簡易檢索 / 詳目顯示

研究生: 林嵩豪
Sung-hao Lin
論文名稱: 結合環境資訊之互動式機器人順應性控制
Interactive robot compliance control incorporating environment information
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 黃緒哲
Shiuh-Jer Huang
黃安橋
An-Chyau Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 力量控制阻抗控制
外文關鍵詞: force control, impedance control
相關次數: 點閱:236下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以設計伺服平台之運動與接觸為主要目的,開發一互動式平台,使操作者能由類比遙桿下達操控命令,經由速度為基礎的力量阻抗控制器,產生速度命令給伺服平台,因此平台能在工作範圍內,以力量控制器之設定,進行特定之運動和接觸任務。
為了提高平台接觸之安全性和效率,以平台工作範圍內的環境資訊,建立一具有方向性之虛擬環境阻抗以調變速度命令,因此平台能安全且有效率達成接觸任務。本研究於模擬與實驗,比較Implicit force control有無加入阻抗控制之差異。阻抗控制器之加入,可以使平台在自由空間之運動不會造成影響,並在接觸時能增加接觸之安全性。


In this research, the main control method is velocity-based force- impedance control. Human operate the incorporating platform by the joystick, and the joystick signal as a desired command force. The force impedance controller will transfer the error between command force and contact to a design motion. The platform will follow the motion using velocity control.
In order to improve the contact behavior more safer and efficient, we use the environment information to build a directive virtual environment impedance field, depend on whether the end-effector is, the virtual impedance will adjust the force impedance controller to generate a better velocity command. According to this velocity command, the platform can proceed a safe and efficient contact task.

摘 要 I Abstract II 目錄 III 圖表索引 VI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.3 研究目的 8 1.4 論文大綱 10 第二章 順應性控制簡介 11 2.1 力量控制 11 2.2 阻抗控制 11 2.2.1 力量為基礎的阻抗控制(Force-based impedance control) 12 2.2.2 位置基礎的阻抗控制(Position-based impedance control) 13 2.3 以位置為基礎的力量阻抗控制(Position-based Force-impedance control) 14 第三章 結合環境資訊之互動順應性控制器設計與模擬 16 3.1 互動式平台之力量阻抗控制設計 18 3.1.1 Implicit force control設計 18 3.1.2 位置為基礎的阻抗控制參數設計 20 3.2 速度為基礎之力量阻抗控制之模擬 21 3.2.1 模擬環境介紹 21 3.2.2 固定力量放大增益之靈敏度設計的模擬結果與討論 36 3.2.3 固定靈敏度增益之力量放大增益設計的模擬結果與討論 23 3.2.4 阻抗控制器設計之模擬結果與討論 25 3.3 以環境資訊調變Implicit force control 26 3.3.1 虛擬溫度場調變設計 27 3.3.2 虛擬溫度場建立 27 3.3.3 虛擬溫度場參數設計 29 3.3.4 虛擬溫度場結合操作者意圖 32 3.4 結合操作意圖之虛擬溫度場調變Implicit force control之模擬 35 3.4.1模擬環境介紹 36 3.4.2模擬結果與討論 37 3.5 模擬總結 39 第四章 實驗設備 41 4.1 實驗平台架構概述 41 4.2 運動平台 43 4.2.1 馬達及驅動器 43 4.2.2 滑軌與螺桿 44 4.2.3 終端致動器 43 4.3 介面卡 45 4.3.1 資料擷取卡(PCI-6229) 45 4.3.2 運動控制卡(PCI-8134) 45 4.4 感測器 46 4.4.1 三軸力荷重計(3-Component Force Transducer) 46 4.4.2 動態應變放大器 47 4.4.3 光感測器 47 4.5 操控遙桿 48 第五章 實驗結果與討論 49 5.1 實驗規劃 49 5.1.1目標物大小、位置規劃與虛擬溫度場的建立 50 5.1.2 實驗流程 54 5.2 實驗結果與討論 56 5.2.1 Implicit force control的實驗結果與討論 57 5.2.2 結合操作意圖之虛擬溫度場的實驗結果與討論 57 5.2.3 阻抗控制器的實驗結果與討論 63 5.2.4 接觸面的實驗結果與討論 63 5.2.5 手部牽引終端致動器的實驗結果與討論 64 第六章 結論與未來展望 68 6.1 結論 68 6.2 未來展望 68 參考文獻 70

1.Sturges, R.H. and Laowattana, S., “Passive assembly of non-axisymmetric rigid parts,” Proceedings of the Intelligent Robots and Systems '94, Vol. 2, Munich, Germany, September 1994, Vol. 2, pp. 1218-1225.
2.Meyer F, Spröwitz A, and Berthouze L, “Passive compliance for a RC servo-controlled bouncing robot,” Advanced Robotics, Vol. 20, No. 8, 2006, pp. 953-961.
3.Paul R. and Shimano B., “Compliance and control,” Proceedings of the Joint Automatic Control Conference, New York, 1976, pp.694-699.
4.Raibert, M. and Craig, J., “Hybrid Position/Force Control of Manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 102, No. 102, June 1981, pp. 126-133.
5.Liu, G. J. and Goldenberg, A. A., “Robust Hybrid Impedance Control of Robot Manipulators,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Vol. 1, Sacramento. California, April, 1991, pp. 287-292.
6.Hogan, N., “Impedance control: An approach to manipulation: Part I-III, ” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 107, No. 1, 1985, pp. 1-24.
7.Kazerooni, H., Sheridan, T., and Houpt, P., “Robust compliant motion for manipulators: the fundamental concepts of compliant motion (part I); design method (part II),” Proceedings of the IEEE Journal of Robotics and Automation, Vol. 2, No. 2, 1986, pp. 83–105.
8.Lasky, T. and Hsia, T.C. “On Force-Tracking Impedance Control of Robot Manipulators,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, Vol. 12 California, April 1991,pp. 274-280.
9.Jung, S., Hsia T. C. and Bonitz R. G., “Force Tracking Impedance Control for Robot Manipulators with an Unknown Environment: Theory, Simulation, and Experiment,” International Journal of Robotics Research, Vol. 20, No. 9, September 2001, pp. 765-774.
10.Hsia, T. C. and Steve, T. C., “A New Technique for Robust Control of Servo Systems,” IEEE Transactions on Industrial Electronics, Vol. 36, NO. 1, February, 1989, pp. 1-7.
11.Jin, M., Kang, S. H. and Chang, P. H., “Robust Compliant Motion Control of Robot With Nonlinear Friction Using Time-Delay Estimation,” IEEE Transaction on Industrial Electronics, Vol. 55, No. 1, January ,2008.
12.Jung, S. and Hsia, T. C., “ Neural Network Impedance Force Control of Robot Manipulator,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 3, June 1998, PP. 451-461.
13.Jung, S. and Hsia, T. C., “On Neural Network Application to Robust Impedance Control of Robot Manipulators,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Vol. 12, May, 1995, pp. 869-874.
14.Colbaugh, R., Seraji, H. and Glass, K., “Impedance control for dexterous space manipulators,” Proceedings of the 31st Conference on Decision and Control, Vol. 2, Tucson, Arizona, December 1992, pp. 1881-1886.
15.Lu, W. and Meng, Q. “Impedance Control with Adaptation for Robotic Manipulators,” IEEE Transactions on Robotics and Automation, Vol. 7, No. 3, June 1991,pp. 408-415.
16.Javier, G. G., Anders, R., Juan, G. O. and Rolf, J., “Sensor Fusion for Compliant Robot Motion Control, ” IEEE Transactions on Robotics, Vol. 24, No. 2, April, 2008.
17.Heinrichs, B., Sepehri N. and Thornton-Trump, A. B., “Position-Based Impedance Control of an Industrial Hydraulic Manipulator,” IEEE Control Systems Magazine, Vol. 17, February, 1997, pp. 46-52.
18.Surdilovic, D. and Kirchhof, J., “ A new position based force/impedance control for industrial robot,” Proceedings of the 2000 IEEE International Conference on Robotics and Automation Minneapolis, Vol. 1, April 1996..
19.Li, T.,Yang, C. and Ge, S. S., “Learning Compliance Control of Robot Manipulators in Contact with the Unknown Environment,” Proceedings of the 6th annual IEEE Conference on Automation Science and Engineering, August 21-24, 2010, pp. 644-649.
20.Surdilovic, D., “Contact Stability Issues in Postion Based Impedance Control: Theory and Experiments,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1675-1680, 1996.
21.Surdilovic, D., “Contact Transition Stability in the Impedance Control,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Vol. 1, pp. 847-852, 1997.
22.Xu, Y., John, M. H. and Ma, D., “Force and Contact Transient Control Using Nonlinear PD Control,” IEEE control system, Vol. 15, August, 2002.
23.Lee, S. Y., Lee, K. Y., Lee, S. H., Kim, J. W. and Han, C. S., “Human-robot cooperation control for installing heavy construction materials,” Auton. Robot, Vol. 22, pp. 305-319, 2007.
24.Kosuge, K., Fujisawa, Y. and Fukuda, T., “Mechanical System Control with Man-Machine-Environment Interactions,” Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Vol. 1, May, 1993 pp. 239-244
25.Duchaine, V. and Gosselin, C. M., “General model of human-robot cooperation using a novel velocity based variable impedance control,” In WorldHaptics, Tsukuba, Japan, March 22-24 2007, pp 446-451,
26.Morel, G., Malis, E. and Boudet, S., “Impedance based combination of visual and force control,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1743-1748, May 1998.
27.Suzuki, H. and Terashima K., “Semi-Automatic Control of Overhead Crane using Potential Method,” Proceedings of the 2000 IEEE International Conference on Systems, Vol.5, Nashville, TN, August, 2000, pp. 3224-3229.
28.Nishiwaki, K. and Yano, K., “Variable Impedance Control of Meal Assistance Robot Using Potential Method,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Acropolis Convention Center, September, 2008, pp. 22-26.
29.Vukobratovic, M., Ekalo, Y. and Katic, D., “Dynamic and Robust Control of Robot-Environment Interaction,” World Scientific, Vol. 2, New Jersey, 2009.
30.潘舒喬,「具負載補償之可調變阻抗控制應用於人與機械手臂協力作業」,台北,國立台灣科技大學高分子所碩士論文,民國九十九年。

QR CODE