簡易檢索 / 詳目顯示

研究生: 洪梅星
Stella Patricia Angdiarto
論文名稱: 牡蠣殼灰和FGD石膏對F型飛灰基無機聚合物漿體工程性質之影響
Influences of Oyster Shell Ash and FGD Gypsum on Engineering Properties of Class F Fly Ash Based Geopolymer Paste
指導教授: 張大鵬
Chang, Ta-Peng.
口試委員: 詹穎雯
Chan, Ying-Wen
陳立憲
Chen, Li-Hsien
施正元
shih, Cheng-Yuan
陳君弢
Chen, Chun-Tao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 129
中文關鍵詞: F級飛灰牡蠣殼灰FGD石膏矽酸鈉模數水膠比比例無機聚合物
外文關鍵詞: Class F Fly ash, Oyster shell ash, FGD gypsum, modulus of sodium silicate, added water to binder ratio, geopolymer
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 牡蠣殼灰和FGD石膏對F型飛灰基無機聚合物漿體工程性質之影響 碩士生 :洪梅星 指導教授:張大鵬 博士 時間 :民國一O九年七月 摘要
    這項研究探討了用煅燒的牡蠣殼灰(OSA)和FGD石膏部分替代F級飛灰(FFA)對基於FFA的無機聚合物工程性能的影響。在這項研究中,牡蠣殼(CaCO3)在800°C的溫度下燃燒3小時後,經過完全脫碳分解成氧化鈣(CaO),然後磨成粉末,被稱為煅燒牡蠣殼灰。另一方面,FGD石膏(CaSO4.2H20)是從現代火力發電廠的排煙脫硫(FGD)系統獲得的石膏,然後在50°C加熱3小時。與普通鹼性溶液相比,氧化鈣(CaO)可以用作較經濟性之替代鹼性活化劑。 OSA-FFA與鹼溶液的水化機理首先是CaO在OSA中的溶解以與H2O反應形成Ca(OH)2。 CaO的水化作用增加了熱量,從而加速了活性SiO2在FFA中的溶解,從而生成了水化矽酸鈣(C-S-H)凝膠,這有助於提高無機聚合物在早期的抗壓強度。
    用OSA和FGD石膏部分替代FFA會降低OSA-FGD-FFA無機聚合物漿體的工作性,凝結時間和收縮率,但會增加其熱傳導係數。發現最佳混合比例是使用2.5wt % OSA,1wt %FGD石膏和添加的水膠比(Aw/Bi)為0.03的混合物。硬化的OSA-FGD-FFA無基聚合物漿體的最佳28天抗壓強度約為35.9 MPa。矽酸鈉的模數為2.0,在OSA為5%或更低時顯示出最高的強度;然而,當使用超過5%的OSA時,矽酸鈉的模數優選為2.5。 XRD,SEM,EDS的微觀結構分析表明,BHS7.5混合物中OSA-FFA無機聚合物漿體的水化產物主要是鋁矽酸鹽和C-S-H凝膠。另一方面,OSA-FGD-FFA無機聚合物漿體的水化產物主要是石英,C-S-H凝膠,C-A-S-H凝膠和N-A-S-H凝膠,這提高了後期的抗壓強度。
    關鍵字:F級飛灰,牡蠣殼灰,FGD石膏,矽酸鈉模數,水膠比比例,抗壓強度,鹼活化劑,無機聚合物。


    Influences of Oyster Shell Ash and FGD Gypsum on Engineering Properties of Class F Fly Ash Based Geopolymer Paste
    Student : Stella Patricia Angdiarto
    Thesis advisor: Ta-Peng Chang, Ph.D. Date : July 2020
    Abstract
    This study explores the influences of partially replacing class F fly ash (FFA) with calcined oyster shell ash (OSA) and FGD gypsum on the engineering properties of FFA based geopolymer paste. In this study, raw oyster shell (CaCO3) after burning at temperature of 800°C for 3 hours to decompose into calcium oxide (CaO) from complete decarbonation and then grinding into powder is referred to as calcined oyster shell ash. On the other hand, FGD gypsum (CaSO4.2H20) is the gypsum obtained from flue gas desulfurization (FGD) systems of modern power plants and then heated at 50°C for 3 hours. Calcium oxide (CaO) can be used as an economical alternative alkaline activator as compared with that of common alkaline solutions. The hydration mechanism of OSA-FFA with alkali solution is at first the dissolution of CaO in OSA to react with H2O to form Ca(OH)2. The hydration of CaO increases the heat to accelerate the dissolution of the active SiO2 in FFA to produce the calcium silicate hydrate (C-S-H) gel, which serves to improve the compressive strength of geopolymer at early ages. Partial replacement of FFA with OSA and FGD gypsum decreases the workability, setting time and shrinkage of OSA-FGD-FFA geopolymer paste, but increases its thermal conductivity. As being explored with respect to the development of compressive strength of OSA-FFA geopolymer paste, the optimum mixture was found to be using the amounts of 2.5 wt.% OSA, 1 wt.% FGD gypsum, and added water to binder ratio (Aw/Bi) of 0.03. The optimum 28-day compressive strength of hardened OSA-FGD-FFA geopolymer paste was approximately 35.9 MPa. Modulus of sodium silicate of 2.0 demonstrated the highest strength with OSA of 5% or less; however, when over 5% of OSA was used, the modulus of sodium silicate of 2.5 was preferred. The microstructural analyses of XRD, SEM, EDS indicated that the hydration products of OSA-FFA geopolymer paste in mixture BHS7.5 were mainly the alumino silicate, and C-S-H gel. On the other hand, the hydration products of OSA-FGD-FFA geopolymer paste were mainly the quartz, C-S-H gel, C-A-S-H gel, and N-A-S-H gel, which improved the compressive strength at later ages.
    Keywords: Class F Fly ash, Oyster shell ash, FGD gypsum, modulus of sodium silicate, added water to binder ratio, compressive strength, alkali activator, geopolymer.

    iv Table of Contents 摘要………………………………………………………………………………………………..i Abstract………………………………………...………………………………………………...ii Personal Acknowledgements……………………………………………….…………..……....iii Table of Contents………………………………………………………...……………………...iv List of Symbol and Abbreviations……………………………………………………………vii List of Tables……………………………………………………………………..………........ix List of Figures.……………………………………………………………………..…..………..x Chapter 1 Introduction…………………………………………………………….....................1 1.1 Background…………………………………………………………………………….….1 1.2 Significance and research objectives……………………………………………….……..4 1.3 Research Outline…………………………………………………………………………..5 Chapter 2 Literature Review……………………………………………………………………7 2.1 Fly ash……………………………………………………………..……………………....7 2.1.1 Fly ash as supplementary cementitious material……………………………………….....7 2.1.2 Development of mechanical properties in fly ash concrete...............................................8 2.2 Oyster shell ash………………………………………………………………....………10 2.2.1 Physical and chemical properties of oyster shell ash……………...…………….……….10 2.2.2 Development of mechanical properties in oyster shell ash ……………………..……….11 v 2.3 FGD gypsum………………………………………………………………….…………12 2.3.1 Physical and chemical properties of Flue Gas Desulfurization (FGD) gypsum………...12 2.3.2 Development of mechanical properties in Flue Gas Desulfurization (FGD) gypsum…..14 2.4 Geopolymer ……………………………………………………………………………...15 2.4.1 The reaction of geopolymer…………………………………………..………………….15 2.4.2 Development of geopolymer concrete………………………………………………...…15 2.4.3 Efflorescence……………………….………………………………………………...…. 16 Chapter 3 Experimental study………………………………………………………………....37 3.1 Materials…………………………………………………………………………………37 3.2 Design of mixed proportions……………………………………………………….…….38 3.3 Test methods…………………………………………………………………..…………40 3.3.1 Methods of fresh properties analysis……………………………………………………40 3.3.1.1 Workability test…………………………………………………………………...…….40 3.3.1.2 Setting time test…………………………………………………………………………40 3.3.2 Methods of hardened properties analysis………………………………………………41 3.3.2.1 Compressive strength test………………………………………………………………41 3.3.2.2 Thermal conductivity test………………………………………………………….……42 3.3.2.3 Drying shrinkage test……………………………………………………………………42 3.3.3 Microstructural analyses………………………………………………………...………43 3.3.3.1 X-Ray diffraction test…………………………………………………………..……….43 3.3.3.2 Scanning electron microscopy……………………………………………………..……43 3.3.3.3 Energy dispersive X-Ray spectroscopy (EDS) and mapping test…………………….…44 vi Chapter 4 Results and discussion……………………………………………………….…....57 4.1 Fresh and hardened properties of OSA-FFA geopolymer paste…………….……………57 4.1.1 Workability of OSA-FFA geopolymer paste……………….………...………….……….57 4.1.2 Setting time of OSA-FFA geopolymer paste …………….…………...………………….57 4.1.3 Compressive strength of OSA-FFA geopolymer paste……………………….……….….58 4.1.4 Thermal conductivity of OSA-FFA geopolymer paste……………….……………..……59 4.2 Fresh and hardened properties of OSA-FGD-FFA geopolymer paste…………………......60 4.2.1 Workability of OSA-FGD-FFA geopolymer paste…………...…….……………..………60 4.2.2 Setting time of OSA-FGD-FFA geopolymer paste…………………………………..……60 4.2.3 Compressive strength of OSA-FGD-FFA geopolymer paste………………….…….……62 4.2.4 Thermal conductivity of OSA-FGD-FFA geopolymer paste……………………..………63 4.2.5 Drying shrinkage of OSA-FGD-FFA geopolymer paste…………………………….……64 4.3 Microstructural analyses .......................................................................................................65 4.3.1 X-Ray diffraction……..……………………...……………………………………………65 4.3.2 Scanning electron microscopy……………………………………………………………66 4.3.3 Energy dispersive X-Ray spectroscopy (EDS) and mapping…………………………..…67 Chapter 5 Conclusions and suggestions………………………………….…………………99 5.1 Conclusions…………………………………………………………………………....99 5.2. Suggestions……………………………………………………………….…..………...100 Acknowledgement……………………..……………………………………………………....102 References……………………………..…………………………………………………….…103

    References
    [1] li, M.B., R. Saidur, and M.S. Hossain, ― Review on Emission analysis in cement Industries‖, Renewable and Sustainable Energy Reviews, 15:pp. 2252-2261(2011)
    [2] ASTM C 109, Standard Test Method for Compressive Strength of Hydraulic Cement United States, (2016)
    [3] ASTM C 157, Standard Test Method for Length Change of Hydraulic Cement Mortar and Concrete, United States, (2017)
    [4] ASTM C 191, Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle. p. 8. (2013)
    [5] ASTM C 230, Standard Test Method for Flow of Hydraulic Cement, United States, (2014)
    [6] ASTM-C618e8a, Standard Specification for Coal Fly Ash and Raw or CalcinedNatural Pozzolan for Use in Concrete. ASTM International, USA (2009)
    [7] Avirneni, D., P.R.T. Peddinti, and S. Stride, ―Durability and Long Term Performance of Geopolymer Stabilized Reclaimed asphalt Pavement Base ourses‖, Construction, and Building Materials 121:pp. 198-209 (2016)
    [8] Banthia, N., C. Yan, and S. Mindness, ―Restrained shrinkage cracking in fiber reinforced concrete: a novel test technique‖, Cement and Concrete Research 26(1):pp. 9-14(1996) [9] Bentz, D., C. Ferraris, I.D.L Varga, M. Peltz, and J.Winpigler, ―Mixture Proportioning Options for Improving High Volume Fly Ash Concretes‖, Journal Pavement Research, 3:pp. 234-240(2010)
    [10] Beretka, J., R. Cioffi, M. Marroccoli, and G. L. Valenti, ―Energy-Saving Cements Obtained From Chemical Gypsum and Other Industrial Wastes‖, Waste Management 16, no. 1-3:pp.231-235(1996)
    104
    [11] Bessenouci, M.Z., N.E.B. Triki, S. Bendimerad, Z. Nakoul, and S. Khelladi, ―Influence of Humidity on The Apparent Thermal Conductivity of Concrete Pozzolanz‖, Phys.Proc. 55:pp. 150–156(2014)
    [12] Bondar, D., S. Nanukuttan, J.L. Provis, and M. Soutsos, ―Efficient Mix Design of Alkali ctivated Slag oncretes Based on Packing Fraction of Ingredients and Paste Thickness‖, Journal of Cleaner Production, 218:pp. 438-449 (2019)
    [13] Chindaprasirt, P., S. Thaiwitcharoen, S. Kaewpirom, and U. Rattanasak, ―Controlling Ettringite Formation in FB Fly sh Geopolymer oncrete‖, Cement and Concrete Composites, 41:pp. 24-28(2013)
    [14] ollins, F., and J.G. Sanjayan, ―Microcracking and Strength Development of lkali Activated Slag Concrete‖, Cement and Concrete Composites, 23:pp. 345-352(2001) [15] Davidovits, J., R. Davidovits, and C.James, ―Geopolymer hemistry and pplications‖, International Conference Proceedings, Geopolymer Institute, Saint-Quentin (1999)
    [16] Davidovits, J., Geopolymer cement, A review., Geopolymer Institute, Technical papers, 21, 1-11, (2013)
    [17] Department of Fisheries Administration, Council of Agriculture, Executive Yuan. Annual Report 2009 of Department of Fisheries Administration, Council of Agriculture, Executive Yuan, pp. 9(2010)
    [18] Desutter, T. M., and L.J. Cihacek, ―Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in The Northern Great Plains‖, Agronomy Journal 101, no.4:pp. 817-825(2009)
    [19] Ding, Tao, J. Xiao, and V.W. Tam, ―A Closed-Loop Life Cycle Assessment of Recycled Aggregate Concrete Utilization in China‖, Waste Management 56:pp. 367-375(2016)
    [20] Ferraro, R.M., and. Nani, ―Effect of Off-White Rice Husk Ash on Strength, Porosity, Conductivity and Corrosion Resistance of White concrete,‖ Construction and Building Materials 31:pp. 220–225 (2012)
    105
    [21] Hadi, M.N.S., H. Zhang, and S. Parkinson, ―Optimum Mix Design of Geopolymer Pastes and Concretes Cured in Ambient Condition Based on Compressive Strength, Setting time and Workability‖, Journal of Building Engineering 23:pp. 301-313(2019)
    [22] Hashmi, A.F., M. Shariq, A. Baqi, and M. Haq, ―Optimization of Fly sh concrete Mix – a Solution for Sustaina le Development‖, Proceedings, (2020)
    [23] Hemalatha, T., and R. Ananth, ―A review on fly ash characteristics–Towards promoting high volume utilization in developing sustainable concrete‖, Journal of cleaner production,147:pp. 546-559(2017).
    [24] Ismail, N., and H. El-hassan, ―Development and characterization of fly ash and slag blended geopolymer mortar and lightweight concrete‖, J. Mater. iv. Eng. 30, 1e14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002209, (2018)
    [25] Itskos, G., S. Itskos, and N. Koukouzas, ―Size Fraction Characterization of Highly-Calcareous Fly Ash‖, Fuel Processing Technology 91, no. 11:pp. 1558-1563(2010)
    [26] ISO/TC 071 Strategic business plan, (2016)
    [27] Jeon, D., Jun,Y., J. Yeonung, and J.E. Oh, ―Microstructural and Strength Improvements Through The Use of Na2CO3 in a cementless Ca(OH)2-Activated Class F Fly Ash System‖, Cement and Concrete Research 67:pp. 215-225(2015)
    [28] Juenger, M. .G., F. Winnefeld, J.L. Provis, and J.H. Ideker, ― dvances in lternative ementitious Binders‖, Cement & Concrete Research, 41: pp. 1232-1243(2011)
    [29] Jung, I.S., W.S. Yum, Y. Jeong, H.G. Park, and J.E. Oh, ―The Cation-Dependent Effects of Formate Salt Additives on The Strength and Microstructure of CaO-Activated Fly Ash Binders‖, Construction and Building Materials 194:pp. 92-101(2019)
    106
    [30] Jung, I.S., W.S. Yum, Y. Jeong, H.G. Park, and J.E. Oh, ―Development of Strong Lightweight Cementitious Matrix for Lightweight Concrete Simply by Increasing a Water-to-Binder Ratio in Ca(OH)2-Na2CO3-Activated Fly Ash System‖, Construction and Building Materials 152: 444-455(2017)
    [31] Kairies, L. Candace, K.T. Schroeder, and C.R. Cardone, ―Mercury in Gypsum Produced From Flue Gas Desulfurization‖. Fuel 85, no. 17-18:pp.2530-2536 (2006)
    [32] Kani, E.N., A. Allahverdi, and J. L. Provis, ―Efflorescence Control in Geopolymer Binders Based on Natural Pozzolan‖, Cement and Concrete Composites 34, no. 1:pp. 25-33(2012)
    [33] Kapeluszna, E., L. Kotwica, S. Rozycka, and L. Golek, ―Incorporation of l in -A-S-H gels with various Ca/Si and Al/Si Ratio: Microstructural and Structural Characterisitcs with DT /TG, XRD, FTIR, and TEM nalysis‖, Construction and Building Materials 155:pp. 643–653 (2017)
    [34] Khatib, M.J., P.S. Mangat, and L.Wright, ―Early Age Porosity and Pore Size Distribution of Cement Paste With Flue Gas Desulphurisation (FGD) Waste‖, Journal of Civil Engineering and Management 19, no. 5:pp. 622-627(2013)
    [35] Kim, M.S., Y. Jun, . Lee, and J.E. Oh, ―Use of aO as an ctivator for Producing a Price- Competitive Non-Cement Structural Binder Using Ground Granulated Blast Furnace Slag‖, Cement & Concrete Research, 54: pp. 208-214(2013)
    [36] Kindness, A., E.E. Lachowski, A.K. Minocha, and F.P. Glasser, ―Immobilisation and Fixation of Molybdenum (VI) by Portland Cement‖, Waste Management 14, no. 2:pp.97-102(1994)
    [37] Kobayakawa, M., K.R. Hwang, S. Hanehara, and F. Tomosawa, ―Influence of Several Factors on Pozzolanic Reaction of Fly Ash,‖ Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan A-1: pp. 633–34(1988)
    107
    [38] Koralegedara, N. H., S. R. Al-Abed, M.K.J. Arambewela, and D.D. Dionysiou, ―Impact of Leaching Conditions on Constituents Release From Flue Gas Desulfurization Gypsum (FGDG) and FGDG-Soil Mixture‖, Journal of hazardous materials 324:pp.83-93(2017)
    [39] Kosmatka, S.H., B. Kerkhoff, and W. . Panarese, ―Design and ontrol of oncrete Mxtures. 14th ed. P. 43-47, (2002)
    [40] Lam, L., Y.L. Wong, and S. P. Chi, ―Effect of Fly Ash and Silica Fume on Compressive and Fracture Behaviors of Concrete,‖ Cement and Concrete research 28, no. 2:pp. 271-283(1998)
    [41] Lam, L., Y.L. Wong, and S. P. Chi, ―Degree of Hydration and Gel/Space Ratio of High-Volume Fly Ash/Cement Systems‖, Cement and Concrete Research 30, no. 5: pp. 747-756 (2000)
    [42] Lei, D.Y., L.P. Guo, W. Sun, J.P. Liu, and .W. Miao, ―Study on Properties of Untreated FGD Gypsum–Based High Strength Building Materials‖, Construction and Building Materials, 153:pp. 765-773(2017)
    [43] Lertwattanaruk, P., N. Makul, and . Siripattarapravat, ―Utilization of Ground Waste Seashells in ement Mortars for Masonry and Plastering‖, Journal of Environmental Management, 111:pp. 133-141(2012)
    [44] Li, G., X. Xu, E. Chen, J. Fan, and G. Xiong, ―Properties of Cement-Based Bricks with Oyster-Shells Ash‖, Journal of Cleaner Production 91:pp.279-287(2015)
    [45] Lisantono, ., H.Y. Wigroho, and R.Y. Pur a, ―Shear Behavior of High-Volume Fly Ash Concrete as Replacement of Portland Cement”, Procedia Engineering, 171: pp. 80-87(2017)
    [46] Lushnikova, N., and L. Dvorkin, ―Sustainability of Gypsum Products As a Construction Material,‖ In Sustainability of Construction Materials Woodhead Publishing, pp.643-681(2016) [60] Hua, X., and J.S.J.V. Deventer, ―The Geopolymerisation of Natural Alumino-Silicates. In: Proc.‖, 2nd International onference Geopolymer 99, pp. 43–63(1999)
    108
    [47] Malhotra, V.M., ―Dura ility of oncrete Incorporating High-Volume of Low-Calcium STM class F Fly sh‖, Cement & Concrete Composites, 12: pp. 271-277(1990)
    [48] Mangat, P., and P. Lam ert, ―Sustaina ility of lkali-Activated Cementitious Materials and Geopolymers‖, in Sustaina ility of onstruction Materials, pp. 459-476(2016)
    [49] Mani, S., and B. Pradhan, ―Investigation on Effect of Fly sh ontent on Strength and Microstructure of Geopolymer Concrete in Chloride- Rich Environment‖, Proceedings, (2020)
    [50] Neville, A. M., Properties of Concrete (5th ed.)., Essex: Pearson Education Limited, (2011)
    [51] Nguyen, H. ., T.P. hang, J.W. Shih, .T. hen, and T.D. Nguyen, ―Influence of Circulating Fluidized Bed Combustion (CFBC) Fly ash On Properties Of Modified High Volume Low alcium Fly sh HVF ement Paste‖, Construction and Building Materials 91:pp.208-215(2015)
    [52] Noel, J., Y. Djo o, and H.K. Tchakoute, ―Gel omposition and Strength Properties of lkali-Activated Oyster Shell-Volcanic sh: Effect of Synthesis onditions‖, Journal American Ceramic Society, 99:pp.3159-3166(2016)
    [53] Papageorgiou, ., G. Tzouvalas, and S. Tsimas, ―Use of Inorganic Setting Retarders in ement Industry‖, Cement & Concrete Composites, 27: pp. 183-189(2005)
    [54] Rafeet, A., R. Vinai, M. Soutsos, and W. Sha, ―Guidelines For Mix Proportioning of Fly ash/GGBS Based lkali ctivated oncretes‖, Construction and Building Materials 147:pp. 130-142 (2017)
    [55] Rivero, A. Jiménez, R. Sathre, and J.G. Navarro, ―Life Cycle Energy and Material Flow Implications of Gypsum Plasterboard Recycling in The European Union‖, Resources, Conservation and Recycling 108:pp.171-181(2016)
    [56] Şahmaran, M., and C. Li. Victor, ―Durability Properties of Micro-cracked ECC Containing High Volumes Fly Ash‖, Cement and Concrete Research 39, no. 11:pp. 1033-1043(2009)
    109
    [57] Sakai, Y., S. Matsumoto, and M. Sadakata, ―Alkali Soil Reclamation with Flue Gas Desulfurization Gypsum in China and Assessment of Metal Content In Corn Grains‖, Soil & Sediment Contamination 13, no. 1:pp. 65-80(2004)
    [58] Seo, J.H., S.M. Park, B.M. Yang, and J.G. Jang, ― alcined Oyster Shell Powder as an Expansive Additive in Cement Mortar‖, Materials, (2019)
    [59] Shi, C., and R.L Day, ―Pozzolanic Reaction in The Presence of Chemical Activators: Part I. Reaction kinetics‖, Cement and Concrete Research 30, no. 1:pp. 51-58(2000)
    [60] Shi, C., and R.L Day, ―Pozzolanic Reaction in The Presence of Chemical Activators: Part II—Reaction Products and Mechanism‖, Cement and Concrete Research 30, no. 4:pp. 607- 613(2000)
    [61] Shin, A.H., and U. Ko ide, ―Thermal onductivity of Ternary Mixtures for oncrete Pavements‖, Cement and Concrete Composites, 34:pp. 575–582(2012)
    [62] Shen, P., L. Lu, Y. He, F. Wang, J. Lu, H. Zheng., and S. Hu, ―Investigation on Expansion Effect of The Expansive Agents in Ultra-High Performance oncrete‖, Cement and Concrete Composites, 105:103425(2020)
    [63] Sonebi, M., Y. mmar, and P. Diederich, ―Sustaina ility of ement‖ , Concrete and Cement Replacement Materials in Construction, in Sustainability of Construction Materials pp. 371-396 (2016)
    [64] Stefanidou, M., M. ssael, K. ntoniadis, and G. Matziaroglou, ―Thermal conductivity of uilding materials employed in the preservation of traditional structures‖, International Journal of Thermophysics, Vol. 31 (4-5), pp. 844-851, (2010)
    [65] Stout, L.W., N. Andrew, Sharpley, and R. Stefan, ―Effect of Amending High Phosphorus Soils with Flue-Gas Desulfurization Gypsum on Plant Uptake and Soil Fractions of Phosphorus‖, Nutrient Cycling in Agroecosystems 67, no. 1:pp.21-29(2003)
    110
    [66] Suárez, S., X. Roca, and S. Gasso, ―Product-Specific Life Cycle Assessment of Recycled Gypsum as a Replacement for Natural Gypsum In Ordinary Portland Cement: Application to The Spanish Context‖, Journal of Cleaner Production 117:pp.150-159(2016) [67] Suwan, T., and M. Fan, ―Effect of Manufacturing Process on The Mechanisms and Mechanical Properties, of Fly Ash-Based Geopolymer in Ambient Curing Temperature‖, Mater. Manuf. Processes, 32 (5):pp. 461-467(2017)
    [68] Taylor, H.F.W., Cement chemistry. 2nd edition. New York: Thomas Telford Publishing, Thomas Telford Services Ltd; (1997) [69] Temuujin, J., .V. Riessen, and R. Williams, ―Influence of alcium ompounds on The Mechanical Properties of Fly sh Geopolymer Pastes‖, Journal of Hazardous Materials, 167:pp. 82-88(2009)
    [70] Tesarek, P., J. Drchalová, J. Kolísko, P. Rovnaníková, and R. Černý, ―Flue Gas Desulfurization Gypsum: Study of Basic Mechanical, Hydric and Thermal Properties‖, Construction and Building Materials 21, no. 7:pp.1500-1509(2007)
    [71] Tinseau, E., D. Bartier, L. Hassouta, I. Devol-Brown, and D. Stammose, ―Mineralogical Characterization of The Tournemire Argillite After In Situ Interaction With Concretes‖, Waste Management 26, no. 7:pp. 789-800(2006)
    [72] Vafaei, M., and . llahverdi, ―Influence of Clacium Aluminate Cement on Geopolymerization of Natural Pozzolan‖, Construction and Building Materials 114:pp. 290-296(2016) [73] Walkley, B., G.J. Rees, R.S. Nicolas, S.J.V. Deventer, J.V .Hanna, and J.L. Provis, ―A New Structural Model of Sodium Alumino Silicate Gels and The Role of Charge Balancing Extra-Framework Al‖, J. Phys. Chem. C, (2018), DOI: 10.1021/acs.jpcc.8b00259
    [74] Wan, Q., Y. Zhang, and R. Zhang, ―Using Mechanical ctivation of Quartz to Enhance The Compressive Strength of Metakaolin Based Geopolymers‖, Cement and Concrete Composites, 111:103635(2020)
    111
    [75] Wang, Y., X. Liu, W. Zhang, Z. Li, Y. Zhang, Y. Li, and Y. Ren, ―Effects of Si/Al Ratio on The Efflorescence and Properties of Fly Ash Based Geopolymer‖, Journal of Cleaner Production 244:118852(2020)
    [76] Wang, H.Y., W.T. Kuo, . . Lin, and .P. Yo, ―Study on The Material Properties of Fly sh dded to Oyster ement Mortar‖, Construction and Building Materials, 41:pp. 532-537(2013)
    [77] Wattanasiriwech, S., F.A. Nurgesang, and D. Wattanasiriwech, ― haracterisation and Properties of Geopolymer omposite part 1: Role of Mullite reinforcement‖, Ceramics International 43:pp. 16055-16062 (2017)
    [78] Xiaolu, G., S. Huisheng, and A.D. Warren, ― ompressive strength and Microstructural haracteristics of lass Fly sh Geopolymer‖, Cement and Concrete Composites, 32(2):pp. 142-147(2010) [79] Xue, X., Y.L. Liu, J.G. Dai, .S. Poon, W.D. Zhang, and P. Zhang, ―Inhi iting Efflorescence Formation on Fly Ash–Based Geopolymer Via Silane Surface Modification‖, Cement and Concrete Composites 94:pp. 43-52(2018)
    [80] Yan, C., and Y. Wenhai, ―Gypsum building material‖, China Building Material Industry Press, Beijing (2003)
    [81] Yang, H., D. Liang, Z. Deng, and Y. Qin, ―Effect of Limestone Powder in Manufactured Sand on The Hydration Products and Microstructure of Recycled Aggregate Concrete,‖ Construction and Building Materials 188:pp.1045-1049(2018)
    [82] Ye, H., and . Radlinska, ―Shrinkage Mechanisms of alkali-activated slag‖, Cement and Concrete Research 88:pp. 126-135(2016)
    [83] Yeonung, J., Y.Jeong, H.G. Park, and J.E. Oh, ―Influence of Slag Characteristics on Strength Development and Reaction Products in a CaO-Activated Slag System‖, Cement and Concrete Composites 72:pp. 155-167(2016)
    112
    [84] Yoon, S., P.J.M. Monteiro, D.E. Macphee, and F.P. Glasser, ―Statisitical Evaluation of The Mechanical Properties of High-Volume Class F Fly Ash Concretes‖, Construction and Building Materials, 54:pp. 432-442(2014)
    [85] Yu, W. Dong, W.G. Liang, Y.R.Li, and Y.M. Yu, ―The Meso-Mechanism Study of Gypsum Rock Weakening In Brine Solutions‖, Bulletin of Engineering Geology and the Environment 75, no. 1:pp. 359-367(2016)
    [86] Yum, W.S., Y. Jeong, S. Yoon, D. Jeon, Y. Jun, and J.E. Oh, ―Effects of a l2 on Hydration and Properties of Lime (CaO)-activated slag/flyash inder‖, Cement & Concrete Composites, 84: pp. 111-123(2017)
    [87] Zhang, Yongsheng, and M. Shi, ―Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants‖, Fuel 166:pp. 404-409(2016)
    [88] Zhang, Z., J. L. Provis, X. Ma, A. Reid, and H.Wang, ―Efflorescence and Subflorescence Induced Microstructural and Mechanical Evolution in Fly Ash-Based Geopolymers‖, Cement and Concrete Composites 92:pp. 165-177(2018)
    [89] Zhao, Y., J. Qiu, S. Zhang, Z. Guo, Z. Ma, X. Sun, and J. Xing, ―Effect of Sodium Sulfate on The Hydration and Mechanical Properties of Lime-Slag Based Eco-Friendly Binders‖, Construction and Building Materials 250:118603(2020)

    QR CODE