簡易檢索 / 詳目顯示

研究生: 許文興
Wen-Shing Hsu
論文名稱: 混合345 kV架空與地下電力電纜傳輸線數位測距保護之研究
Study of Digital Distance Relaying in Combined 345 kV Overhead and Underground Power Transmission Lines
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 蕭宏清
Hung-Ching Hsiao
王順源
Shun-Yuan Wang
何子儀
Tze-Yee Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 133
中文關鍵詞: 數位濾波演算法FORTRANEMTP測距電驛
外文關鍵詞: full cycle discrete fourier transform, EMTP, digital protection relay, FORTRAN
相關次數: 點閱:592下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電力負載逐年增加,為求電力供電的穩定,其電力傳輸線路之事故已不容忽視;因此,為能快速判定傳輸線路故障點之相關數據,並提昇其準確性,本論文利用數位式電驛保護與故障定位演算法,在各種不同故障狀態下,提出可行之計算方式。
    首先,使用全週期離散傅立葉轉換(Full Cycle Discrete Fourier Transform, FCDFT)數位濾波演算法,求出電壓、電流的基本波相量值,利用基本波相量做故障偵測、判別故障種類及計算故障距離。其次,採用電磁暫態程式(Electromagnetic Transient Program, EMTP),嘉民-南科線路故障案例進行模擬;最後,其線路故障電壓與電流數據利用FORTRAN程式語言模擬輸電線路濾波演算,其模擬結果顯示,對故障偵測、故障類別判定、故障距離計算及故障後之跳脫時間判別等,均能正確計算實現,但輸電線路為集中式模型,未考慮分佈電容效應及未採用長程輸電線模型,故在地下電力電纜處之故障測距最大估測誤差達23%,架空輸電線路平均誤差在1.5%範圍以內。


    The contingencies in transmission line are more serious as the power demand is keeping increase lately. To improve the accuracy in diagnosis and to obtain the contingency status on transmission line, the thesis presents a calculating method applying digital protection relay and fault location algorithm in many kinds of fault condition.
    First of all, using Full Cycle Discrete Fourier Transform (FCDFT) to obtain the fundamental component of voltage and of current, and therefore the fault-detection, discrimination of the fault type, and calculation of the fault distance can be calculated by the obtained fundamental component. Secondly, using Electromagnetic Transient Program (EMTP) to simulate the contingency happened in Ghiamin-Nankir transmission line and to obtain the voltage and current value in contingency. Finally, through the filter simulating of FORTRAN programming, results obtained show that fault-detection, discrimination of the fault type, calculation of the fault distance, and calculation of the tripping time can be calculated correctly. However, to the centralizing model without considering capacitive effect and without adopting long-distance transmission models, the error rate of location-estimating can limited fewer than 23% upon underground cable and the average of location-estimating can limited less than 1.5% upon overhead transmission line.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目標 2 1.3 文獻回顧 3 1.3.1 單回線輸電線保護電驛 3 1.3.2 數位濾波器與相量計算 3 1.3.3 輸電線路參數估測 4 1.3.4 輸電線故障定位 5 1.4 研究貢獻 5 1.5 論文內容架構 6 第二章 輸電線測距保護電驛 7 2.1 前言 7 2.2 345 kV超高壓輸電線路保護 9 2.2.1 輸電線路保護模式 10 2.2.2 超高壓輸電線路保護電驛系統 14 2.2.3 超高壓輸電線路主保護與後衛保護 16 2.2.4 CT與 CCVT之影響 16 2.3 測距保護電驛基本功能組合 18 2.4 測距保護電驛基本原理 18 2.5 測距保護電驛基本特性 20 2.6 測距保護電驛動作特性型式 22 2.7 測距電驛標置設定應用 23 2.7.1 345 kV線路保護測距電驛標置原則 23 2.7.2 345 kV超高壓輸電線系統 25 2.7.3 345 kV超高壓輸電線路常數與電驛標置阻抗計算 25 2.7.4 測距電驛標置計算流程 27 2.7.5 差電流電驛標置設定 29 2.7.6 測距電驛性能測試 29 2.8 本章結論 37 第三章 數位濾波演算法 38 3.1 前言 38 3.2 前置濾波器 38 3.3 直流偏移消除演算法 39 3.3.1 消除直流偏移量之R-L類比電路 40 3.2.2 數位模擬(Mimic)濾波器 41 3.4 傅立葉轉換遞迴運算信號檢測 42 3.5 傅立葉濾波演算法 44 3.5.1 全週期(Full Cycle)離散傅立葉轉換 44 3.5.2 半週期(Half Cycle)離散傅立葉轉換 46 3.6 故障前、後模擬結果 48 3.7 本章結論 60 第四章 345 kV超高壓輸電線故障定位 62 4.1 前言 62 4.2 電力系統輸電線採用測距電驛之理由 62 4.2.1 使用測距電驛保護方式 62 4.2.2 使用測距電驛之優點 63 4.3 數位測距電驛檢測 63 4.3.1 數位測距電驛硬體架構 64 4.3.2 數位測距電驛演算邏輯流程 65 4.3.3 數位測距電驛故障檢測類別判定 66 4.3.4 電力系統輸電線等效模型 68 4.4 輸電線上電流與電壓之關係 69 4.4.1 輸電線每相模型 69 4.4.2 輸電線等效電路模型 73 4.5 輸電線故障定位 74 4.5.1 一般輸電線的故障定位 74 4.5.2 輸電線故障序網路等效電路 76 4.6 輸電線故障定位演算 77 4.7 輸電線故障定位電纜線有效長度計算 83 4.8 輸電線故障信號模擬結果與分析 85 4.8.1 三相短路故障信號波形與距離估測模擬 85 4.8.2 相間短路故障信號波形與距離估測模擬 92 4.8.3 兩相短路接地故障信號波形與距離估測模擬 98 4.8.4 單相接地故障信號波形與距離估測模擬 104 4.9 本章結論 110 第五章 結論及未來研究方向 111 5.1 結論 111 5.2 未來研究方向 112 參考文獻 113 作者簡介 117

    [1] J. L. Blackburn, “Protective Relaying:Principle and Application”, 2nd edition Marcel Dekker Inc, 1998.
    [2] W. A. Elmore, “Protective Relaying Theory and Applications”, Marcel Dekker Inc., Florida 1994.
    [3] 李宏任,「實用保護電驛」,全華科技圖書,民國八十八年五月。
    [4] 臺灣電力公司供電處網站http://www.taipower.com.tw「345 kV系統輸電線保護電驛規劃準則」。
    [5] 陳清山,「基於同步量測及適應性濾波技術之輸電線數位保護電驛與故障定位演算之設計」,國立臺灣大學博士論文,民國九十二年一月。
    [6] S. H. Horowitz, A. G. Phadke and J. S. Thorp, “Adaptive Transmission System Relaying”, IEEE Transactions on Power Delivery, Vol. 3, No. 4, pp. 1436-1445, 1988.
    [7] M. Akke and J. S. Thorp, “Some Improvements in The Three-Phase Differential Equation Algorithm for Fast Transmission Line Protection”, IEEE Transactions on Power Delivery, Vol. 13, No. 4, pp. 66-72, 1998.
    [8] 于尚禮,「改良式傅立葉濾波器演算法應用於串聯補償傳輸線之故障定位」,國立臺灣科技大學博士論文,民國九十年七月。
    [9] 李全章,「雙回線輸電線故障測距演算法」,國立清華大學碩士論文,民國九十二年六月。
    [10] J.-C. Gu, and S.-L. Yu, “Removal of DC Offset in Current and Voltage Signals Using a Novel Fourier Filter Algorithm”, IEEE Transactions on Power Delivery Vol, 15, No. 1, pp. 73-79, 2000.
    [11] G. Benmouyal, “Removal of DC-Offset in Current Waveforms Using Digital Mimic Filteringt”, IEEE Transactions On Power Delivery, Vol. 10, No. 2, pp. 621-630, 1995.
    [12] A. G. Phake and J. S. Thorp, “Computer Relaying for Power Systems”, John Wiley and Sons, pp. 123-134, 1988.
    [13] T. S. Sidhu, X. Zhang, F. Albasri and M. S. Sachdev, “Discrete-Fourier-Transform-Based Technique for Removal of Decaying DC Offset from Phasor Estimates”, IEE Proc-Gener. Transm. Distrib., Vol. 150, No. 6, pp. 745-752, 2003.
    [14] H. O. Pascual and J. A. Rapallini, “Behaviour of Fourier, Cosine and Sine Filtering Algorithms for Distance Protection, Under Severe Saturation of the Current Magnetic Transformer”, IEEE Porto Power Tech Conforence 10th-13th, Porto, Portugal, 2001.
    [15] 臺灣電力公司電力調度處網站http://www.taipower.com.tw「345 kV系統輸電線線路常數」。
    [16] M. Akke, and J. S. Thorp, “Some Improvement in Three-Phase Differential Equation Alogrithm for Fast Transmission Line Protection”, IEEE Transactions on Power Delivery,Vol. 13, No. 1, pp. 66-72, 1998.
    [17] L. Eriksson, “An Accurate Fault Locator With Compensation for Apparent Reactance in The Fault Resistance Resulting from Remote-End Infeed”, IEEE Transactions on PAS, Vol. PAS-104, No. 2, pp. 424-436, 1985.
    [18] A. T. John, S. Jamali, “Accurate Fault Location Technique for Power System Lines”, IEE. Pt.C, Vol. 137, pp. 395-402, 1990.
    [19] 臺灣電力公司網站http://www.taipower.com.tw/home-map.htm
    [20] 李河樟,「輸電線路保護方式簡介」,中華民國電驛協會會刊,第九期,pp. 21-29, 民國八十八年六月。
    [21] K.-H. Tseng, W.- S. Kao, and J.- R. Lin, “Load Model on Distance Relay Settings”, IEEE Transactions on Power Delivery, Vol. 18, No. 4, pp. 1140-1146, 2003.
    [22] 臺灣電力公司供電處網站http://www.taipower.com.tw「345 kV系統輸電線保護測距電驛標置原則」。
    [23] Y. Liao and S. Elangovan, “Digital Distance Relaying Algorithm for First-Zone Protection for Parallel Transmission Lines”,IEE Proc.-Gener. Transm. Distrib.,Vol. 145, No. 5, pp. 531-536, 1998.
    [24] S. S. Tarlochan, David S. B. David, M. P. Ricardo, and S. S. Mohindar, “A New Approach for Calculating Zone-2 Setting of Distance Relays and Its Use in an Adaptive Protection System”, IEEE Transactions on Power Delivery,Vol. 19, No. 1, pp. 70-77, 2004.
    [25] K. W. Leung, “Computer-Aided Setting Calculation for Distance Zone 2 and Zone 3 Protection”, IEE International Conference on Advances in Power System Control, Operation and Management, pp. 152-157,1991.
    [26] 許文興、林松柏,「保護電驛測試儀器(ISA)使用及功能介紹」,中華民國電驛協會會刊,第19期,pp. 52-64, 民國九十三年八月。
    [27] 許文興、林松柏,「345 kV輸電線保護電驛汰換為數位式保護電驛介紹」,中華民國電驛協會會刊,第19期,pp. 65-78, 民國九十三年八月。
    [28] A. Dierks and D. Kehrberg, “New Algorithms to Test Distance Relays”, Developmernts in Power Systerm Protection, IEE Conference Publication No. 479, pp. 205-208, 2001.
    [29] 彭國倫,「新一代FORTRAN 90/77」,碁峯資訊公司,民國八十五年十一月。
    [30] H. W. Dommel, “EMTP Theory Book”, 2nd Edition, Microtran Power System Analysis Corporation, Vancouver, British Columbia, 1992.
    [31] C.- H. Kim, M.- H. Lee, and A. T. Johns, “Educational Use of a EMTP Models for The Study of A Distance Relaying Algorithm for Protecting Transmission Lines”, IEEE Transactions on Power Systems, Vol. 15, No. 1, pp. 9-15, 2000.
    [32] Gerhard Ziegler, “Numerical Distance Protection:Principles and Application”, Siemens AG in Erlangen, Nuremberg, July. 1999.
    [33] J. J. Grainger and W. D. Stevenson, Jr., “Power System Analysis”, McGraw-Hill, 1994.
    [34] 李清吟、卓明遠、陳鴻誠、李俊良等譯,「電力系統分析」,東華書局,民國九十年三月。
    [35] 林士煥、沈鎮南、凌拯民、張原彰、黃昆松、黃川桂等譯,「電力系統分析」,高立圖書公司,民國八十九年十二月。
    [36] J. B. Lee, C. W. Ha and C. H. Jung, “Development of Digital Distance Relaying Algorithm in Combined Transmission Lines with Underground Power Cables,” IEEE Power Engineering Society Summer Meeting,Vol. 1,No. 15 , pp. 611-616, 2001.
    [37] 許萬寶、劉建勳、陳宏詔,「超高壓輸電線路故障位置偵測系統」,中華民國第二十五屆電力工程研討會,pp. 769-773, 民國九十三年十一月。
    [38] T. T. Nguyen and H. Y. Chan, “Evaluation of Modal Transformation Matrices for Overhead Transmission Lines and Underground Cables by Optimization Method”, IEEE Transactions on Power Delivery,Vol. 17, No. 1, pp. 200-209, 2002.
    [39] J. A. Jiang, C. S. Chen, and C. W. Liu, “A New Protection Scheme for Fault Detection, Direction Discrimination, Classification, and Location in Transmission Lines”, IEEE Transactions on Power Delivery, Vol. 18, No.1, pp. 34-42, 2003.

    QR CODE