2145-2152.
    [30] G. Molino, A. Bari, F. Baino, S. Fiorilli, C. Vitale-Brovarone, Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration,Journal of Materials Science, 52 (2017) 9103-9114.
    [31] J. Jones, A. Clare, Bio-glasses: an introduction, John Wiley & Sons, 2012.
    [32] R. Teghil, L. D'Alessio, D. Ferro, S.M. Barinov, Hardness of bioactive glass film deposited on titanium alloy by pulsed laser ablation,J. Mater. Sci. Lett., 21 (2002) 379-382.
    [33] K. De Groot, J. Wolke, J. Jansen, Calcium phosphate coatings for medical implants,Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212 (1998) 137-147.
    [34] M.S. Bryington, M. Hayashi, Y. Kozai, S. Vandeweghe, M. Andersson, A. Wennerberg, R. Jimbo, The influence of nano hydroxyapatite coating on osseointegration after extended healing periods,Dent. Mater., 29 (2013) 514-520.
    [35] S. Shen, S. Cai, G. Xu, H. Zhao, S. Niu, R. Zhang, Influence of heat treatment on bond strength and corrosion resistance of sol–gel derived bioglass–ceramic coatings on magnesium alloy,J. Mech. Behav. Biomed. Mater., 45 (2015) 166-174.
    [36] J. Gough, I. Notingher, L. Hench, Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths,Journal of Biomedical Materials Research Part A, 68 (2004) 640-650.
    [37] C. Berbecaru, H. Alexandru, A. Ianculescu, A. Popescu, G. Socol, F. Sima, I. Mihailescu, Bioglass thin films for biomimetic implants,Appl. Surf. Sci., 255 (2009) 5476-5479.
    [38] Y. Yang, K.-H. Kim, J.L. Ong, A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying,Biomaterials, 26 (2005) 327-337.
    [39] S. Swann, Magnetron sputtering,Physics in technology, 19 (1988) 67.
    [40] S. Swann, Film thickness distribution in magnetron sputtering,Vacuum, 38 (1988) 791-794.
    [41] A. Zangwill, Physics at surfaces, Cambridge university press, 1988.
    [42] D.M. Mattox, Chapter 6-vacuum evaporation and vacuum deposition,Handbook of Physical Vapor Deposition (PVD) Processing, (2010) 195-235.
    [43] P. Kelly, R. Arnell, Characterization studies of the structure of Al, Zr, and W coatings deposited by closed-field unbalanced magnetron sputtering,Surf. Coat. Technol., 97 (1997) 595-602.
    [44] J. Musil, S. Kadlec, Reactive sputtering of TiN films at large substrate to target distances,Vacuum, 40 (1990) 435-444.
    [45] D. Maurya, A. Sardarinejad, K. Alameh, Recent developments in RF Magnetron sputtered thin films for pH sensing applications—an overview,Coatings, 4 (2014) 756-771.
    [46] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications,Vacuum, 56 (2000) 159-172.
    [47] C. Mitterer, PVD and CVD hard coatings, in: Comprehensive hard materials, 2014, pp. 449-467.
    [48] A. Baptista, F. Silva, J. Porteiro, J. Míguez, G. Pinto, L. Fernandes, On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications,Procedia Manufacturing, 17 (2018) 746-757.
    [49] A. Furuya, S. Hirono, Target magnetic‐field effects on deposition rate in rf magnetron sputtering,J. Appl. Phys., 68 (1990) 304-310.
    [50] E. Bauer, Phänomenologische theorie der kristallabscheidung an oberflächen. i,Zeitschrift für Kristallographie-Crystalline Materials, 110 (1958) 372-394.
    [51] N. Kaiser, Review of the fundamentals of thin-film growth,Appl. Opt., 41 (2002) 3053-3060.
    [52] J. Long, S. Xu, J. Cai, N. Jiang, J. Lu, K. Ostrikov, C. Diong, Structure, bonding state and in-vitro study of Ca–P–Ti film deposited on Ti6Al4V by RF magnetron sputtering,Materials Science and Engineering: C, 20 (2002) 175-180.
    [53] M.S. Safavi, M.A. Surmeneva, R.A. Surmenev, J. Khalil-Allafi, RF-magnetron sputter deposited hydroxyapatite-based composite & multilayer coatings: A systematic review from mechanical, corrosion, and biological points of view,Ceram. Int., 47 (2021) 3031-3053.
    [54] C.C. Mardare, A. Mardare, J. Fernandes, E. Joanni, S. Pina, M. Fernandes, R. Correia, Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering,J. Eur. Ceram. Soc., 23 (2003) 1027-1030.
    [55] G. Stan, C. Morosanu, D. Marcov, I. Pasuk, F. Miculescu, G. Reumont, Effect of annealing upon the structure and adhesion properties of sputtered bio-glass/titanium coatings,Appl. Surf. Sci., 255 (2009) 9132-9138.
    [56] G. Stan, D. Marcov, I. Pasuk, F. Miculescu, S. Pina, D. Tulyaganov, J. Ferreira, Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure,Appl. Surf. Sci., 256 (2010) 7102-7110.
    [57] C. Berbecaru, H. Alexandru, G. Stan, D. Marcov, I. Pasuk, A. Ianculescu, First stages of bioactivity of glass-ceramics thin films prepared by magnetron sputtering technique,Materials Science and Engineering: B, 169 (2010) 101-105.
    [58] G. Stan, S. Pina, D. Tulyaganov, J. Ferreira, I. Pasuk, C. Morosanu, Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering,J. Mater. Sci. Mater. Med., 21 (2010) 1047-1055.
    [59] A. Popa, V. Marques, G. Stan, M. Husanu, A. Galca, C. Ghica, D. Tulyaganov, A. Lemos, J. Ferreira, Nanomechanical characterization of bioglass films synthesized by magnetron sputtering,Thin Solid Films, 553 (2014) 166-172.
    [60] C. Berbecaru, G. Stan, S. Pina, D. Tulyaganov, J. Ferreira, The bioactivity mechanism of magnetron sputtered bioglass thin films,Appl. Surf. Sci., 258 (2012) 9840-9848.
    [61] G. Stan, A. Popa, A. Galca, G. Aldica, J. Ferreira, Strong bonding between sputtered bioglass–ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments,Appl. Surf. Sci., 280 (2013) 530-538.
    [62] A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass,Materials science and engineering: C, 29 (2009) 335-340.
    [63] H. ElBatal, M. Azooz, E. Khalil, A.S. Monem, Y. Hamdy, Characterization of some bioglass–ceramics,Materials chemistry and physics, 80 (2003) 599-609.
    [64] G. Stan, Adherent functional graded hydroxylapatite coatings produced by sputtering deposition techniques,Journal of optoelectronics and advanced materials, 11 (2009) 1132-1138.
    [65] K. Wasa, M. Kitabatake, H. Adachi, Thin film materials technology: sputtering of control compound materials, Springer Science & Business Media, 2004.
    [66] B. Stuart, M. Gimeno-Fabra, J. Segal, I. Ahmed, D.M. Grant, Preferential sputtering in phosphate glass systems for the processing of bioactive coatings,Thin Solid Films, 589 (2015) 534-542.
    [67] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?,Biomaterials, 27 (2006) 2907-2915.

    無法下載圖示 全文公開日期 2024/09/07 (校內網路)
    全文公開日期 2024/09/07 (校外網路)
    全文公開日期 2024/09/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE