簡易檢索 / 詳目顯示

研究生: 葉俊言
Chun-Yen Yeh
論文名稱: 渾沌系統同步之Lipschitz滑動控制器設計及其實驗驗證
Design of Lipschitz Sliding Mode Control for Synchronization of Chaotic Systems and its Experimental Validation
指導教授: 楊振雄
Cheng-Hsiung Yang
口試委員: 陳金聖
Chin-Sheng Chen
郭永麟
Yong-Lin Kuo
徐勝均
Sheng-Chun Hsu
楊振雄
Cheng-Hsiung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 67
中文關鍵詞: 渾沌系統滑動控制離散化現場可程式化閘陣列
外文關鍵詞: Chaotic system, Sliding mode control, Discretization, Field Programmable Gate Array
相關次數: 點閱:791下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據渾沌理論,我們設計了一個四維度渾沌系統並對其特性來做分析。因此我們應用相圖分析、平衡點分析、分歧圖、龐加萊圖、李亞普諾夫指數等技術,來分析此渾沌系統的特性及其運動行為,緊接著我們討論控制理論,利用控制器讓兩個相似但初始條件不同的渾沌系統進行同步。
    此論文,我們利用滑動控制來設計控制器給四維度渾沌系統讓從系統同步主系統。
    雖然滑動控制可以使渾沌系統進行同步,但我們卻發現滑動控制器的效能並不是很理想。而為了提高效能,我們提出了Lipschitz滑動控制來改善效能。除此之外,我們也想要實現渾沌系統以及渾沌系統利用控制器進行同步後的結果。因為FPGA被廣泛的使用,因此我們選擇實現在FPGA上。然而在實現之前,我們必須先離散渾沌系統而我們是利用尤拉後差法對系統做離散。離散完後建立模型在FPGA上。最終,離散渾沌系統則能實現在FPGA上,而我們可以利用數位示波器對FPGA裡的渾沌訊號進行觀測並驗證。


    According to chaos theory, we design the four dimensional chaotic system and analyze their properties. So, we use phase portraits, equilibrium analysis, bifurcation diagrams, Poincaré maps, and Lyapunov exponent to investigate chaotic properties and motion. After that, we discuss control theory that let two identical chaotic system with different initial conditions to synchronize.
    In this thesis, we utilize sliding mode control to design controller for four dimensional chaotic system and let slave system synchronize master system. Although the sliding mode control can synchronize chaotic system, we find that sliding mode control have not perfect efficiency. In order to promote efficiency, we propose Lipschitz sliding mode control. It is a combination of sliding mode control and Lipschitz condition. Furthermore, we want to achieve the four dimensional chaotic system and synchronization of chaotic system. FPGA have been widely used, so we achieve on it. Before achieving, we must discretize chaotic system. And then, we use Euler’s backward difference to discretize the four dimensional chaotic system and synchronization of chaotic system. Finally, the discretized chaotic system is implemented on FPGA and the chaotic signals are visualized using a digital oscilloscope, validating the proposed scheme.

    Contents 摘要 I Abstract II 誌謝 III List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature review 2 1.3 Thesis structure 2 Chapter 2 Nonlinear System Dynamics Analysis of Four Dimensional Chaotic System 4 2.1 Design four dimensional chaotic system and phase portraits 4 2.2 Equilibrium analysis 6 2.3 Lyapunov exponent analysis 6 2.4 Bifurcation diagram and Poincaré map 9 Chapter 3 Synchronization of Chaotic System 15 3.1 The theory of the active sliding mode control with disturbances 15 3.2 Synchronization of chaotic system with disturbances via sliding mode control 20 3.3 The theory of the Lipschitz sliding mode control with disturbances 24 3.4 Synchronization of chaotic system with disturbances via Lipschitz sliding mode control. 27 3.5 Synchronization of chaotic system with different disturbances via Lipschitz sliding mode control .32 Chapter 4 FPGA Implementation for Synchronization of Chaotic System 39 4.1 Introduction to FPGA 39 4.2 FPGA implementation for four dimensional chaotic system 41 4.3 The discrete theory of the active sliding mode control with disturbances 46 4.4 FPGA implementation for synchronization of the chaotic system with disturbances by using sliding mode control 49 4.5 The discrete theory of the Lipschitz sliding mode control with disturbances 55 4.6 FPGA implementation for synchronization of the chaotic system with disturbances by using Lipschitz sliding mode control 57 Chapter 5 Conclusion 63 References 64

    [1]. E. N. Lorenz, “Deterministic non-periodic flows,” Journal of the atmospheric sciences, vol. 20, pp. 130-141, Jan.1963.
    [2]. J. C. Roux, R. H. Simoyi, and H. L. Swinney, “Observation of a strange attractor,” Physica D:Nonlinear Phenomena, vol. 8, pp. 257-266, Jul.1983.
    [3]. R. C. Hilborn, “Sea gulls, butterfiles, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics,” American Journal of Physics, vol. 72, pp. 425, Mar. 2004.
    [4]. H.-H. Chen, “Stability criterion for synchronization of chaotic systems using linear feedback control,” Physics Letters A, vol. 372, pp. 1841-1850, Mar. 2008.
    [5]. H.-H. Chen, “Global synchronization of chaotic systems via linear balanced feedback control,” Applied Mathematics and Computation, vol. 186, pp. 923-931, Mar. 2007.
    [6]. H.-H. Chen, G.-J. Sheu, Y.-L. Lin, and C.-S. Chen, “Chaos synchronization between two different chaotic systems via nonlinear feedback control,” Nonlinear Analysis, vol. 70, pp. 4393-4401, June. 2009.
    [7]. M. Zribi, N. Smaoui, and H. Salim, “Synchronization of the unified chaotic systems using a sliding mode controller,” Chaos, Solitons and Fractals, vol. 42, pp. 3197-3209, Dec. 2009.
    [8]. H. Handa and B. B. Sharma, “Novel adaptive feedback synchronization scheme for a class of chaotic systems with and without parametric uncertainty,” Chaos, Solitons and Fractals, vol. 86, pp. 50-63, May. 2016.
    [9]. C.-S. Chen and H.-H. Chen, “Robust adaptive neural-fuzzy-network control for the synchronization of uncertain chaotic systems,” Nonlinear Analysis: Real World Applications, vol. 10, pp. 1466-1479, June. 2009.
    [10]. Y. Gao, C. Liang, Q. Wu, and H. Yuan, “A new fractional-order hyperchaotic system and its modified projective,” Chaos, Solitons and Fractals, vol. 76, pp. 190-204, Jul.2011.
    [11]. Q. Yang and Y. Liu, “A hyperchaotic system from a chaotic system with one saddle and two stable node-foci,” Journal of Mathematical Analysis and Applications, vol. 360, pp. 293-306, Dec.2009.
    [12]. Y. Xu and Y. Wang, “A new chaotic system without linear term and its impulsive synchronization,” Optik, vol. 125, pp. 2526-2530, Jun.2014.
    [13]. A. Senouci and A. Boukabou, “Predicitive control and synchronization of chaotic and hyperchaotic systems based on a T-S fuzzy model,” Mathematics and Computers in Simulation, vol. 105, pp. 62-78, Nov.2014.
    [14]. S. M. Shekatkar and G. Ambika, “Novel coupling scheme to control dynamics of coupled discrete systems,” Commun Nonlinear Sci Numer Simulat, vol. 25, pp. 50-65, Aug.2015.
    [15]. H.-B. Zeng, J.-H. Park, J.-W. Xia, and S.-P. Xiao “Improved delay-dependent stability criteria for T-S fuzzy systems with time-varying delay,” Applied Mathematics and Computation, vol. 235, pp. 492-501, May.2014.
    [16]. A. Boukabou and N. Mekircha “Generalized chaos control and synchronization by nonlinear high-order approach,” Mathematics and Computers in Simulation, vol. 82, pp. 2268-2281, Jul.2012.
    [17]. S. Hadef and A. Boukabou “Control of multi-scroll Chen system,” Journal of the Franklin Institue, vol. 351, pp. 2728-2741, May.2014.
    [18]. M. M. El-Dessoky, M. T. Yassen, and E. S. Aly “Bifurcation analysis and chaos control in Shimizu-Morioka chaotic system with delayed feedback,” Applied Mathematics and Computation, vol. 243, pp. 283-297, Sep.2014.
    [19].Pehlivan, I. M. Moroz, and S. Vaidyanathan “Analysis, synchronization and circuit design of a novel butterfly attractor,” Journal of Sound and Vibration, vol. 55, pp. 1904-1915, Apr.2012.
    [20]. N. Cai, Y. Jing, and S. Zhang “Modified projective synchronization of chaotic systems with disturbances via active sliding mode control,” Commun Nonlinear Sci Numer Simulat , vol. 15, pp. 1613-1620, Jun.2010.
    [21]. H. Wang, Z.-Z. Han, Q.-Y. Xie, and W. Zhang “Sliding mode control for chaotic systems based on LMI,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 1410-1417, Apr.2009.
    [22]. H. Zhang, X.-K. Ma, and W.-Z. Liu “Synchronization of chaotic systems with parametric uncertainty using active sliding mode control,” Chaos, Solitons and Fractals, vol. 21, pp. 1249-1257, Sep.2004.
    [23]. J.-J. Yan, C.-Y. Chen, and S.-S. Tsai “Hybrid chaos control continuous unified chaotic systems using discrete rippling sliding mode control,” Nonlinear Analysis: Hybrid Systems, vol. 22, pp. 276-283, Nov.2016.
    [24]. M. Yahyazadeh, A.-R. Noei, and R. Ghaderi “Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control,” ISA Transactions, vol. 50, pp. 262-267, Apr.2011.
    [25]. N. Bigdeli and H.-A. Ziazi “Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems,” Journal of the Franklin Institute, vol. 354, pp. 160-183, Jan.2017.
    [26]. M.-C. Pai “Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity,” Applied Mathematics and Computation, vol. 271, pp. 757-767, Nov.2015.
    [27]. L. Gao, Z. Wang, K. Zhou, W. Zhu, Z. Wu and T. Ma “Modified sliding mode synchronization of typical three-dimensional fractional-order chaotic systems,” Neurocomputing, vol. 166, pp. 53-58, Oct.2015.
    [28]. U.-E. Kocamaz, Y. Uyaroglu and H. Kizmaz “Control of Rabinovich chaotic using sliding mode control,” International Journal of Adaptive Control and Signal Processing, vol. 28, pp. 1413-1421, Dec.2014.
    [29]. C. Yin, S. Dadras, S.-M. Zhong and Y. Chen “Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach,” Applied Mathematical Modelling, vol. 37, pp. 2469-2483, Feb.2013.
    [30]. F. Farivar, M.-A. Shoorehdeli, M. Teshnehlab and M.-A. Nekoui “Modified projective synchronization of unknown chaotic dissipative gyroscope systems via Gaussian radial basis adaptive variable structure control,” Journal of Vibration and Control, vol. 19, pp. 491-507, Mar.2013.
    [31]. R. R. Babu and R. Karthikeyan “Adaptive Synchronization of Novel Chaotic System and its FPGA Implementation,” International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, pp. 449-454, May.2015.
    [32]. I. Koyuncu, A. T. Ozcerit, and I. Pehlivan “Implementation of FPGA-based real time novel chaotic oscillator,” Nonlinear Dyn, vol. 77, pp. 49-59, July.2014.
    [33]. Z. Galias and X. Yu “Euler’s discretization of single input sliding-mode control systems,” IEEE Transactions on Automatic Control, vol. 52, pp. 1726-1730, Sep.2007.
    [34]. E. Dong, Z. Liang, S. Du, and Z. Chen “Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement ,” Nonlinear Dyn, vol. 83, pp. 623-630, Jan.2016.
    [35]. E. T. Cuautle, A. D. Azucena, J. J. Magdaleno, V. H. Gomez, and G. Gomez “Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs,” Nonlinear Dyn, vol. 85, pp. 2143-2157, Sep.2016.
    [36]. Q. Wang, S. Yu, C. Li, J. Lu, X. Fang, C. Guyeux, and J. M. Bahi “Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digitial Chaotic Systems,” IEEE Transactions on Circuits and Systems, vol. 63, pp. 401-412, Mar.2016.
    [37]. Y. Yan, Z. Galias, X. Yu, and C. Sun “Euler’s discretization effect on a twisting algorithm based sliding mode control,” Automatica, vol. 68, pp. 203-208, June.2016.

    無法下載圖示 全文公開日期 2022/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE