簡易檢索 / 詳目顯示

研究生: 蔡苡娸
I-Chi Tsai
論文名稱: 探討金奈米立方體自組裝基板之表面增強拉曼散射效應於農藥檢測之應用
Surface-Enhanced Raman Scattering of Self-assembly Gold Nanocubes for Selective Pesticide Detection
指導教授: 黃炳照
Bing-Joe Hwang
郭俊宏
Chun-Hong Kuo
口試委員: 陳祺
Chi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 81
中文關鍵詞: 表面增強拉曼散射農藥
外文關鍵詞: SERS, Pesticide
相關次數: 點閱:273下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學感測是檢測分子的一個新興研究領域。其中,基於奈米結構表面的特性表面增強拉曼散射技術廣泛被研究。表面拉曼散射效應通常與金屬奈米結構的電磁場分布強度有關,而電磁場的強弱和奈米粒子的幾何形狀相關。除了幾何形狀之外,二聚體之間的間隙也是提升電磁場強度的策略之一,而在奈米粒子擁有很強電磁場效應的區域我們稱為熱點。在本文中,我們的目標是利用來自這兩種現象的熱點,建立一個以奈米結構增強表面拉曼散射效應並根據親和力選擇性的偵測氨基甲酸酯類農藥的方法。


    Optical sensing is an emerging research field for molecule detection. Among them, nanostructure-based SERS sensing is so far the most investigated technique. The performance of SERS effect usually relies on the strength and distribution of plasmonic electromagnetic fields (PEFs) of the metallic nanostructures, which is geometry-dependent in a shaped nanostructure. Apart from the geometry, plasmonic coupling in-between the gap of a dimer is also a strategy for raising the strength of PEFs. When the strength of PEF is very strong locally where could be called hot spots. In this thesis, we aim to utilize the hot spots from the two phenomena together to compose a nanostructure-based SERS sensor with affinity selectivity in the detection of Carbamate pesticides.

    摘要 I ABSTRACT III TABLE OF CONTENT VI LIST OF FIGURES IX LIST OF SCHEMES XVIII LIST OF TABLES XIX CHAPTER 1 OVERVIEW 1 1.1 Research Background 1 1.2 Recent Developments 2 1.3 Research Motivation 3 CHAPTER 2 INTRODUCTION 4 2.1 Surface-Enhanced Raman Scattering (SERS) 4 2.1.1 Raman scattering development 4 2.1.2 Principle of SERS 4 2.1.3 Self-assembled monolayers (SAMs) 5 2.2 Carbamate pesticides 6 2.3 Literature Review 7 2.3.1 Monodispersive Gold Nanoprisms 7 2.3.2 Vertically Gold Nanorod Monolayer on Substrates and Detection of Food contaminants 10 2.3.3 Gold Nanocube-Nanosphere Dimers Plasmon Coupling 12 2.3.4 Gold or Silver Nanocubes Plasmonic Mechanism 15 2.3.5 SERS Detection of Pesticides by Dithiol-Functionalized Nanoparticle 19 2.3.6 Gold Nanoisland Film as SERS Substrate for Detection of Fungicides 22 CHAPTER 3 EXPERIMENTAL SECTION 26 3.1 Chemicals 26 3.2 Instrumentation 26 3.3 Procedure 27 3.3.1 Synthesis of 45 nm Gold nanocube (AuNCs) 27 3.3.2 Synthesis of Gold nanocube dimers 27 3.3.3 Synthesis of Gold nanocube Monolayer Film (Au NCs-MLF) 28 3.3.4 Dithiol molecules functionalized on Au NC MLF 29 3.3.5 SERS Experiments 29 3.4 Characterization 30 3.4.1 Scanning Electron Microscopy (SEM) 30 3.4.2 Transmission Electron Microscope (TEM) 30 3.4.3 Powder X-Ray Diffraction (p-XRD) 30 3.5 Numerical Simulation 30 3.5.1 FDTD simulation parameter 31 CHAPTER 4 RESULTS AND DISCUSSION 34 4.1 Au Nanocubes 34 4.2 Au Nanocube Dimers 36 4.2.1 Linking of Au Nanocubes 36 4.2.2 Finite-Difference Time-Domain (FDTD) Simulation of Au NC Dimers 43 4.2.3 SERS Detection of Pesticide Using Au NC Dimer 48 4.3 Gold Nanocube Monolayered Films (Au NC MLFs) 50 4.3.1 Fabrication of Au NC MLF 50 4.3.2 Finite-Difference Time-Domain (FDTD) simulation of Au NC MLF 53 4.3.3 SERS Detection of Pesticide Using Au NC MLF 56 CONCLUSION 76 REFERENCES 77

    (1) Klabunde, K.J. Nanoscale Materials in Chemistry Edited. 2001.
    (2) Peng, B.; Li, G.; Li, D.; Dodson, S.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Ling, X. Y.; Xiong, Q. ACS Nano. 2013, 7, 5993-6000.
    (3) Li, M.; Cushing, S. K.; Zhang, J.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma, D.; Liu, Y.; Wu, N. ACS Nano. 2013, 7, 4967-4976.
    (4) Alvarez-Puebla, R. A.; Agarwal, A.; Agarwal, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó-Argibay, E.; Pazos-Pérez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A.; Liz-Marzán, L. M. PNAS. 2011, 108, 8157-8161.
    (5) Liu, Y.; Zhang, Y.; Wang, H.; Ye, B. Int J Agric & Biol Eng. 2016, 9, 179-185.
    (6) 食品中殘留農藥檢驗方法-多重殘留分析方法(五) 一百零二年 公告
    (7) Liang, H. C.; Bilon, N.; Hay, M. T. Analytical Methods for Pesticide Residues. 2014, 86, 2132-2155.
    (8) Lu, W.; Singh, A. K.; Khan, S. A.; Senapati, D.; Yu, H.; Ray, P. C. J. AM. CHEM. SOC. 2010, 132, 18103-18114.
    (9) Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Annu. Rev. Anal. Chem. 2008, 1, 601-626.
    (10) Khlebtsov, B. N.; Khanadeev, V. A.; Panfilova, E. V.; Bratashov, D. N.; Khlebtsov, N. G. ACS Appl. Mater. Interfaces. 2015, 7, 6518-6529.
    (11) Fodjo, E. K.; Riaz, S.; Li, D. W.; Qu, L. L.; Marius, N. P.; Albert, T.; Long, Y. T. Anal. Methods. 2012, 4, 3785-3791.
    (12) Liu, B.; Han, G.; Zhang, Z.; Liu, R.; Jiang, C.; Wang, S.; Han, M.-Y. Anal. Chem. 2012, 84, 255-261.
    (13) Chen, J.; Huang, Y.; Kannan, P.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L. Anal. Chem. 2016, 88, 2149-2155.
    (14) Hou, R.; Pang, S.; He, L. Anal. Methods. 2015, 7, 6325-6330.
    (15) Zhang, Y.; Wang, Z.; Wu, L.; Pei, Y.; Chen, P.; Cui, Y. Analyst. 2014, 139, 5148-5154.
    (16) Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Food Bioprocess Technol. 2013, 6, 710-718.
    (17) Wu, L.; Wang, Z.; Shen, B. Nanoscale. 2013, 5, 5274-5278.
    (18) Furini, L. N.; Sanchez-Cortes, S.; López-Tocón, I.; Otero, J. C.; Aroca, R. F.; Constantino, Carlos J. L. J. Raman Spectrosc. 2015, 46, 1095-1101.
    (19) Edited by Winefordner, J. D. Raman Spectroscopy for Chemical Analysis. 2000.
    (20) Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    (21) Fleischmann, M.; Hendra, A. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163-166.
    (22) Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal.Chem.IntenrfacialElectrochem. 1997, 84, 1-20.
    (23) Hicks, C. J.SERS surface Enhanced Raman Spectroscopy. 2001.
    (24) Guo, Q.; Xu, M.; Yuan, Y.; Gu, R.; Yao, J. Langmuir. 2016, 32, 4530-4537.
    (25) Lee, Y. H.; Shi, W.; Lee, H. K.; Jiang, R.; Phang, I. Y.; Cui, Y.; Isa, L.; Yang, Y.; Wang, J.; Li, S.; Ling, X. Y. Nature Communications.2015, 6,1-7.
    (26) Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J. Liz-Marza´n, L. M. ACS. Nano.2014, 8, 5833-5842.
    (27) 農藥殘留容許量標準修正草案對照表
    (28) Lee, D.; Yoon, S. J. Phys. Chem. C. 2015, 14, 7873-7882.
    (29) Bordley, J. A.; Hooshmand, N.; El-Sayed, M. A. Nano Lett. 2015, 15, 3391-3397.
    (30) Kubackova, J.; Fabriciova, G.; Miskovsky, P.; Jancura, D.; Sanchez-Cortes, S. Anal. Chem. 2015, 87, 663-669.
    (31) Wu, H. -L.; Kuo, C. -H.; Huang, M. H. Langmuir. 2010, 26, 12307-12313.
    (32) Lee, Y. H.; Lee, C. K.; Tan, B.; Tan, Joel M. R.; Phang, I. Y.; Ling, X. Y. Nanoscale. 2013, 5, 6404-6412.
    (33) Gao, B.; Rozin, M. J.; Tao, A. R. Nanoscale. 2013, 5, 5677-5691.
    (34) Schwartzberg, A. M.; Grant, C.-D.; Wolcott, A.; Talley, C.E.; Huser, T. R.; Bogomolni, R.; Zhang, J. Z. J. Phys. Chem. B. 2004, 108 19191-19197.
    (35) Chen, W. -L.; Lin, F. -C.; Lee, Y. -Y.; Li, F. -C.; Chang, Y. -M.; Huang, J. -S. ACS Nano. 2014, 8, 9053-9062.
    (36) Rej, S.; Wang, H. -J.; Huang, M. -X.; Hsu, S. -C.; Tan, C. -S.; Lin, F. -C.; Huang, J. -S.; Huang, M. H. Nanoscale. 2015, 7, 11135-11141.
    (37) Liu, H. -W.; Lin, F. -C.; Lin, S. -W.; Wu, J. Y.; Chou, B. -T.; Lai, K. -J.; Lin, S. -D.; Huang, J. -S. ACS Nano. 2015, 9, 3875-3886.
    (38) Lee, D.; Yoon, S. J. Phys. Chem. C. 2016, Article ASAP.
    (39) Gedney, S. D.; Zhao, B. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,. 2010, 58, 838-847.
    (40) Lumerical Solutions Knowledge Base; release 2014a; Lumerical Solutions: Vancouver, Canada, 2014.
    (41) Edward D. Palik; Handbook of Optical Constants of Solids I-III.
    (42) Guo, B.; Arya, G.; Tao, A. R. Nature Nanotechnology. 2012, 7, 433-437.
    (43) Su, K. -H.; Wei, Q. -H.; Zhang, X. A. R. Nano Lett. 2003, 3, 1087-1090.
    (44) Li, W.; Camargo, Pedro H. C.; Lu, X.; Xia, Y. Nano Lett. 2009, 9, 485-490.
    (45) Jiang, L. -L. Acta Phys. -Chim. Sin. 2014, 30, 1987-1992.
    (46) Ding, Q.; Liu, H.; Yang, L.; Liu, J. J. Mater. Chem. 2012, 22, 19932-19939.
    (47) Quyen, Tran T. B.; Chang, C. -C.; Su, W. -N.; Uen, Y. -H.; Pan, C. -J.; Liu, J. -Y.; Rick, J.; Lin, K. -Y.; Hwang, B. -J. J. J. Mater. Chem. B. 2014, 2, 629-636.
    (48) Socrates, G. Infrared and Raman Characteristic Group Frequencies. third edition.
    (49) Zhang, Z.; Yu, Q.; Li, H.; Mustapha, A.; Lin, M. J. Food. Sci. 2015, 80, 450-458.
    (50) Fan, Y.; Lai, K.; Rasco, B. A.; Huang, Y. LWT-Food Sci Technol. 2015, 60, 352-357.
    (51) HORIBA, Raman Spectroscopy for Analysis and Monitoring.

    QR CODE