簡易檢索 / 詳目顯示

研究生: 鄭家傑
Chia-Chieh Cheng
論文名稱: 應用於第五代行動通訊系統之高速且高吞吐率的連續消除極化碼解碼器架構設計
Successive-Cancellation Polar Decoder Architecture with High-Speed and High-Throughput rate Features for 5th-Generation Mobile System
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 韓永祥
Yung-Hsiang Han
曾德峰
Der-feng Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 第五代行動通訊系統連續消除解碼演算法錯誤更正碼極化碼
外文關鍵詞: 5G Mobile, Successive Cancellation Decoding, Error-Correcting Code, Polar Code
相關次數: 點閱:626下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計一碼長1024,碼率0.5的高速且高吞吐率之極化碼連續消除解碼電路架構。本論文使用管線式樹狀架構搭配預先運算處理單元並在最後一級的解碼端運用預先運算節點和前瞻式運算節點的方式大幅降低解碼延遲週期實現高吞吐率的效果。在硬體優化上,本論文在預先處理單元上提出基於對數似然比的2補數表示法設計,此設計相較於以往文獻使用的符號大小表示法更可以大幅降低運算時間和硬體面積。此外,本論文提出的預先運算節點結合f節點和g節點的運算並搭配極化碼中凍結位元的特性來改善解碼複雜度和運算時間。
    本論文所提出碼長1024編碼速率0.5的連續消除極碼解碼器分別在Altera 的Stratix IV系列FPGA (EP4SGX530KH40C2)、TSMC 0.18 μm CMOS元件庫以及FreePDK 45 nm CMOS元件庫實現與驗證。在FPGA部分,工作頻率可以達到218.72 MHz以及具有146 Mbps的吞吐率,使用32342個暫存器和45685個LUT,晶片功率消耗為2.11W,與先前文獻中所提出的設計,工作頻率提升26.4%、吞吐量提升240%;若以Free PDK 45 nm CMOS元件庫合成,工作頻率可以達到892 MHz以及具有595 Mbps的吞吐率,而所耗費的邏輯閘數量為282.69 KGE,與先前文獻中所提出的設計,工作頻率和吞吐率皆提升19%並且硬體面積節省16.5%;若以TSMC 0.18 μm CMOS元件庫合成,工作頻率可以達到400 MHz以及具有267 Mbps的吞吐率,而所耗費的邏輯閘數量為336 K,與先前文獻中所提出的設計,工作頻率提升6%、吞吐率提升112%;以TSMC 0.18 μm CMOS元件庫進行post-layout模擬,工作頻率可以達到361 MHz以及具有241 Mbps的吞吐率,而所耗費的邏輯閘數量為384 K,晶片功率消耗為973 mW。


