簡易檢索 / 詳目顯示

研究生: 洪楷程
Kai-Cheng Hong
論文名稱: 具p型氮化鎵埋入層之氮化鎵基底功率金氧半場效電晶體之研究
Study of GaN-based power MOSFET with p-type GaN buried layer
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
王志良
Jyh-Liang Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 50
中文關鍵詞: 氮化鎵p型氮化家埋入層功率元件高電子移動率電晶體
外文關鍵詞: GaN, p-type GaN buried layer, power device, HEMT
相關次數: 點閱:255下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,氮化鎵(GaN)以被廣泛研究,跟矽比起來有優良的材料特性。此外,在氮化鎵鋁(AlGaN)與氮化鎵的異質接面處發現了高密度的電子,研究其原因是由於自發性極化效應(Spontaneous Polarization)與壓電極化效應(Piezoelectric Polarization)所致,這些高濃度的電子被稱為二維電子氣,擁有相當高的電子遷移率,這些特性使得氮化鎵和氮化鎵鋁材料有很低的導通阻抗,非常適合高功率元件的應用。不過,還是有些問題,例如:normally-on、punch-through。
此論文的目的就是透過元件結構的改變以及相關參數模擬分析來實踐獲得高性能的高電子遷移率電晶體。我們提出一具有p-type埋入層之高電子遷移率電晶體,該模擬結果與傳統HEMT相比,其可獲得好的崩潰特性。


In recent year, gallium nitride (GaN), which is more excellent material properties than silicon and has been extensively studied. In addition, high electron density was found at the hetero-junction of aluminum gallium nitride (AlGaN) and gallium nitride. The main reason for this phenomenon is the spontaneous polarization effect and the piezoelectric polarization effect. These high electron concentration are called two-dimensional electrons gas. These features make gallium nitride and aluminum gallium nitride materials to have a low on-resistance. The HEMT is very suitable for high power device applications. However, there are some problems, such as normally-on and punch- through.
In this thesis, the HEMT device with a p-type buried layer is proposed. The resulting device characteristics are analyzed via process and device simulation. As compared to the conventional HEMT, this enhanced-mode HEMT device with p-type GaN buried layer can show much better breakdown characteristics.

Abstract (Chinese)...............................................I Abstract........................................................II Acknowledgement(Chinese).......................................III Content.........................................................IV Table Lists.....................................................VI Figure Captions................................................VII Chapter 1 Introduction...........................................1 1-1 Conventional HEMT device.....................................4 1-2 Device operation.............................................5 1-2-1 Two-dimension electron gas.................................5 1-2-2 Punch-through..............................................8 1-3 Enhanced-mode HEMT device...................................10 1-4 Motivation..................................................12 1-5 Thesis organization.........................................12 Chapter 2 Device Scheme.........................................13 2-1 The fabrication of the conventional HEMT structures.........15 2-2 The fabrication of the enhanced-mode HEMT structures........20 2-3 The fabrication of the enhanced-mode HEMT structures with p-type GaN buried layer.....................................27 Chapter 3 Results and Discussion................................34 3-1 Conventional HEMT structures................................34 3-2 Enhanced-mode HEMT structures...............................37 3-3 Enhanced-mode HEMT structures with p-type GaN buried layer..40 Chapter 4 Conclusions...........................................45 References......................................................46

[1] Yole Développement Le Quartz, “The GaN RF market enjoyed a healthy increase in 2015,” GaN RF Devices Market: Applications, Players, Technology, and Substrates 2016 - 2022 report, March 2016.

[2] Pallavi Roy, Surbhi Jawanpuria, et al. “Characterization of AlGaN and GaN based HEMT with AlN interfacial spacer,” pp. 786–788, IEEE International conference on Communication Systems and Network Technologies (CSNT), at Gwalior, India, 2015, Fifth.

[3] Umesh K. Mishra, Primit Parikh, Yi-Feng Wu, “AlGaN/GaN HEMTs—An overview of device operation and applications,” Proceedings of the IEEE, vol. 90, no. 6, pp. 1022–1031, June. 2002.

[4] B. Jayant Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Letters, vol. 10, no. 10, pp. 455–457, Oct. 1989.

[5] Fabio Sacconi, Aldo Di Carlo, P. Lugli, and Hadis Morkoç, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN hetero-junction modulation doped FETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 450–457, March 2001.

[6] Giorgia Longobardi, Florin Udrea, Stephen Sque, Jeroen Croon, Fred Hurkx, Ettore Napoli, Jan Šonský, “Modelling 2DEG charges in AlGaN/GaN hetero-structures,” IEEE on SMICND Student Paper, pp. 363–366, Oct. 2012.

[7] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. EastmanR. Dimitrov, L. Wittmer, and M. StutzmannW. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN hetero-structures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, March 1999.

[8] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. EastmanR. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN hetero-structures,” J. Appl. Phys., vol. 87, no. 1, pp. 334–344, January 2000.

[9] O. Hilt, E. Bahat-Treidel, F. Brunner, A. Knauer, R. Zhytnytska, P. Kotara and J. Wuerfl, “Normally-off GaN transistors for power applications,” MicroTherm’2013—Microtechnology and Thermal Problems in Electronics, Journal of Physics: Conference Series, vol. 494, pp. 1 – 6, 2014.

[10] Y. Ando, W. Contrata, N. Samoto, H. Miyamoto, K. Matsunaga, M. Kuzuhara, K. Kunihiro, K. Kasahara, T. Nakayama, Y. Takahashi, N. Hayama, and Y. Ohno, “Gate length scaling for Al Ga N/GaN HJFETs: Two-dimensional full band Monte Carlo simulation including polarization effect,” IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 1965–1972, Nov. 2000.

[11] A. Kuliev, V. Kumar, R. Schwindt, D. Selvanathan, A. M. Dabiran, P. Chow, and I. Adesida, “0.15 μm gate-length AlGaN/GaN HEMTs with varying gate recess length,” Solid State Electron., vol. 47, pp. 117–122, 2003.

[12] M. Micovic, N. X. Nguyen, P. Janke, W. S. Wong, P. Hashimoto, L. M. McCray, and C. Nguyen, “GaN/AlGaN high electron mobility transistors with f_T of 110 GHz,” Electron. Lett., vol. 36, pp. 358–9, 2000.

[13] O. Breitschadel, L. Kley, H. Grabeldinger, J. T. Hsieh, B. Kuhn, F. Scholz, and H. Schweizer, “Short-channel effects in AlGAN/GaN HEMTs,” Mater. Sci. Eng. B, Solid State Mater. Adv. Tech., vol. 82, pp. 238–240, 2001.

[14] M. J. Uren, K. J. Nash, R. S. Balmer, T. Martin, E. Morvan, N. Caillas, S. L. Delage, D. Ducatteau, B. Grimbert, and J. C. De Jaeger, “Punch-through in short-channel AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 53, no. 2, 2006.

[15] Y. Ohmaki, M. Tanimoto, S. Akamatsu, and T. Mukai, “Enhancement-mode AlGaN/AlN/GaN high electron mobility transistor with low on-state resistance and high breakdown voltage,” Jpn. J. Appl. Phys., vol. 45, no. 44, pp. L1168–L1170, Nov. 2006.

[16] N. Tsuyukuchi, K. Nagamatsu, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Low-leakage-current enhancement-mode AlGaN/GaN hetero-structure field-effect transistor using p-type gate contact,” Jpn. J. Appl. Phys., vol. 45, no. 11, pp. L319–L321, Mar. 2006.

[17] M. Kuroda, T. Ueda, and T. Tanaka, “Normally-off AlGaN/GaN MISHFETs using non-polar α-plane,” in Proc. Ext. Abstr. Solid State Devices Mater, pp. 148–149, 2007.

[18] Tohru Oka, and Tomohiro Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications”, IEEE Electron Device Letters, Vol. 29, no. 7, July 2008.

[19] A. L. Corrion, M. Chen, R. Chu, S. D. Burnham, S. Khalil, D. Zehnder, B. Hughes, and K. Boutros, “Normally-off Gate-Recessed AlGaN/GaN-on-Si Hybrid MOS-HFET with Al2O3 Gate Dielectric,” Device Research Conference (DRC), 2011, 69th.

[20] N. Ikeda, J. Li, and S. Yoshida, “Normally-off operation power AlGaN/GaN HFET,” in Proc. Int. Symp. Power Semicond. Devices ICs, pp. 369–372, 2004.

[21] X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska, and M. S. Shur, “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate,” Electron. Lett., vol. 36, no. 8, pp. 753–754, Apr. 2000.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2022/08/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE