簡易檢索 / 詳目顯示

研究生: 涂明和
Ming-Hu Tu
論文名稱: 以氧化鈣與三氧化二鋁成份迴歸分析探討鹼激發爐灰砂漿工程性質之影響
Study of Effects on Engineering Properties of Alkali-Activated Slag-Fly Ash Mortar with Regression Analysis of compositions of CaO and Al2O3
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳君弢
Chun-tao Chen
黃然
Ran Huang
施正元
Jeng-Ywan Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 142
中文關鍵詞: 鹼激發材料爐石飛灰氧化鈣三氧化二鋁迴歸曲線
外文關鍵詞: alkali-activated material, slag, fly ash, CaO, Al2O3, regression curve
相關次數: 點閱:382下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以氫氧化鈉溶液及矽酸鈉溶液為活性鹼性激發劑,並於固定之液固比下,藉由改變鹼激發量、水玻璃模數及爐石飛灰混合比,以探討各參數對於複合型爐灰鹼激發材料新拌及硬固性質之影響,其後再探討於不同氧化鈣與三氧化二鋁氧化物比率之材料性質,最後再以微觀試驗觀察鹼激發材料組成成分及微觀結構之變化。
    研究結果顯示:(1)新拌性質方面,鹼激發爐灰漿體材料之新拌流度值在125 mm 至260mm 之間;初凝與終凝時間分別為5~62 分鐘與31~120 分鐘範圍之間,增加鹼激發量會降低流度性能與縮短凝結時間。(2)鹼激發爐灰材料試驗組之28 天齡期抗壓強度在10.29~80.12MPa 之間,增加溶液鹼濃度可提升材料強度,但因飛灰惰性材料特性使得飛灰組別之強度皆低於純爐石組,75%飛灰混合降低28 天抗壓強度13.9~43.1%之間。(3)全試驗組之鹼激發爐灰熱傳導係數範圍在0.963~1.60 W/m·K 之間,低於一般傳統混凝土之約50~73%,顯示材料具良好隔熱性能。(4)氧化鈣含量增加對複合爐灰鹼激發材料的抗壓強度與超音波速有正向的影響,其趨勢結果一致,但如考慮乾縮值會隨著氧化鈣含量增加而變大時,建議最佳值為配比S75F25 (CaO 含量為32.9 %,Al2O3 含量為16.6%)。(5)當三氧化二鋁含量越高,迴歸曲線有下降的趨勢,影響因素為鋁元素會與外在之硫酸鹽產生膨脹性反應物,雖能溶解出飛灰顆粒之矽及鋁元素於反應之中形成C-A-S-H 膠體,但鍵結程度較不完全,無法成為主要材料提升工程性質之來源。


    In this study, the sodium hydroxide and sodium silicate were used as the alkali activator to activate the blended powder of slag and fly ash. Under the condition of fixed liquid-solid ratio, experimental parameters including different dosages of activator, moduli of sodium silicate and proportions of
    slag-fly ash mixtures were used to investigate the effects of various combinations of parameters on the fresh and hardened properties of alkali-activated material. Then investigate material properties of different CaO to Al2O3 oxides ratios. Finally, the variations of chemical compositions and microstructures of alkali-activated material were examined by the microstructural analyses.
    The research results show that: (1) For the fresh properties, the flowabilities of alkali-activated slag-fiy ash mortar were in the range from 125 to 260 mm, the initial and finial setting times of paste were from 5 to 62 and 31 to 120 min, respectively. Increase of dosages of activator could
    decrease the flowability and setting times. (2) The increase of dosages of activator could enhance the material strength, and the compressive strngths of all mixture at 28 days were in the range from 10.29 to 80.12 MPa. However, when the slag powder mixed with fly ash had lower strength with the amount of fly ash replacement by 75%, the compressive strength at 28 days were decreased by 13.9 to 43.1%. (3) The thermal conductivity of all mixture were in range from 0.963 to 1.60 w/m•k, and the results were lower than that of normal concrete by 20 to 53%, which showed that alkali-activated slag-fiy ash paste has excellent insulation properties. In addition, the properties of thermal conductivity were controlled by composition of powder material. (4) Calcium oxide content increases have a positive effect on the pompressive strength of composite alkali-activated materials and Ultrasonic Pulae Velocity, a result consistent with its trend, but if considering the shrinkage values with increasing calcium oxide content becomes larger, recommendations on the optimum value ratio S75F25 (CaO content of 32.9%, Al2O3 content of (16.6%). (5) When the aluminum oxide content is higher, the regression curve downward trend,affect factors of aluminum sulfate and external elements will produce expansion reactants, although able to dissolve Si and Al elements of fly ash particles in the reaction among C-A-S-H colloidal form, but the degree of bonding than the incomplete, can not become the main source of the material nature of the Engineering Properties.

    中文摘要 I 英文摘要 I I 致謝 III 總目錄 IV 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究內容與流程 2 第二章 文獻回顧 5 2.1 前言 5 2.2 鹼激發材料發展 5 2.3 鹼激發爐石反應機制 6 2.3.1. 水化反應影響因子 6 2.3.2 水化反應機制與水化反應物 7 2.4 鹼激發材料基礎材料 8 2.4.1 爐石粉 8 2.4.2 飛灰 10 2.5 鹼激發材料配比因子 12 2.5.1 鹼激發劑溶液 12 2.5.2 鹼激發溶液濃度 14 2.5.3 混和鹼激發劑影響 15 2-6 爐石-飛灰基複合型鹼激發材料 16 2.7 爐石-飛灰複合型鹼激發材料氧化鈣與三氧化二鋁元素之影響 18 2.7.1 爐石-飛灰鹼激發材料氧化鈣元素之影響 18 2.7.2 爐石-飛灰鹼激發材料三氧化二鋁元素之影響 18 2.8 無機聚合物之體積穩定性 19 2.8.1 體積收縮發生機制 19 2-8-2 無機聚合物之乾縮狀況 19 第三章 試驗計畫 29 3.1 試驗內容與流程 29 3.2 試驗材料 29 3.3 試驗變數與項目 30 3.3.1 試驗內容範圍 30 3.3.2 試驗變數與項目 31 3.4 試驗拌和說明 32 3.5 試驗方法 32 3.5.1 新拌性質試驗 32 3.5.2 硬固性質試驗 34 3.6 耐久性質試驗 36 3.7 氧化物含量分析計算 37 3.8 微觀分析試驗 38 3.9 試驗儀器與設備 40 3.9.1 新拌試驗儀器 40 3.9.2 硬固試驗儀器 40 第四章 複合爐灰鹼激發砂漿試驗結果分析 55 4.1 複合爐灰鹼激發砂漿試驗結果 55 4.1.1 材料新拌性質 55 4.1.1.1 新拌流度值 55 4.1.1.2 初、終凝結時間 56 4.1.2 材料硬固性質 57 4.1.2.1 抗壓強度 57 4.1.2.2 超音波速 58 4.1.2.3 動態彈性模數 59 4.1.2.4 熱傳導係數 61 4.1.2.5 體積穩定性 62 4.1.3 材料耐久性質 63 4.1.3.1 表面電阻 63 4.1.3.2 硫酸鹽侵蝕 64 4.1.4 激發爐灰砂將之微觀結構 64 4.1.4.1 粉末X 光繞射分析 64 4.1.4.2 電子掃描顯微鏡 65 4.1.4.3 壓汞孔隙試驗 65 4.2 複合爐灰鹼激發砂漿工程性質試驗與氧化物迴歸分析 66 4.2.1 鹼激發砂漿抗壓強度與氧化物 迴歸分析 66 4.2.1.1 鹼激發砂漿抗壓強度與氧化鈣 (CaO) 迴歸分析 66 4.2.1.2 鹼激發砂漿抗壓強度與三氧化二鋁 (Al2O3) 迴歸分析 67 4.2.2 鹼激發砂漿超音波波速與氧化物 迴歸分析 68 4.2.2.1 鹼激發砂漿超音波波速與氧化鈣 (CaO) 迴歸分析 68 4.2.2.2 鹼激發砂漿超音波波速與三氧化二鋁 (Al2O3) 迴歸分析 68 4.2.3 鹼激發砂漿乾縮值與氧化物 迴歸分析 69 4.2.3.1 鹼激發砂漿乾縮值與氧化鈣 (CaO) 迴歸分析 69 4.2.3.2 鹼激發砂漿乾縮值與三氧化二鋁 (Al2O3) 迴歸分析 70 第五章 結論與建議 114 5.1 結論 120 5.2 建議 122 參考文獻 123

    1. V.M.M.P.K. Malhotra, High-performance, high-volume fly ash concrete : materials,mixture proportioning, properties, construction practice, and case histories,Supplementary Cementing Materials for Sustainable Development Inc., Ottawa,2005.
    2. B.V.H. Rangan, D., Development and properties of low calcium fly ash based geopolymer concrete, Faculty of Engineering, Curtins University of Technology, Perth, Australia, 2005.
    3. M.T. Taylor, C. ;Gielen, D., Energy efficiency and CO2 emissions from the global cement industry, Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry, International Energy Agency, Paris, 2006.
    4. 曹德光、蘇達根、楊占印、宋國勝,偏高嶺石的微觀結構與鍵合反應能力,礦物學報,24 (2004) 366-372。
    5. 許偉哲,TFT-LCD 廢玻璃鹼激發膠結材之物理性質,土木工程學系碩博士班,國立成功大學,台南市,2009。
    6. 張士晉,掺CFB 副產石灰之鹼激發飛灰膠凝材料工程性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2009。
    7. 李祐帆,鹼激發爐石-轉爐石膠結材物理性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2010。
    8. 劉甫,焚化底碴鹼激發效益之評估,土木工程學研究所,臺灣大學,台北市,2010。
    9. 賴琇瑩,鹼激發廢玻璃膠結材之常溫配比研究,土木工程學系碩博士班,國立成功大學,台南市,2010。
    10. 官志恆,鹼活化液模數比及劑量對爐石混凝土性質影響之研究,河海工程學系,國立臺灣海洋大學,基隆市,2011。
    11. 蔡宗和,含轉爐石及飛灰之鹼激發爐石膠結材,土木工程學系碩博士班,國立成功大學,台南市,2011。
    12. 邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩博士班,國立成功大學,台南市,2012。
    13. 邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系,國立臺灣科技大學,台北市,2012。
    14. 許皓翔,TFT-LCD 廢玻璃以鹼激發方式製成防火材料之研究,環境工程學系碩士班,國立宜蘭大學,宜蘭縣,2012。
    15. 謝明蒲,廢玻璃鹼激發膠結材之吸水性能研究,土木工程學系碩博士班,國立成功大學,台南市,2012。
    16. Shi C., P. V. Krivenko and D. Roy, (2006), “Alkali-activated Cement and Concrete,”London and New York: Taylor & Francis.
    17. C. Li, H. Sun, L. Li, A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements, Cement and Concrete Research, 40 (2010) 1341-1349.
    18. 黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,台北市,2007。
    19. 黃兆龍,高爐熟料在水泥上之利用,現代混凝土技術研討會,台灣營建研究中心,1984,pp. 162-177。
    20. 公共工程委員會,公共工程飛灰混凝土使用手冊,台北市,1999。
    21. P. Duxson, J.L. Provis, Designing precursors for geopolymer cements, Journal of the American Ceramic Society, 91 (2008) 3864-3869.
    22. S. Caijun, L. Yinyu, Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cement and Concrete Research, 19 (1989) 527-533.
    23. S.-D. Wang, K.L. Scrivener, P.L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, 24 (1994) 1033-1043.
    24. H. Wan, Z. Shui, Z. Lin, Analysis of geometric characteristics of GGBS particles and their influences on cement properties, Cement and Concrete Research, 34 (2004) 133-137.
    25. P.Z. Wang, R. Trettin, V. Rudert, Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems, Advances in Cement Research, 17 (2005) 161-166.
    26. J. Faimon, Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering, Geochimica et Cosmochimica Acta, 60 (1996) 2901-2907.
    27. S.-D. Wang, K.L. Scrivener, Hydration products of alkali activated slag cement, Cement and Concrete Research, 25 (1995) 561-571.
    28. W. Mozgawa, J. Deja, Spectroscopic studies of alkaline activated slag geopolymers, Journal of Molecular Structure, 924–926 (2009) 434-441.
    29. A.O. Purdon, The action of alkalis on blast furnace slag, Journal of the Society of Chemical Industry, 59 (1940) 191-202.
    30. 黃兆龍,混凝土性質與行為,詹氏書局,台北市,2002。
    31. C. Shi, R.L. Day, A calorimetric study of early hydration of alkali-slag cements,Cement and Concrete Research, 25 (1995) 1333-1346.
    32. C. Shi, R.L. Day, Some factors affecting early hydration of alkali-slag cements,Cement and Concrete Research, 26 (1996) 439-447.
    33. V.D. Glukhovsky, Alkali-earth binder and concrete produced with them, Russian: Visheka shkola, Kiev, 1979.
    34. H. Xu, J.S.J. Van Deventer, The geopolymerisation of alumino-silicate minerals,International Journal of Mineral Processing, 59 (2000) 247-266.
    35. J.W. Phair, J.S.J. Van Deventer, Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers, International Journal of Mineral Processing, 66 (2002) 121-143.
    36. 朱純熙,盧晨,水玻璃硬化的認識過程,無機鹽工業,1,(2001),22-25 頁。
    37. A.R. Brough, M. Holloway, J. Sykes, A. Atkinson, Sodium silicate-based
    alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid, Cement and Concrete Research, 30 (2000) 1375-1379.
    38. K. Komnitsas, D. Zaharaki, V. Perdikatsis, Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers, Journal of Hazardous Materials, 161 (2009) 760-768.
    39. 陳冠宇,鹼激發爐石基膠體配比因子對其工程性質影響之研究,營建工程系,國立臺灣科技大學,台北市,2010。
    40. 楊仁佑,低溫養護對爐石基無機聚合物工程性質之影響,營建工程系,國立臺灣科技大學,台北市,2011。
    41. 陳子謙,複合型無機聚合物砂漿之工程性質,營建工程系,國立臺灣科技大學,台北市,2012。
    42. 林育緯,不同鹼激發劑對爐石飛灰無機聚合物工程性質之影響,營建工程系,國立臺灣科技大學,台北市,2012。
    43. R.N. Swamy, A. Bouikni, Some engineering properties of slag concrete as influenced by mix proportioning and curing, ACI Materials Journal, 87 (1990) 210-220.
    44. 付興華,陶文宏,孫鳳金,水玻璃對地聚物膠凝材料性能影響的研究,水泥工程,2,(2008),6-9 頁。
    45. F. Puertas, S. Martı́nez-Ramı́rez, S. Alonso, T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cement and Concrete Research,30 (2000) 1625-1632.
    46. Z. Li, S. Liu, Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer, Journal of Materials in Civil Engineering, 19 (2007)470-474.
    47. 廖佳慶,鹼礦渣水泥與混凝土化學收縮和乾縮行為研究,重慶大學材料科學與工程系,重慶,2007。
    48. S. Kumar, R. Kumar, S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45 (2010) 607-615.
    49. S.K. Nath, S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Construction and Building Materials, 38 (2013) 924-930.
    50. M. Chi, R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construction and Building Materials, 40 (2013) 291-298.
    51. N.K. Lee, H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials, 47 (2013) 1201-1209.
    52. S.A. Bernal, J.L. Provis, B. Walkley, R. San Nicolas, J.D. Gehman, D.G. Brice, A.R. Kilcullen, P. Duxson, J.S.J. van Deventer, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cement and Concrete Research, 53 (2013) 127-144.
    53. C.K. Yip, G.C. Lukey, J.S.J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, 35 (2005) 1688-1697.
    54. C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, 38 (2008) 554-564.
    55. P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology: The current state of the art, J Mater Sci, 42 (2007)2917-2933.
    56. A. Fernández-Jiménez, A. Palomo, I. Sobrados, J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, 91 (2006) 111-119.
    57. J.P. Hamilton, S.L. Brantley, C.G. Pantano, L.J. Criscenti, J.D. Kubicki, Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution, Geochimica et Cosmochimica Acta, 65 (2001) 3683-3702
    58. S.-D. Wang, K.L. Scrivener, 29Si and 27Al NMR study of alkali-activated slag,Cement and Concrete Research, 33 (2003) 769-774.
    59. Shi, Caijun (1996), “Strength, pore structure and permeability of alkali - activated slag mortars,” Cement and Concrete Research, Vol. 26, No. 12, pp. 1789-1799.A.Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated fly ashes: A cement for the future, Cement and Concrete Research, 29 (1999) 1323-1329.
    60. A. Buchwald, H. Hilbig, C. Kaps, Alkali-activated metakaolin-slag blends -Performance and structure in dependence of their composition, J Mater Sci, 42 (2007)3024-3032.
    61. Bakharev T., J. G. Sanjayan and Y. B. Chen, (1999), “Alkali activation of Australian slag cements,” Cement and Concrete Research, Vol. 29, No. 1, pp.113-120.
    62. Shi, Caijun (1996), “Strength, pore structure and permeability of alkali - activated slag mortars,” Cement and Concrete Research, Vol. 26, No. 12, pp. 1789-1799.
    63. Collins F. and J. G. Sanjayan, (2000), “Effect of pore size distribution on drying shrinkage properties of alkali - activated slag concrete,” Cement and Concrete Research, Vol. 30, No. 9, pp. 1401-1406.
    64. S.-D. Wang, K.L. Scrivener, P.L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, 24 (1994) 1033-1043.
    65. S. Aydın, B. Baradan, Effect of activator type and content on properties of alkali-activated slag mortars, Composites Part B: Engineering, 57 (2014) 166-172.
    66. S. Mindess, J.F. Young, D. Darwin, Concrete (2nd Edition), Prentice Hall2003.
    67. 李宜桃,鹼活化還原碴漿體收縮及抑制方法之研究,土木工程研究所,國立中央大學,桃園縣,2003。
    68. C. Duran Atiş, C. Bilim, Ö. Çelik, O. Karahan, Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Construction and Building Materials, 23 (2009) 548-555.
    69. F. Collins, J.G. Sanjayan, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete, Cement and Concrete Research, 30 (2000) 1401-1406.
    70. M. Chi, R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construction and Building Materials, 40 (2013) 291-298.
    71. 鄭百榕,爐石飛灰複合型無機聚合物於常溫及高溫環境之工程性質,營建工程系,國立臺灣科技大學,台北市,2013。
    72. 楊宗叡,鹼激發爐灰漿體微觀分析與工程性質研究,營建工程系,國立臺灣科技大學,台北市,2014。
    73. 吳宗翰,鹼激發爐灰砂漿鋼筋握裹性質研究,營建工程系,國立臺灣科技大學,台北市,2014。
    74. V.D. Glukhovsky, Soil silicates, USSR: Gostroiizdat, Kiev, 1959.
    75. R. Malinowsky, Concretes and mortars in ancient aqueducts, Concrete International,1979, pp. 66-76.
    76. H.D. Contenson, C.L. C, A propos des vases en chaux : recherches sur leur fabrication et leur origine, Paléorient, (1979) 177-182.
    77. G. Perinet, Etude minéralogique de vaisselles blanches néolithiques de Ras-Shamra et Tell Ramad (Syrie), Académie des Sciences, Paris, 1980.
    78. J. Davidovits, Courtois, L. D.T.A., detection of intra-ceramic geopolymeric setting in archaeological ceramics and mortars, 21st symposium on archaeometry, 1981.
    79. C.A. Langton, D.M. Roy, Longevity of borehole and shaft sealing materials: characterization of ancient cement-based building materials, Materials Research Society Symposia Proceedings, 1984, pp. 543-549.

    QR CODE