簡易檢索 / 詳目顯示

研究生: 林威承
Wei-Cheng Lin
論文名稱: 可應用於半導體檢測探針卡之陶瓷材料韌性與加工性能探討
Fracture Toughness and Machinability of Ceramics for Probe Card in Semiconductor Evaluation
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 曾修暘
Xiu-Yang Zeng
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 破裂韌性可加工陶瓷可調整熱膨脹係數陶瓷
外文關鍵詞: Fracture toughness, Machinable ceramics, Adjustable thermal expansion coefficient ceramics
相關次數: 點閱:200下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研究與探討陶瓷材料是否能夠經由材料改質、製程改變,來影響破裂韌性值的表現,並進一步評估其能否擁有良好的加工成型性,製造出可用於半導體檢測工業中最為重要的元件探針卡(Probe card)內部的陶瓷基板(Guide plate)材料。因應現今常用之Guide plate所用的陶瓷材料與矽晶圓之熱膨脹係數匹配性尚不足,在未來半導體元件更加精細化導致探針間距急遽縮小時,會遇到因熱膨脹效應的不一致,造成檢測的探針無法與待測點位接觸,而導致檢測精度大幅降低,影響到產品良率。
    本文運用過去實驗室已初步研究的可調熱膨脹係數之陶(1-x)PbTiO3-x Bi(Mg1/2Ti1/2)O3材料系統,其中PbTiO3為高晶格扭曲結構(c/a ratio)的提供者,而Bi(Mg1/2Ti1/2)O3為低晶格扭曲結構的來源,將此兩相結合經由改變Bi(Mg1/2Ti1/2)O3的含量來觀察其對破裂韌性及微觀結構的影響,而後加入BiFeO3具有液相輔助燒結的功能,且其添加進入PT-BMT後將置換部分Ti原子而使晶格扭曲程度上升,以此提供額外的改質方式以探討其對破裂韌性的影響。
    實驗結果顯示:隨著BMT含量的增加,理論密度將從85%上升至93%,可以看出 PbTiO3的高c/a ratio將大大的影響試片從高溫冷卻下來時,是否會傾向崩解成粉末的趨勢,此現象也能從SEM微觀結構中得到印證,但由於材料系統本身含有PbO、Bi2O3等容易揮發的成分,這將限制其理論密度的上限,對於維克氏硬度及破裂韌性值而言,將使整體數據顯得毫無規律,我們需要進一步利用微波燒結改善此現象,才能觀察破裂韌性與成份改變的相關性。
    隨後將改用微波燒結的方式,期望能利用能量由吸收微波之材料內部產生的機制,所以能更快速地加熱,減少燒結時間,並且對於厚度大的材料亦能均勻加熱以改善揮發的問題。實驗結果顯示,相較於傳統燒結之各成份PT-BMT試片,其相對密度都能達到96%以上,其整體孔洞數量及大小都有顯著的減小,此現象同樣能從SEM圖上觀測到。同時,我們也發現微波燒結能改善晶粒與晶界強度不均的問題,這是微波燒結之維克氏硬度普遍高於傳統燒結的部分原因。且因為密度都有顯著的提升,破裂韌性值不再毫無規律,其將隨著BMT含量的增加而下降,由K_1c=2.17→0.97,但同時裂痕也愈趨於筆直。
    添加BiFeO3進入此系統中,一方面提升自發極化值,一方面提供助燒結的效果,希望能藉此觀察到不同的破裂韌性趨勢。此實驗以0.5PT-xBF-(0.5-x)BMT不同BF含量的添加x=(0.1, 0.15, 0.2)。實驗結果顯示,0.5PT系列添加BF後由XRD得知c/a比大幅提升從1.028增加到1.058,且在燒結緻密性部分不論是0.1或更高含量之BF添加後,相較於未添加之PT-BMT(~92.4%)都有大幅的改善(~96%)。後經SEM觀察得知孔洞變少且變小,且晶粒細化約為1~2μm之間,整體破裂韌性值也隨著BF含量的增加而持續上升,由K_1c=2.03→2.46,在此顯現添加進去高理論偏移值的元素將對破裂韌性有著影響性。
    最後我們將利用超音波加工去驗證破裂韌性與加工後材料表面完整性的關聯,實驗結果顯示,相較於傳統燒結之試片,微波燒結後能夠改善表面的剝落現象,其表面完整性也將隨著破裂韌性值的提升,而能在0.6PT-0.4BMT系統中得到最完整的加工形貌。


    Probe card plays an important role in the semiconductor device quality control test. It can reduce the quality check time drastically and increases yield up to 20%. This study investigates the influence of material alteration and process improvement on fracture toughness, and further evaluates its machinability to produce a guide plate. Typically, thermal expansion coefficients of guide plate ceramics are not completely match with silicon wafer. When the size of semiconductor device reduces and working temperature varies, the testing probe may miss the contacting pads. So in order to change the guide plate from nitride to oxide, we should consider controlling thermal expansion coefficient and ceramic machinability.
    In this study, we used the ceramic (1-x)PbTiO3-(x)Bi(Mg1/2Ti1/2)O3material system with adjustable thermal expansion coefficient which has been initially studied in the past, in which PbTiO_3 is a high lattice distortion structure (c/a ratio) provider, and Bi(Mg1/2Ti1/2)O3 is the source of low lattice distortion structure. In addition, the effect of Bi(Mg1/2Ti1/2)O3 on the fracture toughness and microstructure is observed by changing the content of Bi(Mg1/2Ti1/2)O3. Moreover, BiFeO_3 plays the role of liquid-phase assisted sintering, and its addition into PT-BMT will replace some of the Ti^(4+) atoms and increase the degree of lattice distortion, thereby providing an additional modification method to investigate its influence on the fracture toughness.
    The experimental results show that with the increase of BMT content, the theoretical density will increase from 85% to 93%. It can be seen that the high c/a ratio of PbTiO_3 will greatly affect the tendency of the specimen to disintegrate into powder when cooled from high temperature. This phenomenon can also be confirmed from the SEM microstructure analysis. The material system contains volatile components such as PbO, Bi_2 O_3, which limits the upper limitation of theoretical density, as a result the Vickers hardness and fracture toughness values will appear to be random. Therefore, we further used microwave sintering to improve this phenomenon, and then observed the correlation between fracture toughness and composition changes.
    Subsequently, the method of microwave sintering will be used. It is desirable to utilize the mechanism by which energy is generated inside the material absorbing microwaves, so that heating can be performed more quickly, the sintering time can be reduced, and the material with large thickness can be uniformly heated to improve the problem of volatilization. The experimental results show that compared to the traditional sintered PT-BMT specimen, the relative density can reach 96%, the number and size of the overall holes are significantly reduced. This phenomenon can also be observed from the SEM analysis image. At the same time, we also found that microwave sintering can improve the problem of uneven grain and grain boundary strength, which may cause the Vickers hardness values of microwave sintering generally higher than that of conventional sintering. As a result of significant increase in density, the fracture toughness value is no longer irregular, it decreases with the increase of BMT content, from K1c = 2.17→0.97.
    We hoped to observe different trends of fracture toughness with the addition of BiFeO_3 to provide different theoretical displacement values and the effect of liquid-phase assisted sintering. This experiment added x = (0.1, 0.15, 0.2) with different BF contents of (0.5-x)BMT-xBF-0.5PT. The experimental results show that the addition of BF in the 0.5PT series shows that the c/a ratio greatly increased from 1.028 to 1.058 by XRD analysis, and with the addition of BF up to 0.1 or higher, its relative density has a significant improvement (~96%) compared PT-BMT(~92.4%). After SEM observation, the pores become much smaller, and the grain refined to 1~2 μm. The overall fracture toughness values also increased with increase in the amount of BF content, from K1c=2.03→2.46. It appears that the addition of elements with high theoretical offset values will have an impact on the fracture toughness.
    Finally, we used the ultrasonic processing to verify the relationship between the fracture toughness and the surface integrity of the processed ceramics. The experimental results showed that in comparison to the conventional sintered specimen, the surface peeling phenomenon can be improved after microwave sintering, and the surface integrity will also be improved with the increase of the fracture toughness value. Thus, we can obtain the most complete processing morphology in the 0.6PT-0.4BMT system.

    摘要 i Abstract iii 目錄 vi 圖目錄 ix 表目錄 xiv 第一章 緒論 1 第二章 文獻回顧與理論基礎 3 2-1探針卡(Probe card) 3 2-2陶瓷材料的韌化機構 5 2-3自發極化(Spontaneous Polarization ) 7 2-4燒結理論 11 2-4-1傳統燒結 11 2-4-2微波燒結 13 2-4-3 微波與材料的作用 14 2-4-4 微波加熱的原理 15 第三章 實驗方法與使用儀器 18 3-1實驗藥品 18 3-2實驗儀器 19 3-2-1掃描式電子顯微鏡 20 3-2-2 X-ray繞射儀 20 3-3 性質測試 20 3-4實驗步驟 22 3-4-1粉末製備 23 3-4-2成型(forming) 24 3-4-3 燒結(sintering) 24 第四章 結果與討論 26 4-1 (1-x)PT-(x)BMT 26 4-1-1 X-ray diffraction 26 4-1-2 傳統燒結行為與微觀結構 30 4-1-3 傳統燒結試片之破裂韌性與裂縫形態 40 4-2 微波燒結特性探討 49 4-2-1微波燒結行為與微觀結構 49 4-2-2微波試片之破裂韌性與裂縫形態 53 4-3 0.5PT-xBF-(0.5-x)BMT 61 4-3-1 X-ray diffraction 61 4-3-2 BF添加後燒結行為與微觀結構 66 4-3-3 BF添加後破裂韌性與裂縫形態 69 4-4 鐵彈性之可能性探討 76 4-5 各成份加工形貌 79 第五章 結論 84 參考文獻 86

    [1] E. Grüneisen. Theorie des festen Zustandes einatomiger Elemente. Ann Phys. 1912;344(12):257–306.
