簡易檢索 / 詳目顯示

研究生: 鄭百榕
Pai-jung Cheng
論文名稱: 爐石飛灰複合型無機聚合物於常溫及高溫環境之工程性質
Engineering Properties of Slag-Fly Ash Composite Geopolymer at Room and Elevated Temperatures
指導教授: 張大鵬
Ta-peng Chang
口試委員: 劉玉雯
none
施正元
none
陳君弢
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 198
中文關鍵詞: 無機聚合物乾縮高溫爐石飛灰
外文關鍵詞: geopolymer, drying shrinkage, elevated temperatures, slag, fly ash
相關次數: 點閱:271下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以氫氧化鈉及矽酸鈉溶液作為激發粉體活性之鹼性激發劑,並於固定之水玻璃模數下,藉由改變鹼激發量、水固比、含砂量及爐石飛灰混合比,以探討各參數組合對於複合型無機聚合物新拌及硬固性質之影響,其後再探討複合型無機聚合物於不同溫度環境下持溫煅燒一小時後,其性質之變化,最後再以X光繞射分析儀及掃描式電子顯微鏡觀察無機聚合物組成成分及微觀結構之變化。

    研究結果顯示:(1)水固比及飛灰取代量與新拌漿體之工作性有密切之關聯,鹼激發量固定為3 %時,流度值隨水固比(0.35至0.40)及飛灰取代量(0 %至50 %)之提升約增加25 %~80 %,凝結時間也得以延長39分鐘~97分鐘,水化溫度相對較低。(2)當飛灰取代為30 %時,試體之抗壓強度約降低19 %,而其他工程性質,超音波波速、動態彈性模數及動態剪力模數皆小幅降低5 %~7 %。(3)提升鹼激發量及降低水固比,皆可使無機聚合物之工程性質上升,但當超過適當範圍時,即易使試體產生脆化易碎等問題。(4)試體之乾燥收縮量皆會因添加飛灰而大幅降低約80 %。(5)添加飛灰會使熱傳導係數產生些微上升,但影響不大。(6)添加細粒料皆可使工程性質及體積穩定性提升,但對其高溫煅燒後之強度及體積穩定性則無明顯幫助。(7)添加飛灰可使試體之高溫煅燒後強度大幅提升,以煅燒溫度400 oC時,效果最為明顯約可提升40 %~60 %,但對於試體之高溫收縮量則無顯著之影響皆為1 %~3 %。(8)掃描式電子顯微鏡結果顯示,添加飛灰於常溫時雖有許多未反應之顆粒,但其於抑制乾縮及裂縫有相當之效果;於高溫之環境下,則因燒結反應而使結構更加緻密,進而有提升強度之效果。


    In this study, the sodium hydroxide and sodium silicate were used as the alkali activator to activate the powder activity. Under the condition of fixed modulus of sodium silicate, experimental parameters including different dosages of activator, water-solid ratios, amounts of sand and proportions of slag-fly ash mixtures were used to investigate the effects of various combinations of parameters on the fresh and hardened properties. The second is to investigate the effects of exposure tovarious elevated temperatures for one hour on the properties of of composite geopolymer. Finally, the variations of composition and microstructures of geopolymer were examined by the X-Ray Diffraction analyzer and Scanning Electron Microscopy.

    The research results show that: (1) Both the water-solid ratio and the amount of fly ash replacement have close correlation with the workability of fresh paste. At the fixed activator of 3 %, the increases of water-solid ratios from 0.35 to 0.40 and amount of fly ash replacement from 0 to 50 %, the flowability of paste increases by 25 % to 80 %, the setting times extends to 39 to 97 minutes, and the temperature of hydration is relatively lower. (2) When amount of fly ash replacement is 30 %, the compressive strength of specimen decreases about 19 %, other engineering properties, ultrasonic pulse velocity, dynamic elastic modulus and dynamic shear modulus were slightly decreased by 5 % to 7 %. (3) Both the increase of dosages of activator and decrease of water-solid ratio can enhance the engineering properties, but overdosage tends to easily cause the fragile and fragmentation problems. (4) The drying shrinkage of specimens with the addition of fly ash significantly decreases by about 80 %. (5) The addition of fly ash only causes a slight increase of the thermal conductivity (6) The addition of fine aggregates can get better engineering properties and volume stability, but no apparent effects on the strength and volumetric stability exposed to elevated temperatures for one hour. (7) The additon of fly ash can significantly increase the strength of specimen with a best increae of 40 % when the elevated temperature is 400 oC for one hour. (8) The result of SEM indicates that although a large number of unreactive fly ash particles exist at room temperature, they apparently help the suppression of drying shrinkage and crack. The structure of geopolymer becomes denser to enhance the strength of specimen exposed to elevated temperatures.

    摘要 i Abstract ii 致謝 iv 總目錄 vi 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1-1研究動機 1 1-2研究目的 1 1-3研究內容與流程 2 第二章 文獻回顧 4 2-1前言 4 2-2無機聚合物之發展 4 2-3無機聚合物之聚合反應 5 2-3-1聚合反應機制 5 2-3-2無機聚合物之基本組成結構 10 2-4無機聚合物之組成材料及其影響 11 2-4-1爐石 11 2-4-1-1爐石之物化性質 11 2-4-2不同爐石屬性對其鹼性激發劑之影響 14 2-4-3爐石粉屬性與水玻璃模數間相互之影響 15 2-4-4飛灰 16 2-4-4-1飛灰之物化性質 17 2-4-5鹼激發飛灰無機聚合物 20 2-4-6鹼性激發劑 21 2-4-6-1不同鹼性激發劑之影響 21 2-4-6-2不同濃度鹼性激發劑之影響 23 2-4-6-3鹼性激發劑混合方式之影響 24 2-5配比參數之影響 24 2-5-1水玻璃模數與鹼性激發劑比例之影響 24 2-5-2液固比之影響 26 2-6不同養護環境與時間之影響 27 2-7無機聚合物之體積穩定性 28 2-7-1體積收縮發生機制 28 2-7-2無機聚合物之乾縮狀況 29 2-7-3抑制乾縮之方式 30 2-7-3-1挑選鹼性激發劑種類與適當濃度抑制乾縮 30 2-7-3-2以養護環境抑制乾縮 30 2-8無機聚合物之耐高溫性質 31 2-9爐石飛灰基複合型無機聚合物 33 第三章 試驗計畫 50 3-1試驗內容與流程 50 3-2試驗材料 51 3-3試驗儀器與設備 52 3-4各試驗變數及項目 55 3-4-1試驗內容說明 55 3-4-2試體編號及項目說明 57 3-5無機聚合物之試體拌合與製作 59 3-5-1無機聚合物之漿體試體製作 59 3-5-2無機聚合物之砂漿試體製作 60 3-6試驗方法 60 3-6-1新拌性質試驗 60 3-6-2硬固性質試驗 62 3-6-3高溫試驗 66 3-6-4微觀試驗 67 第四章 結果與討論 86 4-1無機聚合物漿體試驗結果 86 4-1-1新拌性質試驗 86 4-1-1-1流度 86 4-1-1-2凝結時間 87 4-1-1-3水化熱 89 4-1-2硬固性質試驗 90 4-1-2-1抗壓強度 90 4-1-2-2超音波波速 93 4-1-2-3動態彈性與動態剪力模數 95 4-1-2-4熱傳導係數 98 4-1-2-5體積穩定性 100 4-2無機聚合物砂漿試驗結果 102 4-2-1抗壓強度 102 4-2-2超音波波速 104 4-2-3動態彈性與動態剪力模數 105 4-2-4熱傳導係數 107 4-2-5體積穩定性 108 4-3無機聚合物高溫試驗結果 110 4-3-1煅燒後強度 110 4-3-2體積穩定性 118 4-4無機聚合物之微觀結構 121 4-4-1 X光繞射分析 121 4-4-2掃描式電子顯微鏡 122 4-4-2-1常溫下之試體微觀結構 122 4-4-2-2高溫煅燒後試體之微觀結構 123 第五章 結論與建議 187 5-1結論 187 5-2建議 189 參考文獻 190

    1. Davidovits J., (1982), “Mineral Polymers and method of making them,” USA Paten, No.4, pp. 349, 386.
    2. Bakharev T., (2005) “Durability of geopolymer materials in sodium and magnesium sulfate solutions,” Cem. Concr. Res. 35, pp. 1233–1246.
    3. Bakharev T., (2005) “Resistance of geopolymer materials to acid attack,” Cem. Concr. Res. 35, pp. 1233–1246.
    4. Wang S. D., K. L. Scrivener and P. L. Pratt, (1994) “Factors affecting the strength of alkali-activated slag,” Cem. Concr. Res. 24 pp. 1033–1043.
    5. Schneide J., M. A. Cincotto and H. Panepucci, (2001) “29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes,” Cem. Concr. Res. 31 pp. 993–1001.
    6. Chang J. J., (2003) “A study on the setting characteristics of sodium silicate-activated slag pastes,” Cem. Concr. Res. 33, pp. 1005–1011.
    7. Xu, J. S. J. van Deventer, (2002) “Microstructural characterisation of geopolymers synthesized from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM,” Cem. Concr. Res. 32 pp. 1705–1716.
    8. Davidovits J., (1994), “Geopolymer:man-made rock geosynthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91- 139.
    9. Dombrowski K. A., Buchwald and M. Weil, (2007), “The influence of calcium content on structure and thermal performance of fly ash based geopolymers,” Journal of Materials Science, Vol. 42, No. 9, pp. 3033-3042.
    10. Lloyd R. R., J. L. Provis and J. S. J. Van Deventer, (2009), “Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder,” Journal of Materials Science, Vol. 44, No. 2, pp. 620 - 631.
    11. 陳志賢 (2009),「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木工程研究所。
    12. Shi C., P. V. Krivenko and D. Roy, (2006), “Alkali-activated Cement and Concrete,” London and New York: Taylor & Francis.
    13. Li C., H. Sun and L. Li, (2010), “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cement,” Cement and Concrete Research, doi: 10.1016.
    14. 李元凱 (2008),「偏高嶺土聚合膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    15. 林瑋倫 (2009),「鹼激發爐石基膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    16. 陳冠宇 (2010),「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士論文,國立台灣科技大學營建工程系。
    17. Xu H., J. S. J. Van Deventer and G. C. Luckey (2001), “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” Industrial Engineering Chemical Research, Vol. 40, pp. 3749-3756.
    18. Xu H., and J. S. J. Van Deventer, (2000), “The Geopolymerization of alumino-silicate minerals,” International Journal Minerals Process, Vol. 59, No. 3, pp. 247 -266.
    19. Van Jaarsveld J. G. S., J. S. J. Van Deventer, and L. Lorenzen, (1997), “The potential use of geopolymeric materials to immobilize toxic metals: Part I,” Theory and application, Minerals Engineering, Vol. 10, No.7, pp. 659-669.
    20. 黃立遠 (2010),「飛灰基無機聚合物工程性質及應用之研究」,博士論文,國立台灣科技大學營建工程系。
    21. Sun W., Y. S Zhang, W. Lin and Z. Y. Liu, (2004), “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM,” Cement and Concrete Research, Vol. 34, pp. 935–940.
    22. Xu H., and J. S. J. Van Deventer, (1999), “The geopolymerisation of natural alumino-silicates,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Geopolymere, Saint-Quentin, France, pp. 43–64.
    23. Davidovits J., (1999), “Chemistry of geopolymeric systems terminology,” Proceedings of Geopolymere 99 Second International Conference, edited by: J. Davidovits, R. Davidovits and C. James, Institut Geopolymere, Saint-Quentin, France, pp. 9-40.
    24. Barbosa V. F., K. J. D. MacKenzie, and C. Thaumaturgo, (2000), “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers,” International Journal of Inorganic Materials, Vol. 2, No.4, pp. 309–317.
    25. Davidovits J., (2005), “Geopolymer chemistry and sustainable development. The poly(sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry,” Geopolymer, Green Chemistry and Sustainable Development Solutions, edited by: J. Davidovits, Institut Geopolymere, Saint-Quentin, France, pp. 9-15.
    26. Duxson P., A. Fernandez-Jimenez, J. L Provis, G. C. Lukey, A. Palomo and J. S. J. Van Deventer, (2007), “Geopolymer technology: the current state of the art,” Journal of Material Science, Vol. 42, No.9, pp. 2917-2933.
    27. Phair J. W., J. S. J. Van Deventer, (2002), ”Effect of silicate activator pH on the microstructural characteristics of waste-based geopolymers”, International Journal Minerals Process,” Vol. 66, pp. 121-143.
    28. 黃兆龍 (2002),豪華第三版「混凝土性質與行為」,詹氏書局。
    29. 黃兆龍 (2007),「卜作嵐混凝土使用手冊」,財團法人中興工程顧問社」。
    30. Shi C., and Y. Li, Y., (1989), “Investigation on some factors affecting the characteristic of alkali-phosphorus slag cement,” Cement and Concrete Research, Vol. 19,No.4, pp. 527 -533.
    31. Wang S. D., K. L. Scrivener and P. L. Pratt, (1994), “Factors affecting the strength of alkali-activated slag,” Cement and Concrete Research, Vol. 24, No. 6, pp. 1033–1043.
    32. 黃兆龍 (1984),「高爐熟料在水泥上之利用」,現代混凝土技術研討會,台灣營建研究中心,第162~177頁。
    33. Maragkos I., I. P. Giannopoulou, and D. Panias, (2009), “Synthesis of ferronickel slag-based geopolymers,” Minerals Engineering, Vol. 22, No. 2, pp. 196-203.
    34. Bakharev T., J. G. Sanjayan and Y. B. Chen, (1999), “Alkali activation of Australian slag cements,” Cement and Concrete Research, Vol. 29, No. 1, pp.113-120.
    35. Collins F. G., and J. G. Sanjayan, (1999), “Workability and mechanical properties of alkali activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 3, pp. 113 -120.
    36. 蕭遠智 (2002),「鹼活化電弧爐還原渣之水化反應特性」,碩士論文,國立中央大學土木工程系。
    37. Shi C. and P. Xie, (1998), “interface between cement paste and quartz sand in alkali-activated slag mortars,” Cement and Concrete Research, Vol. 28, No. 6, pp. 1619-1625.
    38. Bakharev T., J. G. Sanjayan and Y. B. Cheng, (1999), “Effect of Elevated temperature curing on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 10, pp. 1619-1625.
    39. 行政院公共工程委員會,公共工程飛灰混凝土使用手冊,台北,民國88年。
    40. Malhotra V.M. and P. K. Mehta, (2005), “High-Performance, High-Volume Fly Ash Concrete, 2nd Ed., January.”
    41. Winnefeld F., A Leemann and M. Lucuk, et al., (2008), “Assessment of phase formation in alkali activated low and high calium fly ashes in building materials,” Construction and Building Materials, pp.1981-1989.
    42. 王亞超、張耀君、徐德龍 (2011),「鹼激發硅灰-粉煤灰基礦物聚合物的研究」,第30卷第1期,1001-1625 01-0050-05。
    43. Ivan Diaz-Loya E., N. Erez Allouche and Saiprasad Vaidya, (2011), “Mechanical Properties of Fly-Ash-Based Geopolymer Concrete,” ACI Materials Journal Title no.108-M32.
    44. Shi C. and R.L. Day, (1995), “A calorimetric study of early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 25, No.6, pp. 1333 – 1346
    45. Shi C., and R.L. Day, (1996), “Some factors affecting early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 26, No. 3, pp. 439-447.
    46. Glukivski V.D., (1979), “Alkali-earth binder and concrete produced with them,” USSR, Russian , Visheka shkola, Kiev.
    47. Phair J. W. and J. S. J. Van Deventer, (2002), “Effect of silicate activator pH on microstructural characteristics of waste-based geopolymers,” International Journal Minerals Process, Vol. 66, No. 1-4, pp. 121-143.
    48. 朱純熙、盧晨 (2001),「水玻璃硬化的認識過程」,無機鹽工業,上海,第三十三卷,第一期,第22-25頁。
    49. Brough A. R., M. Holloway, J. Sykes and A. Atkinson, (2000), “Sodium silicate-based alkali-activated slag mortars Part II: The retarding effect of additions of sodium chloride or malic acid,” Cement and Concrete Research, Vol. 30, No. 9, pp. 1375 - 1379.
    50. Komnitasa K., D. Zaharaki and V. Perdikatsis, (2009), “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,” Journal of Hazardous Materials, Vol. 161, No. 2-3, pp. 760–768.
    51. 陳子謙 (2012),「複合型無機聚合物砂漿之工程性質」,碩士論文,國立台灣科技大學營建工程系。。
    52. Silva P. D., K. Sagoe – Crenstil and V. Sirvivatnanon, (2007), “Kinetics of geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, Vol. 37, No. 4, pp. 512 - 518.
    53. 付興華、陶文宏、孫鳳金 (2008),「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,濟南,第二期,第6-10頁。
    54. 馬鴻文、凌發科、楊靜、王剛 (2002),「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報,北京,第二十七卷,第五期,第576 - 583頁。
    55. 鄭娟榮,周同和,劉麗娜 (2007),「鹼-偏高嶺石-礦渣系膠凝材的凝結硬化性能研究」,矽酸鹽通報,鄭州,第二十六卷,第六期,第1064 - 1067頁。
    56. Fernandez-Jimenez A., J.G. Palomo and F. Puertas, (1999), “Alkali-activated slag mortars mechanical strength behavior,” Cement and Concrete Composites, Vol. 29, No. 8, pp. 1313-1321.
    57. Kong D. L. Y. and J. G. Sanjayan (2008), “Damage behavior of geopolymer composite exposed to elevated temperatures,” Cement and Concrete Research, Vol. 30, No. 10, pp. 986-991.
    58. Ravikumar D., S. Peethamparan and N. Neithalath, (2010), “Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder,” Cement and Concrete Composites, Vol. 32, No. 6, pp. 399-410.
    59. 楊仁佑 (2011),「低溫養護對爐石基無機聚合物工程性質之影響」,碩士論文,國立台灣科技大學營建工程系。
    60. Wang S. D., X. C. Pu, K. L. Scrivener and P. L. Pratt, (1995), “Alkali - activated cement and concrete. A review of properties and problems,” Advances in Cement Research, Vol. 7, pp. 93-102.
    61. Palacios M. and F. Puertas, (2007), “Effect of shrinkage-reducing admixtures on the properties of alkali - activated slag mortars and pastes,” Cement and Concrete Research, Vol.37, No. 3, pp. 691 - 702.
    62. Shi, Caijun (1996), “Strength, pore structure and permeability of alkali - activated slag mortars,” Cement and Concrete Research, Vol. 26, No. 12, pp. 1789-1799.
    63. Collins F. and J. G. Sanjayan, (2000), “Effect of pore size distribution on drying shrinkage properties of alkali - activated slag concrete,” Cement and Concrete Research, Vol. 30, No. 9, pp. 1401-1406.
    64. Cengiz Duran Atiş, Cahit Bilim, Ӧzlem Celik, Okan Karahan (2009), “Influence of activator on the strength and drying shrinkage of alkali - activated slag mortar, Construction and Buiding Materials,” Vol. 23, pp. 548 - 555.
    65. Davidovits J., (1999), “Fire proof Geopolymeric,St.Quentin,” FranceCordi-Geopolymere,pp. 165 - 170.
    66. Davidovits J. (2008), “Geopolymer chemistry and applications,” France, Saint-Quentin, Institut Geopolymere, pp. 384 –385.
    67. Cheng T. W. and J.P. Chiu, (2003), “Fire-resistant geopolymer produced by granulated blast furnace slag,” Minerals Engineering, Vol. 16, pp. 205–210.
    68. Daniel L.Y. Kong , Jay G. Sanjayan , Kwesi Sagoe-Crentsil (2007), “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement and Concrete, Vol. 37, pp. 1583–1589.
    69. Daniel L.Y. Kong, Jay G. Sanjayan, (2008), “Damage behavior of geopolymer composites exposed to elevated temperatures,” Cement & Concrete Composites, Vol. 30, pp. 986–991.
    70. Daniel L.Y. Kong, Jay G. Sanjayan (2010), “Effect of elevated temperatures on geopolymer paste, mortar and concrete,” Cement and Concrete, Vol. 40, pp. 334–339.
    71. Alaa M. Rashad, Sayieda R. Zeedan (2011), “The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load,” Construction and Building Materials, Vol. 25, pp. 3098–3107.
    72. 廖佳慶 (2007),「鹼礦渣水泥與混凝土化學收縮和乾縮行為研究」,碩士論文,重慶大學材料科學與工程系。
    73. Sanjay Kumar, Rakesh Kumar, S. P. Mehrotra, (2010), “Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer,” Vol. 45, pp. 607–615.
    74. S.K. Nath, Sanjay Kumar, (2013), “Influence of iron making slags on strength and microstructure of fly ash geopolymer,” Construction and Building Materials, Vol. 38, pp. 924–930.
    75. Maochieh Chi, Ran Huang, (2013), “Binding mechanism and properties of alkali-activated fly ash/slag mortars,” Construction and Building Materials, Vol. 40, pp. 291–298.
    76. 李宜桃 (2003),「鹼活化還原渣收縮及抑制方法之研究」,碩士論文,國立中央大學土木工程系。
    77. Cengiz Duran Atiş, Cahit Bilim, Ӧzlem Celik and Okan Karahan, (2009), “Influence of activator on the strength and drying shrinkage of alkali - activated slag mortar, Construction and Buiding Materials”, Vol. 23, pp. 548 - 555.
    78. 蘇榮章 (2003),「鹼活化爐石粉砂漿火害研究」,碩士論文,國立雲林科技大學營建工程系。

    QR CODE