簡易檢索 / 詳目顯示

研究生: 周思危
Sz-Wei Chou
論文名稱: 具箝位開關三階層降壓式轉換器之研製
Three-Level DC-DC Buck Converter with Clamp-Switch Control Technique
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
許益捷
I-Chieh Hsu
張佑丞
You-Cheng Zhang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 箝位三角形電流控制三階層降壓式轉換器固定導通模式固定導通模式
外文關鍵詞: Clamp-switch TCM (CL-TCM), Three-level buck converter, Constant on-time (COT) control, Zero-voltage-switching (ZVS)
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直流降壓式開關轉換器在同步導通模式下因操作頻率固定使得輕載效率大幅降低,一般而言可透過零電壓切換技術來減少切換損失。本篇論文提出以箝位三角形電流控制法(CL-TCM)之三階層降壓控制器達成零電壓切換,並結合漣波控制之固定導通模式和三階層降壓式轉換器架構的優點。控制策略使電路於輕載狀態下降低切換頻率,可減少切換損並提升效率。三階層轉換器架構降低功率開關及電感上之電壓應力,並使得轉換器切換頻率增加為為本二階層的兩倍,此舉可將電感電流漣波降為傳統二階層的四分之一倍,亦達到降低電感與電容等被動元件大小。
    晶片製程使用TSMC 0.18m 1P6M 18HVG2製程,晶片面積大小為2.09×1.25 mm2。功率級輸入電壓為 12 V、輸出電壓為3.3V,切換頻率範圍為150k至700 kHz,電感與輸出電容分別為1.4 μH與27 μF,輸出負載範圍為200 mA至1200 mA。

    關鍵詞:箝位三角形電流控制、三階層降壓式轉換器、固定導通模式、零電壓切換


    In the synchronous conduction mode (SCM) of the dc-dc step-down switching power converter, the light load efficiency is greatly reduced due to the fixed operating frequency. Generally, Zero-voltage switching (ZVS) technology is used to reduce the switching loss. This thesis proposes the ZVS Modulation Clamp-switch TCM (CL-TCM) with Constant on-time (COT) control Three-level buck controller to achieve Zero-voltage switching, combining the advantages of a ripple-based controlled fixed on-time and Three-Level Buck converter architecture. The control strategy enables the circuit to drop the switching frequency under light load conditions. It can reduce switching loss and improve efficiency. The Three-level buck converter architecture reduces the voltage stress on the power switch and the inductor, and the frequency at the switching node is doubled, which can reduce the inductor current to a quarter, to further reduce the size of inductance and capacitance in circuit.

    The chip is implemented with TSMC 0.18m 1P6M 18HVG2 process and the size of chip was 2.09×1.25 mm2. The power stage input voltage is 12 V. The output voltage is 3.3V, and the switching frequency is 150k to 700 kHz. The inductance and output capacitance are 1.4 μH and 27 μF respectively, and the output load range is 200 mA to 1200 mA.

    Keywords: Clamp-switch TCM (CL-TCM), Three-level buck converter, Constant on-time (COT) control, Zero-voltage-switching (ZVS)

    摘 要 i ABSTRACT ii 誌 謝 iii 目 錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1研究動機與目的 1 1.2論文大綱 2 第二章 三階層降壓轉換器之系統架構及介紹 3 2.1降壓轉換器系統簡介 3 2.2三階層降壓轉換器動作模式 5 2.3三階層降壓式轉換器控制原理 8 2.4三階層降壓轉換器電流漣波分析 11 2.5電流漣波 12 第三章 漣波控制的基礎 13 3.1漣波控制的簡介與應用 13 3.2固定導通時間控制 13 3.3效率比較 17 3.4固定導通時間控制穩定度分析 18 第四章 三階層CL-TCM降壓轉換器原理 21 4.1 零電壓切換技術 21 4.1.1 SCM控制 21 4.1.2 TCM控制 22 4.1.3 CL-TCM控制 25 4.2 三階層CL-TCM降壓轉換器電路簡介及動作原理 27 4.3 三階層CL-TCM降壓轉換器之參數設計和分析 34 4.4 零電壓導通之分析與設計 36 第五章 轉換器設計與實現 41 5.1轉換器電路實現與整體架構 41 5.2 固定導通時間產生電路 42 5.3 死區時間 43 5.4 驅動電路 44 5.5 CL-TCM控制訊號交錯電路 45 5.5.1 交錯訊號控制 46 5.5.2偏壓電流電路 47 5.5.3箝位開關切換電路 48 5.6子電路設計 49 5.6.1偏壓電流電路 49 5.6.2比較器 50 5.6.3電壓位準轉換器和自舉電路 51 5.6.4二級運算放大器 53 第六章 電路規格與模擬結果 55 6.1 電路規格與CL-TCM三階層降壓轉換器模擬 55 6.2 CL-TCM三階層降壓轉換器後模擬 55 6.3 模擬結果和效率比較 62 第七章 晶片測量 64 7.1 佈局平面圖 64 7.2 外部元件和PCB佈局 64 7.3 測量環境和晶片腳位配置 66 7.4 晶片測量結果 70 第八章 結論與未來展望 75 8.1結論 75 8.2未來展望 76 參考文獻 77