    [2] J. S. Dugdale, D. K. C. Macdonald. Vibrational anharmonicity and lattice thermal properties. Phys Rev. 1954;96(1):57–62.
    [3] P. Hu, J. Chen, J. Deng, and X. Xing, “ Thermal Expansion, Ferroelectric and Magnetic Properties in (1 − x )PbTiO 3 − x Bi(Ni 1/2 Ti 1/2 )O 3 ,” J. Am. Chem. Soc., vol. 132, no. 6, pp. 1925–1928, 2010.
    [4] Z. Pan et al., “Zero Thermal Expansion and Semiconducting Properties in PbTiO3-Bi(Co, Ti)O3 Ferroelectric Solid Solutions,” Inorg. Chem., vol. 56, no. 5, pp. 2589–2595, 2017.
    [5] P. Hu et al., “Zero thermal expansion in (1-x)PbTiO3-xBi(Mg,Ti) 1/2O3 piezoceramics,” J. Mater. Chem., vol. 19, no. 11, pp. 1648–1652, 2009.
    [6] ASTM C1327, “Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics,”.
    [7] J. Quinn, R. Katz, I. Lloyd, G. Quinn, “Ceramic Machinability” - What Does it Mean? ,” W.M. Kriven, H.-a. Lin (Eds.), 27th International Cocoa Beach Conference on Advanced Ceramics and Composites (2003), pp. 511-516.
    [8] A.R. Boccaccini “Machinability and brittleness of glass-ceramics,” J. Mater. Process. Technol., vol. 65, no. 1–3, pp. 302–304, 1997.
    [9] Lawnbr, Marshalldb. Hardness, Toughness, and Brittleness: An Indentation Analysis. J Am Ceram Soc. 1979;62(7–8):347–350.
    [10] J. Y. Li, H. Dai, X.H. Zhong, et al. Lanthanum zirconate ceramic toughened by BaTiO3 secondary phase. J Alloys Compd. 2008;452(2):406–409.
    [11] D. Z. Jin, X. M. Chen, Z. C. Xu. Influence of dispersed coarse grains on mechanical and piezoelectric properties in (Bi 1/2 Na 1/2 )TiO 3 ceramics. Mater Lett. 2004;58(11):1701–1705.
    [12] T. Yamamoto, H. Igarashih, K. Okazakik. Dielectric, Electromechanical, Optical, and Mechanical Properties of Lanthanum‐Modified Lead Titanate Ceramics. J Am Ceram Soc. 1983;66(5):363–366.
    [13] Y. Zhou, K. Hirao, M. Toriyama, Y. Yamauchi, S. Kanzaki. Effects of Intergranular Phase Chemistry on the Microstructure and Mechanical Properties of Silicon Carbide Ceramics Densified with Rare-Earth Oxide and Alumina Additions. J Am Ceram Soc. 2004;84(7):1642–1644.
    [14] J. Wang, M. Rainforth and R. Stevens. The Grain Size Dependence of the Mechanical Properties in TZP ceramics. School of Materials University of Leeds.
    [15] A. Garg, T. C. Goel. Mechanical and electrical properties of PZT ceramics (Zr:Ti = 0.40:0.60) related to Nd3+ addition. Material Science Engineering B60 Solid-State Mater Adv Technol. 1999;60(2):128–132.
    [16] A. Garg, D. C. Agrawal. Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Mater Sci Eng B Solid-State Mater Adv Technol. 2001;86(2):134–143.
    [17] X. M. Chen, B. Yang. A new approach for toughening of ceramics. Mater Lett. 1997;33(3–4):237–240.
    [18] F. Meschke, A. Kolleck, G. A. Schneider. R-curve behaviour of BaTiO3 due to stress-induced ferroelastic domain switching. J Eur Ceram Soc. 2002;17(9):1143–1149. https://doi.org/10.1016/s0955-2219(96)00211-7
    [19] T. Qi, I. Grinberg, A. M. Rappe. Correlations between tetragonality, polarization, and ionic displacement in PbTiO3-derived ferroelectric perovskite solid solutions. Phys Rev B - Condens Matter Mater Phys. 2010;82(13):1–5.
    [20] D. J. Singh, M. Ghita, M. Fornari, S. V. Halilov. Role of A -Site and B -Site Ions in Perovskite Ferroelectricity . Ferroelectrics. 2006;338(1):73–79.
    [21] Y. Gu, F. Xue, S. Lei, et al. Monoclinic phases arising across thermal inter-ferroelectric phase transitions. Phys Rev B - Condens Matter Mater Phys. 2014;90(2):1–10.
    [22] I. Grinberg, A. M. Rappe. First principles calculations, crystal chemistry and properties of ferroelectric perovskites. Phase Transitions. 2007;80(4–5):351–368.
    [23] I. Grinberg, M. R. Suchomel, P. K. Davies, A. M. Rappe. Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations. J Appl Phys. 2005;98(9).
    [24] J. Chen, F. Wang, Q. Huang. Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3 -(Bi,La)FeO3 over a giant range. Sci Rep. 2013;3:1–5.
    [25] G. Kresse, S. C. Parker. Ab initio calculation of the origin of the distortion of α-pbo. Phys Rev B - Condens Matter Mater Phys. 1999;59(13):8481–8486.
    [26] T. Oguchi. First-principles study of multiferroic oxides. Department of Quantum Matter, ADSM, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
    [27] Q. Tan, Q. Wang, Y. Liu. Magnetic properties and spontaneous polarization of La-, Mn- and N-doped tetragonal BiFeO 3 : A first-principles study. Materials (Basel). 2018;11(6):17–19.
    [28] F. Wang, L. Fan, Y. Ren, J. Chen, X. Xing. Bi-0 covalency in PbTi03-Biln03 with enhanced ferroelectric properties: Synchrotron radiation diffraction and first-principles study. Appl Phys Lett. 2014;104(25):1–5.
    [29] H. Wang, H. Huang, W. Lu, H.L.W. Chan, B. Wang, C. H. Woo. Theoretical prediction on the structural, electronic, and polarization properties of tetragonal B12ZnTiO6. J Appl Phys. 2009;105(5).
    [30] D. M. Pozar. Microwave engineering.Addison-Wesley Publishing Company.pag281~289
    [31] K. E. Haque. Microwave energy for mineral treatment processes—a brief review. Int J Miner Process. 1999;57(1):1–24.
    [32] E. Siores. Materials Processing Technology MICROWAVE APPLICATIONS IN MATERIALS JOINING . J Mater Process Technol. 1995;48:619–625.
    [33] M. Oghbaei, O. Mirzaee. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J Alloys Compd. 2010;494(1–2):175–189.
    [34] R. R. Mishra, A. K. Sharma. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos Part A Appl Sci Manuf. 2016;81:78–97.
    [35] A. G. Evans and E. A. Charles, “Fracture Toughness Determinations by Indentation, ” Journal of The American Ceramic Society- Discussions and Notes.
    [36] S. Sharma, R. Rai, D. A. Hall, J. Shackleton. Nonlinear ferroelectric and dielectric properties of bi(Mg0.5Ti0.5)O3-PbTiO3perovskite solid solutions. Adv Mater Lett. 2012;3(2):92–96.
    [37] D. SCHÜTZ, K. Reichmann. Complex bonding in perovskite ferroelectrics. J Ceram Soc Japan. 2014;122(1424):231–236.
    [38] S. Pratapa, M. A. Baqiya, Istianah, R. Lestari, R. Angela. A simple dissolved metals mixing method to produce high-purity MgTiO 3 nanocrystals. AIP Conf Proc. 2014;1586(2014):39–42.
    [39] Y. P. Wang, L. Wang, M. F. Zhang, X. Y. Chen, J. M. Liu, Z. G. Liu. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl Phys Lett. 2004;84(10):1731–1733.
    [40] H. Search, C. Journals, A. Contact, M. Iopscience, I. P. Address. Microstructure of BaTiO3 – Bi ( Mg1 / 2Ti1 / 2 ) O3 – BiFeO3 Piezoelectric Ceramics. n.d.;04:3–8. Japanese Journal of Applied Physics 51 (2012) 09LD04.
    [41] J. SHANG, X. TAN. Indentation-induced domain switching in Pb(Mg. Acta Mater. 2001;49(15):2993–2999.
    [42] U. Ta, V. Carle, U. Scha, M. J. Hoffmann. Preparation and Microstructural Analysis of High-Performance Ceramics. Metallogr Microstruct. 2004;9:1057–1066.
    [43] A. Bravo-Leon, Y. Morikawa, M. Kawahara, J. MayoM. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 2002;50(18):4555–4562.
    [44] Z. Sun, Y. Zhou, J. Wang, M. Li. γ-Y2Si2O7, a machinable silicate ceramic: Mechanical properties and machinability. J Am Ceram Soc. 2007;90(8):2535–2541.

    QR CODE