簡易檢索 / 詳目顯示

研究生: 陳奕錚
Yi-cheng Chen
論文名稱: 低電流漣波之非對稱推挽式電能轉換器
Asymmetrical Push-Pull Converters with Current Ripple Cancellation
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 邱煌仁
Huang-Jen Chiu
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 68
中文關鍵詞: 非對稱推挽式電能轉換器電流漣波消除機制零電壓開關切換台科全波整流器
外文關鍵詞: asymmetrical push-pull converter, current ripple reduction mechanism, zero voltage switching (ZVS), Taiwan-Tech rectifier
相關次數: 點閱:263下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有電流漣波消除之非對稱推挽式電能轉換器(APPRC)可實現電流漣波消除的機制,除了提供電路所需的電壓增益,其降低輸入電流漣波大小和具備零電壓切換等功能,可減少電路之電磁干擾強度和開關切換產生的損耗,因此電路中之輸入濾波器的體積可最小化,開關切換損耗也得以減少。另外在輸出整流側加入台科全波整流器(TFR),植基於整流電路中的濾波器可有效地降低輸出電流漣波的大小,藉由這項優點使得輸出濾波器之濾波電容可以在選擇上採用低成本與小體積的元件又可以符合輸出電壓漣波值的規範。
    這些特點讓此電路成為高頻率,高效率的電能轉換器應用的首選之一,本篇論文對電路進行電路設計,理論分析與操作原理,最後加以實現於輸入電壓範圍300-400V和輸出24V/10A之規格,並將電路實驗結果與理論分析作驗證。


    Asymmetrical push-pull converter with current ripple cancellation (APPRC) is presented to realize current ripple mechanism. In addition to obtaining required voltage gain, it has reduced input current ripple and zero voltage switching resulting in reducing EMI intensity and switching loss, respectively. Consequently, the volume of input filter and the switching loss can be minimized significantly.
    Moreover, the output current ripple can be reduced because of Taiwan-Tech full-wave rectifier (TFR) built-in output ripple-current reduction mechanism. As a result, a smaller number output capacitance can be used due to reduce the output current ripple.
    These properties make it desirable for high frequency, high efficiency power conversion applications. To demonstrate its feasibility, the circuit analysis, operational principle and the experimental results of the proposed converters with 300-400V input and 24V/10A output are built and verified in this thesis.

    III Table of Contents Abstract .......................................................................................................................... I Acknowledgement ........................................................................................................ II Table of Contents ......................................................................................................... III List of Figures ............................................................................................................... V List of Tables ............................................................................................................. VIII Chapter 1 Introduction ................................................................................................ 1 1.1 Background and motivation ........................................................................... 1 1.2 Objectives of the Thesis ................................................................................. 3 1.3 Organization of the Thesis ............................................................................. 3 Chapter 2 Input Current Ripple Cancellation Asymmetrical Push–Pull Converter with Center tapped rectifier ................................................................................... 5 2.1 Introduction .................................................................................................... 5 2.2 Operation principle ........................................................................................ 8 2.3 Circuit analysis............................................................................................. 12 2.3.1 Voltage gain ................................................................................. 12 2.3.2 Voltage stress ............................................................................... 13 2.3.3 Transformer dc-bias current ......................................................... 13 2.3.4 ZVS condition .............................................................................. 14 2.3.5 Input current cancellation ............................................................ 16 2.4 Circuit design ............................................................................................... 18 2.4.1 Transformer (TR) ......................................................................... 18 2.4.2 Output inductor (Lo) .................................................................... 22 2.4.3 Output capacitor (Co) .................................................................. 23 IV 2.4.4 Clamping capacitors (C1, C2, and C C1 ) ....................................... 23 2.4.5 Power switches of circuit (Q1 and Q2) ........................................ 24 2.5 Experimental results..................................................................................... 25 2.6 Summary ...................................................................................................... 29 Chapter 3 Input Current Ripple Cancellation Asymmetrical Push-Pull Converter with Taiwan-Tech Full-Wave Rectifier ................................................................ 31 3.1 Introduction .................................................................................................. 31 3.2 Operation principle ...................................................................................... 33 3.3 Circuit Analysis ............................................................................................ 37 3.3.1 ZCS condition .............................................................................. 37 3.3.2 Output current ripple reduction .................................................... 38 3.4 Circuit Design .............................................................................................. 39 3.4.1 Clamping capacitors (C C2 ) ........................................................... 40 3.4.2 Output capacitor (Co) .................................................................. 41 3.5 Experimental Results ................................................................................... 41 3.6 Summary ...................................................................................................... 47 Chapter 4 Conclusions and Future Researches......................................................... 49 4.1 Conclusions .................................................................................................. 49 4.2 Future Researches ........................................................................................ 51 References .................................................................................................................... 52 Appendix ...................................................................................................................... 55

    [1] C. K. HUANG, “Step-Up/Down DC-DC Converter for Green Power Applications,” M.S. thesis, Dept. Elect. Eng., Nat. Taiwan Univ. of Sci. and Tech., Taipei, Taiwan, 2011.
    [2] E. Herbert, “Analysis of the near zero input current ripple condition in a symmetrical push-pull power converter,” Conference of High Frequency Power Conversion, 1989, pp. 357-371.
    [3] C. S. Leu, J. B. Hwang, and F. C. Lee, “A novel forward configuration for DC-DC application: built-in input filter forward converter (BIFFC),” in IEEE Appl. Power Electron. Conf. and Expo. (APEC), vol. 1, Dallas, TX., Mar. 5-9, 1995, pp. 43-49.
    [4] C. S. Leu, “A novel forward configuration for off-line applications: two-switch built-in input filter forward converter (2SBIFFC),” IEEE IECON’96, vol. 2, Aug, 1996, pp. 1035-1040.
    [5] C. S. Leu, “A novel full-bridge configuration for high-power applications: built-in input filter full-bridge converter (BIFFBC),” in IEEE Power Electron. Specialists Conf. (PESC), vol. 1, St. Louis, MO., Jun. 22-27, 1997, pp. 763-768.
    [6] W. T. Lin, “Asymmetrical Push-Pull Power converters,” M.S. thesis, Dept. Elect. Eng., Nat. Taiwan Univ. of Sci. and Tech., Taipei, Taiwan, 2013.
    [7] C. S. Leu and M. H. Li, “A novel current-fed boost converter with ripple reduction for high-voltage conversion applications,” IEEE Trans. Ind. Electron., vol. 57, no. 6, PP. 2018-2023, May 27, 2010.
    [8] M. H. Li, “High-efficiency step-Up DC/DC converter for renewable energy power applications,” M.S. thesis, Dept. Elect. Eng., Nat. Taiwan Univ. of Sci. and Tech., Taipei, Taiwan, 2009.
    [9] C.S. Leu, “Low voltage stress power converter,” U.S. Patent 7,515,439 B2, Apr. 7, 2009.
    [10] W. K. WANG, “LLC Resonant Converters with Current Ripple Reduction,” M.S. thesis, Dept. Elect. Eng., Nat. Taiwan Univ. of Sci. and Tech., Taipei, Taiwan, 2013.
    [11] R. Lai, K. Ngo and K. Watson, “Steady-State Analysis of the Symmetrical Push-Pull Power Converter Employing a Matrix Transformer”, IEEE Transactions on Power Electronics, Vol. 7, Issue 1, January, 1992, pp. 44-53.
    [12] X. Zhou, B. Yang, L. Amoroso, F. C. Lee, and P. L. Wong, “A novel high-input-voltage, high efficiency and past transient voltage regulator module-push-pull forward converter,” Applied Power Electron. Conf. and Expo. (APEC), vol. 1, Dallas, TX., Mar. 14-18, 1999, pp. 279-283.
    [13] X. Zhou, “Low-voltage high-efficiency fast-transient voltage regulator module,” Ph.D. dissertation, Univ. of Virginia Polytechnic Institute and State, Elect. Comput. Eng. Dept., Blacksburg, Virginia, 1999.
    [14] P. Xu, Y-C Ren, M. Ye and F. C. Lee, “A family of novel interleaved DC/DC converters for low-voltage high-current voltage regulator module applications,” IEEE PESC’01, vol. 3, 2001, pp. 1507-1511.
    [15] P. Xu, M. Ye, and F. C. Lee, “Single magnetic push-pull forward converter featuring built-in input filter and coupled-inductor current doubler for 48 V VRM,” Applied Power Electron. Conf. and Expo. (APEC), vol. 2, Dallas, TX., 2002, pp.843-849.
    [16] P. Xu, M. Ye, P. L. Wong and F. C. Lee, “Design of 48V voltage regulator modules with a novel integrated magnetics,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 990-998, Nov 2002
    [17] J. Cruz, M. Castilla, J. Miret, J. Matas, and J. L. Sosa, “Control techniques for the single magnetic push-pull forward converter with built-in input filter,” Proc. IEEE Int. Symp. on Ind. Electron., vol. 2, June 20-23 2005, pp. 769-774.
    [18] J. Cruz, M. Castilla, J. Miret, J. Matas, and J. M. Guerrero, “Averaged large-signal model of single magnetic push-pull forward converter with built-in input filter,” IEEE ISIE’04, vol. 2, May, 2004, pp. 1023-1028,.
    [19] F. Zhang, H. Qin, H. Wang, and Y. Yan, “Freewheeling current in push-pull forward converter,” in 34th Annu. IEEE Power Electron. Spec. Conf. (PESC), vol. 1, June 15-19, 2003, pp. 353-358.
    [20] Y. Xia, H. Wu, W. Liu, Y. Xing, and X. Ma, “A novel push-pull forward converter for high reliability and high input voltage applications,” IEEE Energy Conversion Congress and Expo. (ECCE), Phoenix, AZ., Sep. 17-22, 2011, pp. 2506-2511.
    [21] R. Watson, F. C. Lee and G. C. Hua, “Utilization of an Active-Clamp Circuit to Achieve Soft Switching in Flyback Converters,” IEEE Transactions on Power Electronics, no. 1, vol. 11, January, 1996, pp. 162-169,.
    [22] S. Mao, H. Wang, and Y. Yan, “A novel zero-voltage-switching push-pull DC-DC converter for high input voltage and high power applications,” Proc. Eighth Int. Conf. on Elect. Mach. and Syst. (ICEMS), vol. 2, Nanjing, Sep. 29-29, 2005, pp. 1152-1156.
    [23] 梁適安, 交換式電源供給器之理論與實務設計, 全華科技圖書股份有限公司, 2006。
    [24] EPARC, 電力電子學綜論, 1st ed. 台北市:全華圖書股份有限公司, 2007。
    [25] TDK’s European Website for Electronic Components & Systems [Online]. Available: http://www.tdk.co.jp/tefe02/e141.pdf
    [26] SIMetrix Technologies Ltd (2012). User’s Manual. [Online]. Available: http://www.simetrix,con,uk/Files/manuals/6.2/UsersManual.pdf

    QR CODE