簡易檢索 / 詳目顯示

研究生: 林瑋騰
Wei-Teng Lin
論文名稱: 不對稱推挽式電能轉換器
Asymmetrical Push-Pull Power Converters
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林瑞禮
Ray-Lee Lin
楊宗銘
Chung-Ming Young
林志毅
Jhih-Yi Lin
榮世良
Brady Jung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 66
中文關鍵詞: 順向推挽式轉換器不對稱控制不對稱推挽式轉換器台灣科技轉換器零電壓切換低電流漣波
外文關鍵詞: current ripple reduction, asymmetrical control, asymmetrical push-pull converter, push-pull forward converter, Taiwan Tech converter, zero-voltage switching (ZVS)
相關次數: 點閱:330下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 順向推挽式轉換器已被廣泛的應用在中低功率電源上。然而,由於順向推挽式轉換器硬切式切換,造成較大的切換損失。這會間接影響整體效率及限制功率密度。
    而本篇將提出利用不對稱控制方式來達成零電壓並結合中間抽頭整流器的不對稱推挽式順向轉換器及結合順向式半波整流器和反馳式半波整流器的順向反馳式整流器提出不對稱推挽式順向反馳式轉換器。
    兩個轉換器除了繼承了順向推挽式轉換器的低輸入電流漣波之優點外他還實現零電壓切換,由其是在輕載。兩電路的操作原理,電路分析設計考量已經發表。最後,實現兩個硬體為輸入電壓300~400伏特、輸出電壓24伏特、輸入電流10安培和操作頻率在100kHz來驗證理論分析。


    Push-pull forward converter (PPF) has been widely used in low-to-medium power applications. However, it has large switching losses due to its hard-switching operation. It will impact the conversion efficiency and limit power density.
    Employing a center-tapped rectifier and a mixed forward half-wave rectifier and a flyback half-wave rectifier, two asymmetrical push-pull forward converters, an asymmetrical push-pull forward converter (APPF) and an asymmetrical push-pull forward-flyback converter (APPFF) are proposed and investigated in this thesis.
    In addition to having input ripple reduction inherits from its predecessor, zero voltage switching (ZVS) operation in both converters are achieved, especially in light load operating conditions.
    The operational principle, circuit analysis and design consideration are addressed. Finally, two hardware implementations with 300-400-V input, 24-V/10-A output, 100 kHz, are built to verify theoretical analysis.

    Abstract I Acknowledgements II Table of Contents III List of Figures V List of Tables VIII Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Objectives of the Thesis 3 1.3 Organization of the Thesis 3 Chapter 2 Asymmetrical Push-Pull Forward Converter 5 2.1 Introduction 5 2.2 Operation principle 6 2.3 Circuit analysis 11 2.3.1 Voltage gain 11 2.3.2 Semiconductors voltage stress 12 2.3.3 Transformer DC-bias current 12 2.3.4 ZVS condition 13 2.4 Circuit design 15 2.4.1 Transformer 15 2.4.2 Output inductor 19 2.4.3 Output capacitor Co 21 2.4.4 Clamping capacitors Cc and Cr 22 2.4.5 Switches Q1 and Q2 23 2.4.6 Output rectifier diodes D1 and D2 23 2.5 Experimental results 24 2.5.1 Experimental results of the APPF 24 2.6 Summary 30 Chapter 3 Asymmetrical Push-Pull Forward-Flyback Converter 31 3.1 Introduction 31 3.2 Operation principle 32 3.3 Circuit analysis 37 3.3.1 Operating mode 37 3.3.2 Output current distribution ID1 and ID2 39 3.3.3 Transformer DC-bias current 40 3.3.4 ZVS condition 41 3.4 Circuit design 42 3.5 Experimental results 43 3.5.1 Experimental results of the APPFF 43 3.6 Summary 49 Chapter 4 Conclusion and Future Works 50 4.1 Conclusion 50 4.2 Future works 51 References 52

    [1] X. Zhou, B. Yang, L. Amoroso, F. C. Lee, and P. L. Wong, “A novel high-input-voltage, high efficiency and past transient voltage regulator module-push-pull forward converter,” Applied Power Electron. Conf. and Expo. (APEC), vol. 1, Dallas, TX., Mar. 14-18, 1999, pp. 279-283.
    [2] J. Wei, P. Xu, and F. C. Lee, “A high efficiency topology for 12 V VRM-push-pull buck and its integrated magnetic implementations,” Applied Power Electron. Conf. and Expo. (APEC), vol. 2, Dallas, TX., 2002, pp. 679-685.
    [3] P. Xu, M. Yo, P. L. Wong, and F. C. Lee, “Design of 48 V voltage regulator modules with a novel integrated magnetic,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 990-998, Nov. 2002.
    [4] P. Xu, M. Ye, and F. C. Lee, “Single magnetic push-pull forward converter featuring built-in input filter and coupled-inductor current doubler for 48 V VRM,” Applied Power Electron. Conf. and Expo. (APEC), vol. 2, Dallas, TX., 2002, pp.843-849.
    [5] J. Cruz, M. Castilla, J. Miret, J. Matas, and J. M. Guerrero, “Averaged large-signal model of single magnetic push-pull forward converter with built-in input filter,” IEEE Int. Symp. on Ind. Electron., vol. 2, May 4-7, 2004, pp. 1023-1028.
    [6] J. Cruz, M. Castilla, J. Miret, J. Matas, and J. L. Sosa, “Control techniques for the single magnetic push-pull forward converter with built-in input filter,” Proc. IEEE Int. Symp. on Ind. Electron., vol. 2, June 20-23 2005, pp. 769-774.

    [7] F. Zhang, H. Qin, H. Wang, and Y. Yan, “Freewheeling current in push-pull forward converter,” in 34th Annu. IEEE Power Electron. Spec. Conf. (PESC), vol. 1, June 15-19, 2003, pp. 353-358.
    [8] X. Zhou, “Low-voltage high-efficiency fast-transient voltage regulator module,” Ph.D. dissertation, Univ. of Virginia Polytechnic Institute and State, Elect. Comput. Eng. Dept., Blacksburg, Virginia, 1999.
    [9] Y. Xia, H. Wu, W. Liu, Y. Xing, and X. Ma, “A novel push-pull forward converter for high reliability and high input voltage applications,” IEEE Energy Conversion Congr. and Expo. (ECCE), Phoenix, AZ., Sep. 17-22, 2011, pp. 2506-2511.
    [10] S. Mao, H. Wang, and Y. Yan, “A novel zero-voltage-switching push-pull DC-DC converter for high input voltage and high power applications,” Proc. Eighth Int. Conf. on Elect. Mach. and Syst. (ICEMS), vol. 2, Nanjing, Sep. 29-29, 2005, pp. 1152-1156.
    [11] C. S. Leu, “Improved forward topologies for DC-DC applications with built-in input filter,” Ph.D. dissertation, Univ. of Virginia Polytechnic Institute and State, Elect. Comput. Eng. Dept., Blacksburg, Virginia, 2006.
    [12] J. Sebastian, J. Uceda, M. Rico, M. A. Perez. and F. Aldana, “A complete study of the double forward-flyback converter,” in 19th Annu. IEEE Power Electron. Specialists Conf. (PESC), vol. 1, Kyoto, Japan, Apr. 11-14, 1988, pp.142-149.
    [13] F. Chen, H. Hu, J. Shen, I. Batarrseh and K. Rustom, “Design and analysis for ZVS forward-flyback DC-DC converter,” IEEE Energy Conversion Congr. and Expo. (ECCE), Phoenix, AZ., Sep. 17-22, 2011, pp. 116-121.
    [14] J. H. Lee, J. H. Park and J. H. Jeon, “Series-connected forward-flyback converter for high step-up power conversion,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3629-3541, Dec. 2011.
    [15] D. M. Bellur, M. K. Kazimierczuk, “Two-switch flyback-forward PWM DC-DC converter with reduced switch voltage stress,” Proc. of the IEEE Int. Symp., Circuits and Systems (ISCAS), Paris, 30 May. ~2 June, 2010, pp.3705-3708.
    [16] Y. M. Liu, “Forward-flyback converter with active-clamp circuit,” U.S. Patents, 8,009,448 B2 Aug. 30, 2011.
    [17] L. Huber, M. M. Jovanović, “Forward-flyback converter with current-doubler rectifier: analysis, design, and evaluation results,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 184-192, Jan. 1999.
    [18] R. L. Lin, and Y. H. Huang, “Forward-flyback converter with snubber-feedback network for contactless power supply applications,” IEEE Energy Conversion Congr. and Expo. (ECCE), Atlanta, GA., Sep. 12-16, 2010, pp. 1422-1427.
    [19] H. E. Tacca, “Power factor correction using merged flyback-forward converters,” IEEE Trans. Power Electron., vol. 15, no. 4, pp.585-594, July 2000.
    [20] F. Zhang, and Y. Yan, “Novel forward–flyback hybrid bidirectional DC–DC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp.1578-1584, May 2009.
    [21] Y. Wei, X. Wu, Y. Gu, and H. Ma, “Wide range dual switch forward-flyback converter with symmetrical RCD clamp,” IEEE Power Electron. Specialists Conf., Recife, June 16-16, 2005, pp.420-424.
    [22] TDK’s European Website for Electronic Components & Systems [Online]. Available: http://www.tdk.co.jp/tefe02/e141.pdf
    [23] MH&W International Corp.| a powerful solution [Online]. Available: http://www.mhw-intl.com/assets/CSC/CSC%20Catalog%202011.pdf
    [24] B. King and D. Strasser “Incorporating active-clamp technology to maximize efficiency in flyback and forward designs,” [Online]. Available: http:// www.ti.com/lit/ml/slup262/slup262.pdf.

    QR CODE