    This thesis presents a successive cancellation decoder architecture with high speed and high throughput features for a rate 0.5, length 1024 polar code. This work uses the pipelined tree architecture with pre-processing units and uses pre-computing nodes and the look-ahead computing nodes in the last stage of the decoder to largely reduce the decoding latency and achieve high throughput rate. In addition, from the hardware-optimizing aspect, we propose an algorithm for the pre-processing units based on 2’s complement representation of logarithmic likelihood ratio. It can significantly reduce the hardware area and the critical path length compared with using the sign-magnitude representation in previous state-of-the-art decoders. Moreover, the pre-computation node designed in this work combines the operations of f-node and g-node with the characteristics of frozen bit in the polar code to lower the decoding complexity and the critical path length.
    The decoder is realized and verified on an Altera Stratix IV series FPGA (EP4SGX530KH40C2), as well as in TSMC 0.18 μm cell library and FreePDK 45 nm cell library. On the Stratix IV FPGA, our decoder can operate at a clock frequency up to 218.72 MHz and a throughput rate of 146 Mbps. The resource used by the decoder includes 32,342 registers and 45,685 LUTs. The chip power consumption is 2.11W. Compared with the previous state-of-the-art decoder on the same platform, our decoder’s maximum operating frequency is increased by 26.4% and the throughput rate is increased by 240%. Synthesized in Free PDK’s 45 nm cell library, our decoder’s maximum operating frequency can reach 892 MHz and maximum throughput rate can reach 595 Mbps. The total gate count is approximately 282.69K. Compared with the previous state-of-the-art decoder, our decoder’s maximum operating frequency and throughput rate are increased by 19%. The total gate count is saved by 16.5%. Synthesized in TSMC’s 0.18 μm cell library, our decoder’s maximum operating frequency can reach 400 MHz and maximum throughput rate can reach 267 Mbps. The total gate count is approximately 336K. Compared with the previous state-of-the-art decoder, our decoder’s maximum operating frequency is increased by 6% and maximum throughput rate is increased by 112%. In the post-layout simulation using TSMC’s 0.18 μm cell library, our decoder’s maximum operating frequency can reach 361 MHz and maximum throughput rate can reach 241 Mbps. The total gate count is approximately 384K. The chip power consumption is 973mW.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 極化碼 5 2.1 二進制離散無記憶通道 5 2.2 極化通道 7 2.2.1 通道合併 7 2.2.2 通道分裂 9 2.3 編碼介紹 12 2.4 連續消除解碼介紹 12 2.4.1對數似然比函數推導介紹 17 2.5 極化連續消除解碼器電路架構 20 2.5.1管線式樹狀連續消除解碼器 20 2.5.2半平行化連續消除解碼器 23 2.6管線式樹狀連續消除解碼器解碼週期分析 24 2.6.1一般處理單元設計之解碼週期分析 24 2.6.2加入預先運算節點設計之解碼週期分析 24 2.6.3加入預先運算處理單元與預先運算節點設計之解碼週期分析 26 2.6.4加入前瞻式運算節點、預先運算處理單元與預先運算節點設計 之解碼週期分析 28 第三章 管線式樹狀連續消除解碼器硬體架構設計與實作 31 3.1管線式樹狀連續消除解碼器硬體架構 30 3.2處理單元(Processing Element,PE) 33 3.2.1處理單元運算時間比較 36 3.3預先運算節點(Precomputing Node,P Node) 38 3.3.1預先運算節點時間比較 41 3.4部份和累加器(Partial Sum Accumulator,PSA) 43 第四章 FPGA與ASIC設計與實現 47 4.1 FPGA設計與實現 47 4.1.1系統功能描述 48 4.1.2系統時序模擬 51 4.1.3效能分析 51 4.2標準元件庫設計與實現 53 4.2.1 RTL-Level Simulation 54 4.2.2 RTL-Level Simulation 54 4.2.3晶片佈局後的模擬結果 55 4.2.4晶片效能分析與討論 57 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來展望 62 參考文獻 63

    [1] E. E. Gad, Y. Li, J. Kliewer, M. Langberg, A. A. Jiang, and J. Bruck, "Asymmetric Error Correction and Flash-Memory Rewriting Using Polar Codes," IEEE Transactions on Information Theory, vol. 62, no. 7, pp. 4024-4038, Jul. 2016.
    [2] C. E. Shannon, "A mathematical theory of communication," The Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, Jul. 1948.
    [3] Shu Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications. Pearson-Prentice Hall, May 2004.
    [4] E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.
    [5] H. Yoon and T. Kim, "Efficient Successive-Cancellation Polar Decoder Based on Redundant LLR Representation," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 12, pp. 1944-1948, Dec. 2018.
    [6] B. Yuan and K. K. Parhi, "Low-Latency Successive-Cancellation Polar Decoder Architectures Using 2-Bit Decoding," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1241-1254, April 2014.
    [7] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, "A Semi-Parallel Successive-Cancellation Decoder for Polar Codes," IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 289-299, Jan. 2013.
    [8] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, "Hardware architectures for successive cancellation decoding of polar code," in Proc. IEEE ICASSP, Prague, Czech Republic, May 2011, pp. 1665-1668.

    QR CODE