簡易檢索 / 詳目顯示

研究生: 林岳陞
Yue-Sheng Lin
論文名稱: 應用田口法優化rGO/SPHC電極於電-芬頓系統之特性研究
Study on Application of Taguchi Method to optimize the rGO/SPHC electrode in Electro-Fenton system
指導教授: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
口試委員: 陳士勛
Shih-Hsun Chen
王宜達
Yi-Ta Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 電-芬頓系統還原氧化石墨烯電泳沉積田口法實驗
外文關鍵詞: Electro-Fenton, reduced Graphene Oxide, Electrophoretic deposition, Taguchi experiment
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電極材料性質對電-芬頓系統處理效能產生顯著影響。本研究以成本低廉及良好導電性之低碳鋼(SPHC)電極,藉由電泳沉積(Electrophoretic Deposition, EPD),進行製備SPHC 表面披覆還原氧化石墨烯(rGO/SPHC)電極,冀優化SPHC 電極之電化學特性及耐腐蝕性。過程以田口實驗(Taguchi method)分別針對電泳前驅物濃度、沉積電壓及電泳時間進行性能測試。
    結果顯示,電泳參數為濃度0.5 mg/mL、電壓30 V 及時間15分鐘,可獲得緻密表面鍍層,並具最大極化阻抗491.84 Ω。而電泳參數為1.00 mg/L、電壓30 V 及時間15 分鐘下所製得rGO/SPHC 電極,偶氮染料(Rh B)脫色率為48.1 %及脫色反應常數0.0204 min-1,分別為未修飾SPHC 電極之2.15 及2.72倍。綜上, rGO/SPHC 電極可促使電-芬頓反應效率及電極耐腐蝕性能獲得提升。


    The properties of the electrode material bring in a significant effect for efficiency of the electro-Fenton system. In this study, the SPHC with low cost
    and good conductivity was used as electrode, and made reduced Graphene Oxide (rGO) on the surface of SPHC by electrophoretic deposition (EPD). To optimize the electrochemical performance and corrosion resistance of the SPHC electrode, the Taguchi experiment was used to test the property of the concentration, deposition voltage and deposition time.
    That results showed that rGO/SPHC prepared with concentration of 0.5 mg/mL, 30 V and deposition time of 15 minutes possess the compact coating, and got the maximum polarized impedance of the electrode 491.84 Ω. The rGO/SPHC electrode prepared with concentration 1.00 mg/L, 30 V and electrophoresis time for 15 minutes. The decolorization rate of Rh B dye was 48.1% and the reaction coefficient was 0.0204 min-1, which was 2.15 and 2.72 times than SPHC, respectively. In summary, the results show that the rGO/SPHC electrode can improve the efficiency of the electro-Fenton and corrosion resistance for electrode.

    摘要 I Abstract II 謝誌III 目錄 IV 圖目錄 VII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 高級氧化程序 3 2.2 芬頓法 4 2.3 電-芬頓法 5 2.3.1 電-芬頓法參數 7 2.3.2 電極材料選用 9 2.4 石墨烯(Graphene) 10 2.4.1 石墨烯組成及製備 10 2.4.2 石墨烯系列材料於電子元件/電極材料之應用 12 2.4.3 石墨烯系列材料於防腐蝕材料之應用 13 2.5 電泳沉積 14 2.5.1 電泳沉積原理 14 2.5.2 電泳沉積參數 15 2.5.3 電泳沉積製備氧化石墨烯/還原氧化石墨烯複合鍍層 17 2.6 田口法 20 第三章 實驗方法 24 3.1 實驗流程圖 24 3.2 實驗材料 25 3.2.1 電極製備材料及藥品 25 3.2.2 實驗場域之材料及藥品 26 3.2.3 實驗儀器設備 26 3.3 電極製備流程 27 3.3.1 田口法實驗設計 27 3.3.2 SPHC電極前處理 28 3.3.3 氧化石墨製備流程 29 3.3.4 電泳沉積還原氧化石墨烯流程 29 3.4 rGO/SPHC電極耐腐蝕性能分析 30 3.4.1 電極極化曲線分析 30 3.4.2 電化學交流阻抗法 31 3.5 rGO/SPHC電極於電-芬頓系統之性能測試 32 3.5.1 電-芬頓實驗場域架設 32 3.5.2 線性掃描伏安分析 34 3.6 rGO/SPHC電極材料性能分析 35 3.6.1 掃描式電子顯微鏡 35 3.6.2 X光繞射分析儀 35 3.6.3 傅立葉紅外線光譜儀 35 3.6.4 拉曼光譜 36 第四章 結果與討論 37 4.1 rGO/SPHC田口法參數設置 37 4.1.1 氧化石墨(Graphite oxide)前驅物鑑定 37 4.1.2 田口法實驗控制因子水準設置 39 4.1.3 rGO/SPHC電極拉曼光譜分析 44 4.1.4 rGO/SPHC電極表面形貌觀察 46 4.2 rGO/SPHC電極腐蝕性能分析 50 4.2.1 L9極化曲線測試 50 4.2.2 rGO/SPHC電極耐腐蝕性能評估 53 4.2.3 製程參數對rGO/SPHC電極腐蝕性能影響 54 4.3 SPHC電極於電-芬頓系統之性能評估 58 4.3.1 SPHC電極之操作電位評估 58 4.3.2 SPHC電極於電-芬頓系統之性能測試 59 4.4 rGO/SPHC電極於電-芬頓系統之性能評估 62 4.4.1 rGO/SPHC電極脫色效能評估 62 4.4.2 rGO/SPHC電極表面含氧官能基量測 65 4.4.3 rGO/SPHC電極電化學性能量測 67 4.4.4 rGO/SPHC電極於電-芬頓系統之效能分析 68 第五章 結論 74 參考文獻 76 附錄A rGO/SPHC電極表面孔隙率 85

    [1] P. V. Nidheesh and R. Gandhimathi, "Trends in electro-Fenton process for water and wastewater treatment: An overview," Desalination, vol. 299, pp. 1-15, 2012.
    [2] N. T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis, "Exploring graphene as a corrosion protection barrier," Corrosion Science, vol. 56, pp. 1-4, 2012.
    [3] S. Liu, L. Gu, H. Zhao, J. Chen, and H. Yu, "Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings," Journal of Materials Science & Technology, vol. 32, no. 5, pp. 425-431, 2016.
    [4] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide," ACS nano, vol. 4, no. 8, pp. 4806-4814, 2010.
    [5] M. A. Raza, Z. U. Rehman, F. A. Ghauri, A. Ahmad, R. Ahmad, and M. Raffi, "Corrosion study of electrophoretically deposited graphene oxide coatings on copper metal," Thin Solid Films, vol. 620, pp. 150-159, 2016.
    [6] J. H. Park and J. M. Park, "Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application," Surface and Coatings Technology, vol. 254, pp. 167-174, 2014.
    [7] A. Hajizadeh, M. Aliofkhazraei, M. Hasanpoor, and E. Mohammadi, "Comparison of electrophoretic deposition kinetics of graphene oxide nanosheets in organic and aqueous solutions," Ceramics International, vol. 44, no. 9, pp. 10951-10960, 2018.
    [8] 李輝煌,田口方法:品質設計的原理與實務第四版. 高立圖書出版社, 2013。
    [9] E. Brillas, I. Sirés, and M. A. Oturan, "Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry," Chemical reviews, vol. 109, no. 12, pp. 6570-6631, 2009.
    [10] M. Oturan, "An ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: application to herbicide 2, 4-D," Journal of Applied Electrochemistry, vol. 30, no. 4, pp. 475-482, 2000.
    [11] D. B. Miklos, C. Remy, M. Jekel, K. G. Linden, J. E. Drewes, and U. Hübner, "Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review," Water Research, vol. 139, pp. 118-131, 2018.
    [12] H. Fenton, "On a new reaction of tartaric acid," Chem News, vol. 33, no. 190, p. 190, 1876.
    [13] C. Walling, "Intermediates in the reactions of Fenton type reagents," Accounts of Chemical Research, vol. 31, no. 4, pp. 155-157, 1998.
    [14] A. Babuponnusami and K. Muthukumar, "A review on Fenton and improvements to the Fenton process for wastewater treatment," Journal of Environmental Chemical Engineering, vol. 2, no. 1, pp. 557-572, 2014.
    [15] M. Muruganandham and M. Swaminathan, "Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology," Dyes and Pigments, vol. 63, no. 3, pp. 315-321, 2004.
    [16] E. Mousset, Z. Wang, J. Hammaker, and O. Lefebvre, "Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater," Electrochimica Acta, vol. 214, pp. 217-230, 2016.
    [17] E. Guivarch, S. Trevin, C. Lahitte, and M. A. Oturan, "Degradation of azo dyes in water by electro-Fenton process," Environmental Chemistry Letters, vol. 1, no. 1, pp. 38-44, 2003.
    [18] D. Gümüş and F. Akbal, "Comparison of Fenton and electro-Fenton processes for oxidation of phenol," Process Safety and Environmental Protection, vol. 103, pp. 252-258, 2016.
    [19] J. Casado, "Towards industrial implementation of Electro-Fenton and derived technologies for wastewater treatment: A review," Journal of Environmental Chemical Engineering, vol. 7, no. 1, p. 102823, 2019.
    [20] C. H. Feng, F. B. Li, H. J. Mai, and X. Z. Li, "Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment," Environmental science & technology, vol. 44, no. 5, pp. 1875-1880, 2010.
    [21] A. G. Akerdi, Z. Es’haghzade, S. H. Bahrami, and M. Arami, "Comparative study of GO and reduced GO coated graphite electrodes for decolorization of acidic and basic dyes from aqueous solutions through heterogeneous electro-Fenton process," Journal of Environmental Chemical Engineering, vol. 5, no. 3, pp. 2313-2324, 2017.
    [22] M. M. Ghoneim, H. S. El-Desoky, and N. M. Zidan, "Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions," Desalination, vol. 274, no. 1, pp. 22-30, 2011.
    [23] Y. Wang, Y. Liu, T. Liu, S. Song, X. Gui, H. Liu, and P. Tsiakaras, "Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode," Applied Catalysis B: Environmental, vol. 156-157, pp. 1-7, 2014.
    [24] H. Zhang, D. Zhang, and J. Zhou, "Removal of COD from landfill leachate by electro-Fenton method," Journal of Hazardous Materials, vol. 135, no. 1, pp. 106-111, 2006.
    [25] C. T. Wang, W. L. Chou, M. H. Chung, and Y. M. Kuo, "COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode," Desalination, vol. 253, no. 1, pp. 129-134, 2010.
    [26] Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, and J. Qiu, "Fe@ Fe2O3 core−shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system," The Journal of Physical Chemistry C, vol. 111, no. 40, pp. 14799-14803, 2007.
    [27] H. Olvera-Vargas, X. Zheng, O. Garcia-Rodriguez, and O. Lefebvre, "Sequential “electrochemical peroxidation – Electro-Fenton” process for anaerobic sludge treatment," Water Research, vol. 154, pp. 277-286, 2019.
    [28] A. K. Golder, N. Hridaya, A. N. Samanta, and S. Ray, "Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes," Journal of Hazardous Materials, vol. 127, no. 1, pp. 134-140, 2005.
    [29] H. C. Yatmaz and Y. Uzman, "Degradation of pesticide monochrotophos from aqueous solutions by electrochemical methods," International Journal of Electrochemical Science, vol. 4, no. 5, pp. 614-626, 2009.
    [30] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience and Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010.
    [31] P. Zare and H. Rezania, "Effects of electron-phonon coupling and magnetic field on electrical conductivity of monolayer graphene," Journal of Magnetism and Magnetic Materials, vol. 481, pp. 183-188, 2019.
    [32] B. Shen, H. Hong, S. Chen, X. Chen, and Z. Zhang, "Cathodic electrophoretic deposition of magnesium nitrate modified graphene coating as a macro-scale solid lubricant," Carbon, vol. 145, pp. 297-310, 2019.
    [33] S. Pei and H. M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, no. 9, pp. 3210-3228, 2012.
    [34] S. L. Esfahani, S. Rouhani, and Z. Ranjbar, "Optimization the electrophoretic deposition fabrication of graphene-based electrode to consider electro-optical applications," Surfaces and Interfaces, vol. 9, pp. 218-227, 2017.
    [35] T. Lu, L. Pan, H. Li, C. Nie, M. Zhu, and Z. Sun, "Reduced graphene oxide–carbon nanotubes composite films by electrophoretic deposition method for supercapacitors," Journal of Electroanalytical Chemistry, vol. 661, no. 1, pp. 270-273, 2011.
    [36] O. Garcia-Rodriguez, Y. Y. Lee, H. Olvera-Vargas, F. Deng, Z. Wang, and O. Lefebvre, "Mineralization of electronic wastewater by electro-Fenton with an enhanced graphene-based gas diffusion cathode," Electrochimica Acta, vol. 276, pp. 12-20, 2018.
    [37] M. H. Wang, Q. Li, X. Li, Y. Liu, and L. Z. Fan, "Effect of oxygen-containing functional groups in epoxy/reduced graphene oxide composite coatings on corrosion protection and antimicrobial properties," Applied Surface Science, vol. 448, pp. 351-361, 2018.
    [38] N. Promphet, P. Rattanawaleedirojn, and N. Rodthongkum, "Electroless NiP-TiO2 sol-RGO: A smart coating for enhanced corrosion resistance and conductivity of steel," Surface and Coatings Technology, vol. 325, pp. 604-610, 2017.
    [39] K. Zhang, H. Zhang, P. Liu, C. Zhang, W. Li, X. Chen, and F. Ma, "Electrophoretic deposition of graphene oxide on NiTi alloy for corrosion prevention," Vacuum, vol. 161, pp. 276-282, 2019.
    [40] A. Chavez-Valdez, M. S. Shaffer, and A. R. Boccaccini, "Applications of graphene electrophoretic deposition. A review," The Journal of Physical Chemistry B, vol. 117, no. 6, pp. 1502-1515, 2012.
    [41] L. Besra and M. Liu, "A review on fundamentals and applications of electrophoretic deposition (EPD)," Progress in Materials Science, vol. 52, no. 1, pp. 1-61, 2007.
    [42] H. Hamaker, "Formation of a deposit by electrophoresis," Transactions of the Faraday Society, vol. 35, pp. 279-287, 1940.
    [43] I. Zhitomirsky and L. Gal-Or, "Electrophoretic deposition of hydroxyapatite," Journal of Materials Science: Materials in Medicine, vol. 8, no. 4, pp. 213-219, 1997.
    [44] L. Sorkhi, M. Farrokhi-Rad, and T. Shahrabi, "Electrophoretic deposition of chitosan in different alcohols," Journal of Coatings Technology and Research, vol. 11, no. 5, pp. 739-746, 2014.
    [45] J. Wu, J. Chen, Y. Zhao, W. Liu, and W. Zhang, "Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites," Composites Part B: Engineering, vol. 105, pp. 167-175, 2016.
    [46] S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, and R. S. Ruoff, "Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition," The Journal of Physical Chemistry Letters, vol. 1, no. 8, pp. 1259-1263, 2010.
    [47] Y. Ma, J. Han, M. Wang, X. Chen, and S. Jia, "Electrophoretic deposition of graphene-based materials: A review of materials and their applications," Journal of Materiomics, vol. 4, no. 2, pp. 108-120, 2018.
    [48] M. Diba, D. W. H. Fam, A. R. Boccaccini, and M. S. P. Shaffer, "Electrophoretic deposition of graphene-related materials: A review of the fundamentals," Progress in Materials Science, vol. 82, pp. 83-117, 2016.
    [49] J. A. Quezada-Rentería, L. F. Cházaro-Ruiz, and J. R. Rangel-Mendez, "Synthesis of reduced graphene oxide (rGO) films onto carbon steel by cathodic electrophoretic deposition: Anticorrosive coating," Carbon, vol. 122, pp. 266-275, 2017.
    [50] C. Wang, J. Li, S. Sun, X. Li, F. Zhao, B. Jiang, and Y. Huang, "Electrophoretic deposition of graphene oxide on continuous carbon fibers for reinforcement of both tensile and interfacial strength," Composites Science and Technology, vol. 135, pp. 46-53, 2016.
    [51] M. J. Hwang, M. G. Kim, S. Kim, Y. C. Kim, H. W. Seo, J. K. Cho, I. K. Park, J. Suhr, H. Moon, J. C. Koo, H. R. Choi, K. J. Kim, Y. Tak, and J. D. Nam, "Cathodic electrophoretic deposition (EPD) of phenylenediamine-modified graphene oxide (GO) for anti-corrosion protection of metal surfaces," Carbon, vol. 142, pp. 68-77, 2019.
    [52] Z. Wei, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, and C. Berger, "Nanoscale tunable reduction of graphene oxide for graphene electronics," Science, vol. 328, no. 5984, pp. 1373-1376, 2010.
    [53] X. l. Wei, Y. Xia, X. m. Liu, H. Yang, and X. d. Shen, "Preparation of sodium beta ″-alumina electrolyte thin film by electrophoretic deposition using Taguchi experimental design approach," Electrochimica Acta, vol. 136, pp. 250-256, 2014.
    [54] F. Pishbin, A. Simchi, M. P. Ryan, and A. R. Boccaccini, "A study of the electrophoretic deposition of Bioglass® suspensions using the Taguchi experimental design approach," Journal of the European Ceramic Society, vol. 30, no. 14, pp. 2963-2970, 2010.
    [55] T. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, and R. J. Tayade, "Study on UV-LED/TiO2 process for degradation of Rhodamine B dye," Chemical Engineering Journal, vol. 169, no. 1, pp. 126-134, 2011.
    [56] L. Sansone, V. Malachovska, P. La Manna, P. Musto, A. Borriello, G. De Luca, and M. Giordano, "Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics," Sensors and Actuators B: Chemical, vol. 202, pp. 523-526, 2014.
    [57] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, no. 7, pp. 1558-1565, 2007.
    [58] Y. Su and I. Zhitomirsky, "Electrophoretic deposition of graphene, carbon nanotubes and composite films using methyl violet dye as a dispersing agent," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 436, pp. 97-103, 2013.
    [59] J. Yang, X. Yan, J. Chen, H. Ma, D. Sun, and Q. Xue, "Comparison between metal ion and polyelectrolyte functionalization for electrophoretic deposition of graphene nanosheet films," RSC Advances, vol. 2, no. 25, pp. 9665-9670, 2012.
    [60] L. Zhang, F. Zhu, H. Li, F. Zhao, and S. Li, "A duplex coating composed of electrophoretic deposited graphene oxide inner-layer and electrodeposited graphene oxide/Mg substituted hydroxyapatite outer-layer on carbon/carbon composites for biomedical application," Ceramics International, vol. 44, no. 17, pp. 21229-21237, 2018.
    [61] A. Sanjid, P. C. Banerjee, and R. K. S. Raman, "Multi-layer graphene coating for corrosion resistance of Monel 400 alloy in chloride environment," Surface and Coatings Technology, vol. 370, pp. 227-234, 2019.
    [62] D. Prasai, J. C. Tuberquia, R. R. Harl, G. K. Jennings, and K. I. Bolotin, "Graphene: corrosion-inhibiting coating," ACS nano, vol. 6, no. 2, pp. 1102-1108, 2012.
    [63] T. R. Tamilarasan, U. Sanjith, M. Siva Shankar, and G. Rajagopal, "Effect of reduced graphene oxide (rGO) on corrosion and erosion-corrosion behaviour of electroless Ni-P coatings," Wear, vol. 390-391, pp. 385-391, 2017.
    [64] J. Liang, Y. Zhang, C. Song, D. Tang, and J. Sun, "Double-potential electro-Fenton: A novel strategy coupling oxygen reduction reaction and Fe2+/Fe3+ recycling," Electrochemistry Communications, vol. 94, pp. 55-58, 2018.
    [65] M. Diba, A. García-Gallastegui, R. N. Klupp Taylor, F. Pishbin, M. P. Ryan, M. S. P. Shaffer, and A. R. Boccaccini, "Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide," Carbon, vol. 67, pp. 656-661, 2014.
    [66] R. Babaei-Sati and J. Basiri Parsa, "Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process," Journal of Industrial and Engineering Chemistry, vol. 52, pp. 270-276, 2017.

    無法下載圖示 全文公開日期 2024/08/25 (校內網路)
    全文公開日期 2024/08/25 (校外網路)
    全文公開日期 2024/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE