簡易檢索 / 詳目顯示

研究生: 孔得人
Te-Jen Kung
論文名稱: 飛灰影響超硫酸鹽水泥漿體工程及耐久性質之研究
Study on Effects of Fly Ash on Engineering Properties and Durability of Supersulfated Cement Paste
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 徐輝明
Hui-mi Hsu
蕭添進
Tien-Chin Hsiao
陳君弢
Chun-Tao Chen
施正元
Jeng-Ywan Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 173
中文關鍵詞: 超硫酸鹽水泥FGD石膏爐石粉飛灰鈣礬石C-S-H膠體
外文關鍵詞: supersulfated cement, FGD gypsum, GGBFS, fly ash, ettringite, C-S-H gel
相關次數: 點閱:217下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三種水膠比(w/b = 0.3、0.35、0.4)、三種水淬高爐石粉由飛灰取代量(0%、30%、60%)、四種排煙脫硫(flue gas desulfurization, FGD)石膏由水泥取代量(1%、3%、5%、7%)等配比因子製作超硫酸鹽水泥漿體,探討此漿體在石灰水與濃度5%硫酸鈉溶液等兩種養護條件,及1、3、7、14、21、28及56天等7個齡期之凝結時間、迷你坍度、抗壓強度、超音波速、熱傳導係數試驗、長度變化量、重量變化量等工程及耐久性質,並以XRD及SEM微觀試驗分析驗證其巨觀行為。
    研究結果顯示:(1) 新拌性質:以30%及60%飛灰取代爐石粉之超硫酸鹽水泥漿體初凝時間由757分鐘分別延長最多至1004及1174分鐘,迷你坍度由413 mm分別增加至444 mm及494 mm;(2)工程性質:水膠比為0.35,飛灰取代量為30%之各配比漿體擁有最佳55至74 MPa之56天齡期抗壓強度,分別較飛灰取代量0%及60%時高11%及14%;此配比漿體之超音波速為4011.5 m/s,分別高於飛灰取代量0%及60%時3%及9%;以30%及60%飛灰取代爐石粉之超硫酸鹽水泥漿體熱傳導係數分別由0.71 W/(m∙K)增加至0.72 W/(m∙K)及0.76 W/(m∙K);(3)耐久性質:長度變化量之結果顯示飛灰取代0%增加至60%時漿體之長度變化由-5400 μm/m減少至-2800 μm/m ,減少48%;重量變化量由0.00275至0.00196,減少29%;(4) XRD及SEM微觀結果顯示,超硫酸鹽水泥漿體之水化產物主要以鈣礬石、石膏及C-S-H膠體為主,且當試體以硫酸鈉溶液養護時,硫酸根離子會促進鈣礬石及石膏之生成且產生膨脹。


    In this experimental study explores the influences of water-to-binder ratios (w/b=0.3, 0.35, 0.4), fly ash was used as a partial replacement of GGBFS, constituting the following amounts: 0%, 30%, and 60%, and cement was used as a partial replacement of FGD gypsum, constituting the following amounts: 1%, 3%, 5%, and 7%. The samples were cured in lime water and 5% sodium sulfate solution until 56 days to know the durability of specimens. By using the setting time test, mini slump test, compressive strength test, ultrasonic pulse velocity test, thermal conductivity test, length change test, weight change test to explore engineering properties and durability, and XRD and SEM analysis to verify the macroscopic behavior.
    Research results show that: (1) Fresh properties: replacing GGBFS with fly ash at 30% and 60% to supersulfated cement will extend the setting time from 757 minutes to 1004 minutes and 1174 minutes, mini slump test from 413 mm increase to 444 mm and 494 mm. (2) Engineering properties: the fly ash replacement amount is 30% with water-binder ratio is 0.35 has the best performance, compressive strength results shows at 55 MPa to 74 MPa. (3) Durability test: length changed test result shows that 60% fly ash replacement have the lowest length changed, the decreasing from-5400 μm/m to -2800 μm/m, it’s 48% lower than without fly ash replacement, and weight changed test result shows that 60% fly ash replacement also have the lowest weight changed result, it’s 29% lower than without fly ash replacement. (4) Micro properties: XRD and SEM results show that the hydration products of supersulfated cement paste are mainly ettringite, gypsum and C-S-H gel. The specimens are curing with sodium sulfate solution, sulfate ion will promote ettringite and gypsum formed and expanding.

    摘要 ……………………………………………………………………………..i Abstract ……………………………………………………………………………iii 致謝 ……………………………………………………………………………..v 目錄 …………………………………………………………………………...vii 表目錄 ……………………………………………………………………………xi 圖目錄 ……………………………………………………………………………xv 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程圖 3 第二章 文獻回顧 5 2.1 前言 5 2.2 工業副產物 5 2.2.1 水淬高爐石粉 5 2.2.2 排煙脫硫石膏(Flue Gas Desulfurization gypsum, FGD石膏) 7 2.2.3 飛灰 9 2.3 超硫酸鹽水泥之水化機理 11 2.3.1. 卜特蘭水泥於超硫酸鹽水泥之影響 12 2.3.2. FGD 石膏對於超硫酸鹽水泥之反應機制 13 2.4 超硫酸鹽水泥之相關研究 13 2.5 硫酸鹽侵蝕之相關研究 14 第三章 試驗計畫 23 3.1 試驗內容與與變數 23 3.2 試驗材料 24 3.2.1 水淬高爐石粉 24 3.2.2 飛灰 24 3.2.3 卜特蘭水泥 24 3.2.4 排煙脫硫石膏 (FGD 石膏) 24 3.3 配比編號說明 25 3.4 試驗配比設計 25 3.5 拌合流程 26 3.6 試驗方法 26 3.6.1 新拌性質試驗 26 3.6.2 硬固性質試驗 27 3.6.3 非破壞性質試驗 28 3.6.4 耐久性質試驗 29 3.6.5 微觀性質試驗 30 3.7 試驗設備 31 第四章 試驗結果與討論 53 4.1 漿體新拌性質 53 4.1.1 迷你坍度 53 4.1.2 凝結時間 54 4.2 工程性質 55 4.2.1 抗壓強度 55 4.2.2 超音波速試驗 59 4.2.3 熱傳導係數試驗 62 4.3 耐久性試驗 64 4.3.1 硫酸鹽養護工程性質 64 4.3.2 長度變化試驗 68 4.3.3 重量變化試驗 71 4.4 微觀性質試驗 73 4.4.1. X光繞射試驗 73 4.4.2. 電子掃描顯微鏡 74 第五章 結論與建議 139 5.1 結論 139 5.2 建議 140 參考文獻 143

    [1] 中國鋼鐵公司, 爐石利用推廣手冊.
    [2] 中華民國國家標準, CNS 786水硬性水泥凝結時間檢驗法(費開氏針法). 經濟部標準檢驗局.(1983)
    [3] 中華民國國家標準, CNS 1010 R3032水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in.立方體試體). 經濟部標準檢驗局.(1993)
    [4] 中華民國國家標準, CNS 3036混凝土用飛灰及天然或煆燒卜作嵐餐攙和物. 經濟部標準檢驗局.(2003)
    [5] 中華民國國家標準, CNS 8499冷軋不鏽鋼鋼板、鋼片及鋼帶. 經濟部標準檢驗局.(1982)
    [6] 中華民國國家標準, CNS 11272水硬性水泥密度試驗法. 經濟部標準檢驗局.(1983)
    [7] 中華民國國家標準, CNS 14603硬固水泥砂漿及混凝土長度變化試驗法. 經濟部標準檢驗局.(2005)
    [8] 台灣電力公司, 台灣電力公司綜合研究所試驗報告. (2019)
    [9] 行政院公共工程委員會, 公共工程高爐石混凝土使用手冊. 行政院公共工程委員會.(2001)
    [10] 行政院環境保護署, 107 年事業廢棄物申報量統計報告.(2018)
    [11] 行政院環境保護署, 2018年中華民國溫室氣體國家報告. (2018)
    [12] 张晓佳、张高展、孙道胜、刘开伟, 水泥基材料硫酸盐侵蚀机理的研究进展. 材料导报A:综述篇 (2018)
    [13] 張進發, 燃煤火力發電與汙染防治. 台灣電力公司 台中火力發電廠.(2006)
    [14] 黃兆龍博士, 混凝土性質與行為. 台北市: 詹氏書局.(2007)
    [15] Angulski, L. C, R. D. Hooton, Influence of curing temperature on the process of hydration of supersulfated cements at early age. Cement and Concrete Research. (2015)
    [16] Antonio, T., M. Milena, C. Daniela, L. V. Gian, F. Montagnarob, Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials. Waste Management. (2013)
    [17] ASTM, C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, Pennsylvania UnitedStates.(2020)
    [18] ASTM, C305 Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, Pennsylvania UnitedStates.(2014)
    [19] ASTM, C597 Standard Test Method for Pulse Velocity Through Concrete. ASTM International: West Conshohocken, Pennsylvania UnitedStates.(2016)
    [20] ASTM, D5334 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM International: West Conshohocken, Pennsylvania UnitedStates.(2014)
    [21] Chindaprasirt, P., S. Homwuttiwong, V. Sirivivatnanon, Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research 34: p. 1087-1092. (2004)
    [22] Dutta, D. K., P. C. Borthakur, Activation of low lime high alumina granulated blast furnace slag by anhydrite. Cement and Concrete Research. 20: p. 711-722. (1990)
    [23] Gracioli, B., C. Angulski, C. S. Beutler, J. I. P. Filho, A. Frare, J. C. Rocha, M. Cheriaf, R. D. Hooton, Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements. Construction and Building Materials. 262. (2020)
    [24] Grounds, T., D. V. Nowell, F. W. Wilburn, Restiannce of supersulfated cement to strong sulfate solutions. Journal of Thermal Analysis and Calorimetry. 72: p. 181-190. (2003)
    [25] Gruskovnjak, A., B. Lothenbach, F. Winnefeld, R. Figi, S.-C. Ko, M. Adler, U. Mäder, Hydration mechanisms of super sulphated slag cement. Cement and Concrete Research. 38: p. 983-992. (2008)
    [26] Lea, F.M., Lea's chemistry of cement and concrete.(2004)
    [27] Liu, K., M. Deng, L. Mo, J. Tang, Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack. Adcances in Cement Research. (2015)
    [28] Liu, S., L. Wang, B. Yu, Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement. Construction and Building Materials. 214: p. 9-16. (2019)
    [29] Liu, S., L. Wang, Y. Gao, B. Yu, W. Tang, Influence of fineness on hydration kinetics of supersulfated cement. Thermochimica Acta. 605: p. 37-42. (2015)
    [30] Marchand, J., I. Odler, J. P. Skalny, Sulfate Attack on Concrete. London: Spon Press. (2002)
    [31] Masoudi, R., R. D. Hooton, Influence of alkali lactates on hydration of supersulfated cement. Construction and Building Materials. 239. (2020)
    [32] Mun, K. J., W. K. H. Young, C. W. Lee, S. Y. So, Y. S. Soh, Basic properties of non-sintering cement using phosphogypsum and waste lime as activator. . Construction and Building Materials. 21(6): p. 1342-1350. (2007)
    [33] Nguyen, H.-A., T.-P. Chang, J.-Y. Shih, C.-T. Chen, Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cement and Concrete Composites. 99: p. 40-48. (2019)
    [34] Nguyen, H.-A., T.-P. Chang, J.-Y. Shih, C.-T. Chen, T. D. Nguyen, Sulfate resistance of low energy SFC no-cement mortar. Construction and Building Materials. 102: p. 239-243. (2016)
    [35] Nguyen, N. L., A study on super-sulfated cement using Dinh Vu phosphogypsum, in 2nd International Conference on Sustainable Development in Civil, Urban and Transportation Engineering (CUTE 2018). IOP Publishing Ltd: Ho Chi Minh City, Vietnam.(2016)
    [36] Rubert, S., C. Angulski, da Luz, M. V. F. Varela, J. I. P. Filho, R. D. Hooton, Hydration mechanisms of supersulfated cement. Journal of Thermal Analysis and Calorimetry. 134: p. 971-980. (2018)
    [37] Somayaji, 土木材料. 高立圖書.(2005)
    [38] Sun, H., J. Qian, Y. Yang, C. Fan, Y. Yue Optimization of gypsum and slag contents in blended cement containing slag Cement and Concrete Composites 112. (2020)

    QR CODE