    [1] Qiang Tong, Nanxiao Zhong, Mingsheng Yang and Donglai Zhang, “A ZVS Buck Converter with fixed Frequency Control,” IEEE Conference on Industrial Electronics and Applications (ICIEA), 2019
    [2] V. V. Subrahmanya Kumar Bhajana and Pavel Drabek, “A novel ZCS bidirectional buck-boost DC-DC converters for energy storage applications,” IEEE International Conference on Industrial Technology (ICIT), 2015.
    [3] Kim B. Östman, Student Member, IEEE, Jani K. Järvenhaara, Svetozar S. Broussev, and Ismo Viitaniemi, “A 3.6-to-1.8-V Cascode Buck Converter With a Stacked LC Filter in 65-nm CMOS,” Engineering, Computer Science , IEEE Transactions on Circuits and Systems II: EXPRESS BRIEFS, vol. 61, no. 4, pp. 234–238, APRIL 2014
    [4] Xun Liu, Philip K. T. Mok, and Junmin Jiang, “Analysis and design considerations of integrated 3-level buck converters,” IEEE Trans. Circuits Syst. Regul. Pap. 63(5), pp. 671–682, 2016.
    [5] Wen-Hau Yang and ao-Jen Huang, “Constant-on-Time Control DC–DC Buck Converter With the Pseudowave Tracking Technique for Regulation Accuracy and Load Transient Enhancement,” IEEE Trans. on Power Electronics ,vol: 33, Issue: 7, July 2018
    [6] Biranchinath Sahu, Member, IEEE and Gabriel A. Rincón-Mora, Senior Member, IEEE, ”An Accurate, Low Voltage, CMOS Switching Power Supply with Adaptive On-Time PulseFrequency Modulation (PFM) Control,” IEEE Trans. Circuits Syst. Regul. Pap. Vol: 54, Issue: 2, Feb, 2007
    [7] Ke-Horng Chen, “Power Management Techniques for Integrated Circuit Design,” 2016, pp.177-179.
    [8] Ke-Horng Chen, “Power Management Techniques for Integrated Circuit Design,” 2016, pp.188-192.
    [9] Chih-Shen Yeh, Xiaonan Zhao and Jih-Sheng Lai, “An Investigation on Zero-Voltage-Switching Condition in Synchronous-Conduction-Mode Buck Converter,” 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 07 November 2017
    [10] Jih-Sheng Lai, Ben York, Ahmed Koran, Younghoon Cho, Bret Whitaker, and Hidekazu Miwa, “High-efficiency design of multiphase synchronous mode soft-switching converter for wide input and load range,” The 2010 International Power Electronics 62 Conference - ECCE ASIA -, June. 2010
    [11] Baocheng Wang, Ye Yuan, Yang Zhou, and Xiaofeng Sun, “Buck/Boost Bidirectional Converter TCM Control Without Zero-crossing Detection,” 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016.
    [12] Yu-Chen Liu, Yong-Long Syu and Nguyen Anh Dung, “High-Switching-Frequency TCM Digital Control for Bidirectional-Interleaved Buck Converters Without Phase Error for Battery Charging,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, Issue. 3, Sept. 2020
    [13] O. Knecht, D. Bortis and J. W. Kolar, “Comparative Evaluation of a Triangular Current Mode (TCM) and Clamp-Switch TCM DC-DC Boost Converter,” 2016 IEEE Energy Conversion 61 Congress and Exposition (ECCE), September 18-22, 2016
    [14] Oliver Knecht, Dominik Bortis, and Johann W. Kolar, “ZVS Modulation Scheme for Reduced Complexity Clamp-Switch TCM DC–DC Boost Converter,” IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4204-4214, May 2018
    [15] Jing Xue and Hoi Lee, “A 2 MHz 12–100 V 90% Efficiency Self-Balancing ZVS Reconfigurable Three-Level DC–DC Regulator With Constant-Frequency Adaptive-On-Time V2 Control and Nanosecond-Scale ZVS Turn-On Delay,” IEEE Journal of solid-state circuits, vol. 51, no. 12, December 2016
    [16] David Reusch and Fred C. Lee, Ming Xu, “Three Level Buck Converter with Control and Soft Startup,” 2009 IEEE Energy Conversion Congress and Exposition, November 2009
    [17] Woojoong Jung, Se-Un Shin, Sung-Wan Hong, Sung-Min Yoo, Tae-Hwang Kong, Jun-Hyeok Yang, Sang-Ho Kim, Michael Choi, Jongshin Shin and Hyung-Min Lee, “Dual-Path Three-Level Buck Converter With Loop-Free Autocalibration for Flying Capacitor Self-Balancing,” IEEE Trans. on Power Electronics , Vol. 36, Issue: 1, June 2020
    [18] Jing Xue, Lin Cong and Hoi Lee, “A 100-V 2-MHz Isolated QSW-ZVS Three-Level DC-DC Converter with On-Chip Dynamic Dead-Time Controlled Synchronous Gate Driver for eGaN Power FETs,” 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), May 2015

    無法下載圖示 全文公開日期 2024/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE