簡易檢索 / 詳目顯示

研究生: 張儀真
Yi-Chen Chang
論文名稱: 大氣常壓微電漿輔助合成石墨烯量子點及其於表面增強拉曼散射之應用
Microplasma-assisted synthesis of colloidal graphene quantum dots for surface-enhanced Raman scattering
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 邱昱誠
Yu-Cheng Chiu
賴育英
Yu-Ying Lai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 96
中文關鍵詞: 石墨烯量子點表面增強拉曼散射
外文關鍵詞: graphene quantum dots, surface-enhanced Raman scattering
相關次數: 點閱:420下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 1.1 Surface-enhanced Raman Scattering (SERS) 1 1.1.2. Graphene enhanced Raman Scattering (GERS) 3 1.1.2. Chemical mechanism (CM) 6 1.2. Graphene quantum dot (GQD) 11 1.2.1. Photoluminescence 11 1.2.2. GQD synthesis 18 1.3. Atmospheric pressure microplasma technique 22 2 Experiment 26 2.1 Materials and chemicals 26 2.2 Characterization 26 2.2.1 Ultraviolet-Visible spectroscopy (UV-Vis) 26 2.2.2 Photoluminescence spectroscopy (PL) 26 2.2.3 Raman spectroscopy 27 2.2.4 Transmission electron microscopy (TEM) 27 2.2.5 X-ray photoelectron spectroscopy (XPS) 27 2.2.6 Ultraviolet photoelectron spectroscopy (UPS) 27 2.3 Microplasma-assisted synthesis of GQD 28 2.3.1 Synthesis of SDS-GQD 28 2.3.2 Synthesis of N-GQD 29 2.4 Preparation of SERS substrate 29 2.5 Adsorption test of Rhodamine 6G on GQD 30 3 Results and discussion 31 3.1 Characterization of SDS-GQD 31 3.1.1 UV/Vis spectroscopy 31 3.1.2 Raman spectroscopy 32 3.1.3 Transmission electron microscopy (TEM) 33 3.1.4 Photoluminescence spectroscopy (PL) 34 3.1.5 Synthesis effect on PL property 35 3.2 SERS enhancement of SDS-GQD 39 3.2.1 SERS effect on different substrate 41 3.2.2 SERS effect of different SDS-GQDs 42 3.2.3 Band structure effect on SERS 44 3.3 Characterization of N-GQD 46 3.3.1 UV/Vis spectroscopy 47 3.3.2 Raman spectroscopy 49 3.3.3 X-ray photoelectron spectroscopy (XPS) 50 3.3.4 Transmission electron microscopy (TEM) 52 3.3.5 Photoluminescence spectroscopy (PL) 53 3.3.6 Synthesis effect on PL property 54 3.4 SERS performance of N-GQD 61 3.4.1 SERS effect on different substrates 61 3.4.2 SERS effect of different N-GQDs 63 3.4.3 Band structure effect of N-GQD on SERS 64 3.4.4 Adsorption test of R6G on N-GQD 66 3.4.5 Limit of detection of R6G on N-GQD 68 4 Conclusion 70 5 Supporting information 71 6 Reference 73

    1. M.-M. Liang, Y.-H. Wang, R. Shao, W.-M. Yang, H. Zhang, H. Zhang, Z.-L. Yang, J.-F. Li, and Z.-Q. Tian, In situ electrochemical surface-enhanced Raman spectroscopy study of CO electrooxidation on PtFe nanocatalysts. Electrochemistry Communications, 2017. 81: p. 38-42.
    2. C.-Y. Wang, Y. Zeng, A.-G. Shen, and J.-M. Hu, A highly sensitive SERS probe for bisphenol A detection based on functionalized Au@Ag nanoparticles. Analytical Methods, 2018. 10(47): p. 5622-5628.
    3. D. Chen, X. Zhu, J. Huang, G. Wang, Y. Zhao, F. Chen, J. Wei, Z. Song, and Y. Zhao, Polydopamine@Gold Nanowaxberry Enabling Improved SERS Sensing of Pesticides, Pollutants, and Explosives in Complex Samples. Anal Chem, 2018. 90(15): p. 9048-9054.
    4. K.C. Bantz, A.F. Meyer, N.J. Wittenberg, H. Im, Ö. Kurtuluş, S.H. Lee, N.C. Lindquist, S.-H. Oh, and C.L. Haynes, Recent progress in SERS biosensing. Physical Chemistry Chemical Physics, 2011. 13(24): p. 11551-11567.
    5. V.M. Szlag, R.S. Rodriguez, J. He, N. Hudson-Smith, H. Kang, N. Le, T.M. Reineke, and C.L. Haynes, Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. ACS Appl Mater Interfaces, 2018. 10(38): p. 31825-31844.
    6. Z. Fan, R. Kanchanapally, and P.C. Ray, Hybrid Graphene Oxide Based Ultrasensitive SERS Probe for Label-Free Biosensing. The Journal of Physical Chemistry Letters, 2013. 4(21): p. 3813-3818.
    7. H.H. Kim, Endoscopic Raman Spectroscopy for Molecular Fingerprinting of Gastric Cancer: Principle to Implementation. Biomed Res Int, 2015. 2015: p. 670121.
    8. H.J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, M.J. Walsh, M.R. McAinsh, N. Stone, and F.L. Martin, Using Raman spectroscopy to characterize biological materials. Nat Protoc, 2016. 11(4): p. 664-87.
    9. M. Fleischmann, P.J. Hendra, and A.J.J.C.P.L. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. 1974. 26(2): p. 163-166.
    10. W. Lum, I. Bruzas, Z. Gorunmez, S. Unser, T. Beck, and L. Sagle, Novel Liposome-Based Surface-Enhanced Raman Spectroscopy (SERS) Substrate. J Phys Chem Lett, 2017. 8(12): p. 2639-2646.
    11. X. Ling, J. Wu, L. Xie, and J. Zhang, Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2013. 117(5): p. 2369-2376.
    12. X. Ling, L.G. Moura, M.A. Pimenta, and J. Zhang, Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2012. 116(47): p. 25112-25118.
    13. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, and Z. Liu, Can graphene be used as a substrate for Raman enhancement? Nano Lett, 2010. 10(2): p. 553-61.
    14. X. Ling, S. Huang, S. Deng, N. Mao, J. Kong, M.S. Dresselhaus, and J. Zhang, Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res, 2015. 48(7): p. 1862-70.
    15. S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, and M.S. Dresselhaus, Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett, 2015. 15(5): p. 2892-901.
    16. H. Xu, L. Xie, H. Zhang, and J. Zhang, Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS nano, 2011. 5(7): p. 5338-5344.
    17. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, and J.G. Hou, Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano, 2011. 5(2): p. 952-8.
    18. B.K. Barman and K.K. Nanda, Hexamethylenetetramine mediated simultaneous nitrogen doping and reduction of graphene oxide for a metal-free SERS substrate. RSC Adv., 2014. 4(83): p. 44146-44150.
    19. L. Yang, J. Hu, L. He, J. Tang, Y. Zhou, J. Li, and K. Ding, One-pot synthesis of multifunctional magnetic N-doped graphene composite for SERS detection, adsorption separation and photocatalytic degradation of Rhodamine 6G. Chemical Engineering Journal, 2017. 327: p. 694-704.
    20. Y.-S. Sun, C.-F. Lin, and S.-T. Luo, Two-Dimensional Nitrogen-Enriched Carbon Nanosheets with Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2017. 121(27): p. 14795-14802.
    21. S. Feng, M.C. dos Santos, B.R. Carvalho, R. Lv, Q. Li, K. Fujisawa, A.L. Elías, Y. Lei, N. Perea-López, and M.J.S.a. Endo, Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. 2016. 2(7): p. e1600322.
    22. D. Carboni, B. Lasio, D. Loche, M.F. Casula, A. Mariani, L. Malfatti, and P. Innocenzi, Introducing Ti-GERS: Raman Scattering Enhancement in Graphene-Mesoporous Titania Films. The Journal of Physical Chemistry Letters, 2015. 6(16): p. 3149-3154.
    23. Y. Joo, M. Kim, C. Kanimozhi, P. Huang, B.M. Wong, S. Singha Roy, M.S. Arnold, and P. Gopalan, Effect of Dipolar Molecule Structure on the Mechanism of Graphene-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2016. 120(25): p. 13815-13824.
    24. D. Liu, X. Chen, Y. Hu, T. Sun, Z. Song, Y. Zheng, Y. Cao, Z. Cai, M. Cao, and L. Peng, Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nature communications, 2018. 9(1): p. 193.
    25. L. Jensen, C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev, 2008. 37(5): p. 1061-73.
    26. G. Ding, S. Xie, Y. Liu, L. Wang, and F. Xu, Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage. Applied Surface Science, 2015. 345: p. 310-318.
    27. X. Ling, J. Wu, W. Xu, and J. Zhang, Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy. Small, 2012. 8(9): p. 1365-72.
    28. Y. Gao, N. Gao, H. Li, X. Yuan, Q. Wang, S. Cheng, and J. Liu, Semiconductor SERS of diamond. Nanoscale, 2018. 10(33): p. 15788-15792.
    29. J.R. Lombardi and R.L. Birke, Theory of Surface-Enhanced Raman Scattering in Semiconductors. The Journal of Physical Chemistry C, 2014. 118(20): p. 11120-11130.
    30. Y. Shin, J. Park, D. Hyun, J. Yang, J.H. Lee, J.H. Kim, and H. Lee, Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale, 2015. 7(13): p. 5633-7.
    31. R.N. Bharagava and P. Chowdhary, Emerging and Eco-Friendly Approaches for Waste Management. 2019: Springer.
    32. T.F. Yeh, W.L. Huang, C.J. Chung, I.T. Chiang, L.C. Chen, H.Y. Chang, W.C. Su, C. Cheng, S.J. Chen, and H. Teng, Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence. J Phys Chem Lett, 2016. 7(11): p. 2087-92.
    33. B. Li, Y. Guo, A. Iqbal, Y. Dong, W. Li, W. Liu, W. Qin, and Y. Wang, Insight into excitation-related luminescence properties of carbon dots: synergistic effect from photoluminescence centers in the carbon core and on the surface. RSC Advances, 2016. 6(109): p. 107263-107269.
    34. M. WooáLee and J.J.R.A. SangáSuh, Characteristics of graphene quantum dots determined by edge structures: three kinds of dots fabricated using thermal plasma jet. 2015. 5(83): p. 67669-67675.
    35. M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, and P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots. Journal of Materials Chemistry C, 2014. 2(34): p. 6954-6960.
    36. S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, and B. Yang, Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today, 2017. 13: p. 10-14.
    37. S.-H. Song, M. Jang, H. Yoon, Y.-H. Cho, S. Jeon, and B.-H. Kim, Size and pH dependent photoluminescence of graphene quantum dots with low oxygen content. RSC Advances, 2016. 6(100): p. 97990-97994.
    38. X. Liu, J. Wang, Y. Li, and W. Xue, Size controllable preparation of graphitic quantum dots and their photoluminescence behavior. Materials Letters, 2016. 162: p. 56-59.
    39. R. Ye, Z. Peng, A. Metzger, J. Lin, J.A. Mann, K. Huang, C. Xiang, X. Fan, E.L. Samuel, L.B. Alemany, A.A. Marti, and J.M. Tour, Bandgap engineering of coal-derived graphene quantum dots. ACS Appl Mater Interfaces, 2015. 7(12): p. 7041-8.
    40. F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, and S. Yang, Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv Mater, 2017. 29(3).
    41. X.X. Han, W. Ji, B. Zhao, and Y. Ozaki, Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale, 2017. 9(15): p. 4847-4861.
    42. G. Yang, C. Wu, X. Luo, X. Liu, Y. Gao, P. Wu, C. Cai, and S.S. Saavedra, Exploring the Emissive States of Heteroatom-Doped Graphene Quantum Dots. The Journal of Physical Chemistry C, 2018. 122(11): p. 6483-6492.
    43. Z. Sun, X. Li, Y. Wu, C. Wei, and H. Zeng, Origin of green luminescence in carbon quantum dots: specific emission bands originate from oxidized carbon groups. New Journal of Chemistry, 2018. 42(6): p. 4603-4611.
    44. J. Schneider, C.J. Reckmeier, Y. Xiong, M. von Seckendorff, A.S. Susha, P. Kasák, and A.L. Rogach, Molecular Fluorescence in Citric Acid-Based Carbon Dots. The Journal of Physical Chemistry C, 2017. 121(3): p. 2014-2022.
    45. S. Kim, D.H. Shin, C.O. Kim, S.S. Kang, K.W. Lee, J. Kim, S.-H. Choi, and S.W. Hwang, Effect of nitrogen doping on the structural and the optical variations of graphene quantum dots by using hydrazine treatment. Journal of the Korean Physical Society, 2015. 67(4): p. 746-751.
    46. J. Liu, D. Li, K. Zhang, M. Yang, H. Sun, and B. Yang, One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small, 2018. 14(15): p. e1703919.
    47. F.A. Permatasari, A.H. Aimon, F. Iskandar, T. Ogi, and K. Okuyama, Role of C-N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route. Sci Rep, 2016. 6: p. 21042.
    48. S. Sarkar, M. Sudolská, M. Dubecký, C.J. Reckmeier, A.L. Rogach, R. Zbořil, and M. Otyepka, Graphitic Nitrogen Doping in Carbon Dots Causes Red-Shifted Absorption. The Journal of Physical Chemistry C, 2016. 120(2): p. 1303-1308.
    49. J. Feng, H. Dong, B. Pang, F. Shao, C. Zhang, L. Yu, and L. Dong, Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys Chem Chem Phys, 2018. 20(22): p. 15244-15252.
    50. L. Chen, C. Wu, P. Du, X. Feng, P. Wu, and C. Cai, Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe(3+) ions in water samples. Talanta, 2017. 164: p. 100-109.
    51. D.B. Shinde and V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chemistry, 2012. 18(39): p. 12522-8.
    52. H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, and Z. Kang, Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans, 2012. 41(31): p. 9526-31.
    53. H. Gao, C. Xue, G. Hu, and K. Zhu, Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason Sonochem, 2017. 37: p. 120-127.
    54. L. Wang, X. Chen, Y. Lu, C. Liu, and W. Yang, Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon, 2015. 94: p. 472-478.
    55. R. Liu, D. Wu, X. Feng, and K. Mullen, Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc, 2011. 133(39): p. 15221-3.
    56. D. Pan, J. Zhang, Z. Li, and M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater, 2010. 22(6): p. 734-8.
    57. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, and P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett, 2012. 12(2): p. 844-9.
    58. A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+Sensing. Advanced Functional Materials, 2014. 24(20): p. 3021-3026.
    59. J. Gu, X. Zhang, A. Pang, and J. Yang, Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots. Nanotechnology, 2016. 27(16): p. 165704.
    60. B. Zheng, Y. Chen, P. Li, Z. Wang, B. Cao, F. Qi, J. Liu, Z. Qiu, and W. Zhang, Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties. Nanophotonics, 2017. 6(1): p. 259-267.
    61. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 2012. 50(12): p. 4738-4743.
    62. M. Wu, J. Zhan, B. Geng, P. He, K. Wu, L. Wang, G. Xu, Z. Li, L. Yin, and D. Pan, Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale, 2017. 9(35): p. 13195-13202.
    63. L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, and M. Wu, Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun, 2014. 5: p. 5357.
    64. S. Wang, Z. Zhu, Y. Chang, H. Wang, N. Yuan, G. Li, D. Yu, and Y. Jiang, Ammonium hydroxide modulated synthesis of high-quality fluorescent carbon dots for white LEDs with excellent color rendering properties. Nanotechnology, 2016. 27(29): p. 295202.
    65. I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S.M. Thagard, H.R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.L. Petrovic, L.C. Pitchford, Y.K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. Turner, M.C.M. van de Sanden, and A. Vardelle, The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal of Physics D: Applied Physics, 2017. 50(32).
    66. K.H. Becker, K.H. Schoenbach, and J.G. Eden, Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. R55-R70.
    67. W.-H. Chiang, C. Richmonds, and R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 2010. 19(3): p. 034011.
    68. P. Rumbach, M. Witzke, R.M. Sankaran, and D.B. Go, Decoupling interfacial reactions between plasmas and liquids: charge transfer vs plasma neutral reactions. J Am Chem Soc, 2013. 135(44): p. 16264-7.
    69. Z. Wang, Y. Lu, H. Yuan, Z. Ren, C. Xu, and J. Chen, Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale, 2015. 7(48): p. 20743-8.
    70. Y. Lu, Z. Ren, H. Yuan, Z. Wang, B. Yu, and J. Chen, Atmospheric-pressure microplasma as anode for rapid and simple electrochemical deposition of copper and cuprous oxide nanostructures. RSC Advances, 2015. 5(77): p. 62619-62623.
    71. P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui, and G. Zvereva, Plasma–liquid interactions: a review and roadmap. Plasma Sources Science and Technology, 2016. 25(5).
    72. P. Rumbach, D.M. Bartels, R.M. Sankaran, and D.B. Go, The solvation of electrons by an atmospheric-pressure plasma. Nat Commun, 2015. 6: p. 7248.
    73. D. Mariotti and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001.
    74. L. Lin and Q. Wang, Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis. Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962.
    75. J.J. Shi and M.G. Kong, Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas. Phys Rev Lett, 2006. 96(10): p. 105009.
    76. R. Akolkar and R.M. Sankaran, Charge transfer processes at the interface between plasmas and liquids. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050811.
    77. Y.L. Thong, O.H. Chin, B.H. Ong, and N.M. Huang, Synthesis of silver nanoparticles prepared in aqueous solutions using helium dc microplasma jet. Japanese Journal of Applied Physics, 2016. 55(1S): p. 01AE19.
    78. J. Patel, L. Nemcova, P. Maguire, W.G. Graham, and D. Mariotti, Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology, 2013. 24(24): p. 245604.
    79. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H. Tsang, X. Yang, and S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed Engl, 2010. 49(26): p. 4430-4.
    80. R. Yadav and C.K. Dixit, Synthesis, characterization and prospective applications of nitrogen-doped graphene: A short review. Journal of Science: Advanced Materials and Devices, 2017. 2(2): p. 141-149.
    81. Z. Wang, P. Long, Y. Feng, C. Qin, and W.J.R.A. Feng, Surface passivation of carbon dots with ethylene glycol and their high-sensitivity to Fe 3+. 2017. 7(5): p. 2810-2816.
    82. M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, and V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014. 6(20): p. 11988-94.
    83. Z. Gan, S. Xiong, X. Wu, T. Xu, X. Zhu, X. Gan, J. Guo, J. Shen, L. Sun, and P.K. Chu, Mechanism of Photoluminescence from Chemically Derived Graphene Oxide: Role of Chemical Reduction. Advanced Optical Materials, 2013. 1(12): p. 926-932.
    84. X. Li, S.P. Lau, L. Tang, R. Ji, and P. Yang, Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots. Nanoscale, 2014. 6(10): p. 5323-8.
    85. P. Hildebrandt and M.J.T.J.o.P.C. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. 1984. 88(24): p. 5935-5944.
    86. L. Kang, J. Chu, H. Zhao, P. Xu, and M. Sun, Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions. Journal of Materials Chemistry C, 2015. 3(35): p. 9024-9037.
    87. X. Ling, W. Fang, Y.H. Lee, P.T. Araujo, X. Zhang, J.F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, and M.S. Dresselhaus, Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett, 2014. 14(6): p. 3033-40.
    88. H. Cheng, Y. Zhao, Y. Fan, X. Xie, L. Qu, and G. Shi, Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement. Acs Nano, 2012. 6(3): p. 2237-2244.
    89. P. Yan, J. Liu, S. Yuan, Y. Liu, W. Cen, and Y. Chen, The promotion effects of graphitic and pyridinic N combinational doping on graphene for ORR. Applied Surface Science, 2018. 445: p. 398-403.
    90. B. Saha and P.K. Bhattacharyya, Adsorption of amino acids on boron and/or nitrogen doped functionalized graphene: A Density Functional Study. Computational and Theoretical Chemistry, 2016. 1086: p. 45-51.
    91. Z. Ao and F. Peeters, Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene. The Journal of Physical Chemistry C, 2010. 114(34): p. 14503-14509.
    92. L. Xie, X. Ling, Y. Fang, J. Zhang, and Z.J.J.o.t.A.C.S. Liu, Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. 2009. 131(29): p. 9890-9891.

    無法下載圖示 全文公開日期 2024/08/23 (校內網路)
    全文公開日期 2024/08/23 (校外網路)
    全文公開日期 2024/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE