簡易檢索 / 詳目顯示

研究生: 馮奎智
Kuei-Chih Feng
論文名稱: 具低介電新穎透輝石玻璃陶瓷微波材料之發展與特性研究
Development and characterization of novel CaMgSi2O6 glass-ceramic materials as low-K microwave dielectrics
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 段維新
Wei-Hsing Tuan
郭東昊
Dong-Hau Kuo
鄧茂華
Mao-Hua Teng
陳宜君
Yi-Chun Chen
朱立文
Li-Wen Chu
陳英忠
Ying-Chung Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 173
中文關鍵詞: 低溫共燒陶瓷玻璃陶瓷透輝石微波介電材料
外文關鍵詞: microwave dielectrics
相關次數: 點閱:553下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的為研發在低溫 (≦1000oC)和還原氣氛下進行燒結,具有低介電 (εr)特性、高品質因子 (Q×f)和極低的溫度頻率係數 (τf)之微波介電陶瓷材料。玻璃陶瓷系統具有高緻密和低溫燒結之優異性,但玻璃陶瓷中的相結構與結晶度變化對介電特性影響很大且不易控制,所以目前探討具微波介電特性的玻璃陶瓷之相關研究極少。因此論文分成三主題,第一部分從文獻回顧可知道,含鎂鈣矽成份所組成的相結構陶瓷材料皆具有優異之微波介電特性,因此吾人嘗試選擇具有低介電和高品質因子的透輝石 (CaMgSi2O6)相結構,並添加成核劑控制其結晶性,以合成出透輝石相玻璃陶瓷材料;第二部分利用不同熱處理方法和設計成相反應路徑,預期提升微波介電特性;另外試片為了能符合與卑電極共燒,因此第三部分設計具有抗還原特性的玻璃陶瓷系統,預期在還原氣氛下燒結仍具有良好之微波介電特性。
    第一部分,探討添加不同比例的氧化鋯於鎂鈣矽 (莫爾比1:1:2)氧化物粉末內,混合後先融熔成玻璃,之後玻璃粉末壓製成碇,於不同溫層下 (800oC至950oC之間)進行燒結,實驗結果發現若添加氧化鋯成核劑的樣品,XRD結果出現透輝石相玻璃陶瓷與氧化鋯相,且樣品燒結緻密。另外,燒結溫度不同且隨著溫度增加,由穿透式電子顯微鏡可發現玻璃陶瓷會先呈現氧化鋯成長,而後出現透輝石相環繞著氧化鋯成長形成核殼結構之顆粒析出於玻璃基材中。另外試片燒結溫度從800oC增加至950oC時,電子顯微鏡的擇區繞射結果呈現從光暈現象逐漸變成環狀繞射現象,代表非晶質減少和多晶質增加,介電特性顯示品質因子隨著結晶性提升而增加。由於非晶質含量對於品質因子影響大,為了有效精算出非晶質含量,本實驗利用XRD-Rietveld精算並添加氧化鋁當標準劑,進行玻璃陶瓷系統中非晶質的絕對定量。結果顯示隨溫度上升,非晶質含量從84.55wt%降低至33.01wt%,並獲得介電特性εr=7.03、Q×f= 7,915 GHz和τf=-65ppm/oC之微波介電材料。
    另外,為了再提升結晶性,第二部分探討將樣品進行二階段熱處理,第一階段熱處理溫度接近或超過臨界成核溫度 (770oC 到 830oC之間),以預期增加成核量,而後第二階段則燒結於結晶成長溫度(950oC),以有效提高其結晶度。實驗結果發現:經二階段熱處理試片且第一階段熱處理溫度高於臨界成核溫度,則試片具高緻密度,品質因子也比原先只有一階段熱處理的試片高約31%。然而試片若第一階段熱處理低於臨界成核溫度,則試片產生氣膨現象 (Bloating phemonena),從動力學計算發現第一階段熱處理溫度低於臨界成核溫度,則成核劑的結晶活化能明顯變大,且XRD-Rietveld精算可發現臨界成核溫度前氧化鋯成相含量低,代表氧化鋯成核劑因結晶能障高產生不穩定而溶解進入基材內,並推測鈣和鎂置換溶解於基材中的氧化鋯,而同時形成氧空缺和氧氣,因此氧氣脫逸造成試片氣膨現象。
    此外,材料中具理想之溫度頻率係數,可使元件不隨外在環境溫度變化而影響頻率之改變。然而透輝石相玻璃陶瓷材料仍存在有過大之溫度頻率係數 (τf=-65ppm/oC),為了降低微波介電材料的溫度頻率係數,嘗試探討原始玻璃粉末和已經過第一階段熱處理的玻璃陶瓷粉末,再添加可改善溫度頻率係數的鈦酸鈣 (CaTiO3)粉末,發現原始玻璃粉末加入CaTiO3並燒結後,從XRD-Rietveld精算發現超過50%的CaTiO3會溶解於玻璃基質內,但經過一階段熱處理後的粉末再加入CaTiO3,XRD-Rietveld精算發現高達90%的CaTiO3相存在量,並且大幅改善溫度頻率係數。計算動力學發現經過第一階段熱處理的玻璃陶瓷粉末,結晶活化能降低,代表結晶能力提高而使得透輝石相和鈦酸鈣相雙相共存。
    然而添加鈦酸鈣雖然可有效改善溫度頻率係數,但因鈦酸鈣的品質因子低,因此整體材料的品質因子亦明顯降低。為了有效改善溫度頻率係數,同時提升品質因子,本實驗運用反應性液相燒結方法,設計不同相反應路徑,嘗試添加鈦酸鎂 (MgTiO3)粉末於透輝石相玻璃陶瓷內。結果顯示:材料燒結後同時生成可改變溫度頻率係數的CaTiO3相,和具超高品質因子特性的鎂橄欖石 (Mg2SiO4)相,介電特性呈現品質因子逐漸上升和溫度頻率係數亦有效改善。
    此外,試片若能與卑電極在還原氣氛下共燒,並保持良好之介電特性,將能有效降低成本。不過,試片在不同還原氣氛下燒結,將產生更多的氧空缺,同時造成自由電子增加,使材料的電阻率下降。因此第三部分,吾人嘗試利用氧化鋁摻雜,於還原氣氛氮氣下燒結,預期氧化鋁可同時佔據透輝石相結構中的Mg2+和Si4+位置,產生施體和受體的作用。實驗結果發現,摻雜氧化鋁之試片電阻率上升,代表Al3+佔據Si4+位置呈受體作用,產生氧空缺跟自由電子進行補償。另外,從X光電子能譜分析結果發現試片之氧含量增加,此代表Al3+同時佔據Mg2+位置而發生了施體作用,使得氧空缺含量降低,因此試片仍能維持良好的介電特性。本研究最終成果開發能在還原氣氛跟低溫下 (≦1000oC)燒結,具有低介電特性 (<10)、高品質因子 (7,821 GHz),與低溫度頻率係數 (<15ppm/oC)的微波介電材料。


    Development and characterization of a CaMgSi2O6 diopside phase glass-ceramic, sintered at low temperature (≦1000oC) and reducing atmosphere as a microwave dielectric material, were carried out in this work.
    Different amount of monoclinic zirconia (m-ZrO2) nucleating agent was added into MgO-CaO-2SiO2 system to synthesize and enhance the quality factor (Q×f) of CaMgSi2O6 diopside glass-ceramic for low sintering temperature process (from 850oC to 950oC). Experimental results reveal that the t-ZrO2 forms in the amorphous MgO-CaO-2SiO2 matrix first, and then crystalline CaMgSi2O6 phase is nucleated and grown around the t-ZrO2 after sintering due to heterogeneous nucleating. Formation of t-ZrO2 can be attributed to the diffusion of Ca2+ and Mg2+ into the m-ZrO2 and led to transfer to a t-ZrO2. It is found that there are the lowest amorphous content and the highest quality factors due to crystal growth of the CaMgSi2O6 diopside phase when the specimens were sintered at 950oC.
    Quality factor of the specimens was markedly enhanced by adding ZrO2 nucleating agent, indicating that the control of nucleation and crystal growth for the diopside phase plays a key role in the dielectric properties of CaMgSi2O6 glass-ceramic material. In order to increase the crystallization of CaMgSi2O6 glass-ceramic in the material, a two-stage heat treatment was adopted. Melted glass frits were heated up first above the critical nucleation temperature (Tcn, ~812oC), and then sintered temperature at 950oC for enhancing the quality factors (Q×f). Specimens using two-stage heat treatment and annealing above Tcn show dense surface and high quality factors, even more than 31% as many quality factors as specimens using one-stage heat treatment due to increase of the nucleating quantity.
    In additions, microwave dielectric ceramic need to reduce the temperature coefficient of resonant frequency (τf) for achieving high stability in different environment. Therefore, the diopside glass frits with first-stage heat treatment, which have been heated above Tcn for decreasing the activation energy of crystallization, were doped with CaTiO3 and sintered at 950oC. The as-sintered specimens present a near zero of τf value due to the CaMgSi2O6 and CaTiO3 were formed totally. However, diopside glass-ceramic doped with CaTiO3 ceramic possesses improved τf but shows decrease of quality factors. A reactive route of CaMgSi2O6 glass ceramic doped with MgTiO3 ceramic to form optimum phases in the material was adopted for achieving a very low dielectric constant (εr), high quality factors (Q×f), and near zero of temperature coefficient of resonant frequency (τf) as a microwave dielectric material. The as-sintered specimens consist of Mg2SiO4 and CaTiO3, which result in a high quality factor and an improved temperature coefficient of resonant frequency, because of the Mg2SiO4 and CaTiO3 possess ultra-high Q×f and positive τf characteristics, respectively.
    Finally, experimental results show that the diopside glass-ceramic sintered at reducing atmosphere exhibits low resistivity and low quality factor due to a great deal of free electrons and oxygen vacancies in the lattice. After doping with amphoteric ion of Al2O3 in the CaMgSi2O6 glass-ceramic, it shows an increased resistance, which can be attributed to Al3+ occupies at silicon site to act as an acceptor, and hence induces the oxygen vacancies to compensate the free electron. Moreover, the Al3+ also occupies the magnesium site and acts as the donor to reduce the oxygen vacancies, which consequently increases quality factors of materials. The highly reduction-resistant diopside glass-ceramic with donor-acceptor complex is developed successfully and applied to the base-metal-electroded (BME) MLCC devices.

    第一章 緒論 1 1-1 背景 1 1-2目的 2 第二章 文獻回顧 4 2-1微波介電材料的特性與原理 4 2-2介電常數微波介電材料系統的發展與預期開發方法 11 2-2-1高溫共燒陶瓷系統之微波介電材料 11 2-2-2低溫共燒陶瓷系統之微波介電材料 14 2-2-3透輝石相玻璃陶瓷材料系統設計 16 2-3 玻璃陶瓷製程、成長機制與成核動力學理論 19 2-3-1玻璃陶瓷之製程 19 2-3-2 成核機制 20 2-3-3均質成核 20 2-3-4異質成核 23 2-3-5結晶成長機制 23 2-3-6熱處理控制成核與晶體成長 24 2-4 玻璃陶瓷成核動力學理論 27 2-4-1 結晶活化能 27 2-4-2 Avrami指數計算結晶成長維度 28 2-5 透輝石相之化學成分、結晶構造與還原氣氛下燒結之抗還原設計 31 2-5-1 透輝石相之化學成分與結晶構造 31 2-5-2 抗還原材料之理論 34 2-6 Rietveld method 結晶度精算 39 2-6-1 Rietveld method 起源 39 2-6-2 Rietveld method 基本原理 39 2-3-3 Rietveld method 之計算方法 40 2-3-4 Rietveld method 之應用 42 第三章 實驗流程與分析方法 44 3-1透輝石相玻璃陶瓷製備過程 44 3-2材料性質檢測流程與方法 46 3-2-1密度之量測 47 3-2-2掃描式電子顯微鏡 (SEM)微觀分析 47 3-2-3穿透式電子顯微鏡 (TEM)微觀分析 48 3-2-4 XRD分析 48 3-2-5 Rietveld refinement相含量定量分析 49 3-3-6 XPS分析 50 3-3-7熱分析 50 3-3-8介電特性量測 51 第四章 透輝石相玻璃陶瓷之合成與特性研究 54 4-1前言與目的 54 4-2玻璃陶瓷添加不同比例的氧化鋯成核劑之影響 54 4-3玻璃陶瓷於不同燒結溫度時之結晶度、微觀與介電特性研究 58 4-3-1 XRD分析 58 4-3-2 Rietveld refinement結晶度定量分析 61 4-3-3微觀分析 64 4-3-4介電特性分析 70 4-4 結論 72 第五章 透輝石相玻璃陶瓷之相變化與氣膨機制探討 73 5-1 前言與目的 73 5-2實驗流程與步驟 75 5-3透輝石相玻璃粉末之DTA分析與XRD分析 76 5-4玻璃粉末經一階段熱處理之微觀分析 78 5-5經二階段熱處理之試片密度與介電特性分析 79 5-6動力學與相變化分析探討氣膨機制 83 5-6-1動力學分析 83 5-6-2經二階段熱處理之試片Rietveld refinement分析 88 5-7 結論 92 第六章 透輝石相玻璃陶瓷溫度頻率係數之修正與機制探討 93 6-1 前言與目的 93 6-2實驗流程與步驟 95 6-3經一階段熱處理後之微觀分析 96 6-4原始玻璃粉末與經一階段熱處理玻璃粉末添加鈦酸鈣陶瓷粉 後之燒結結果 98 6-4-1 XRD結果分析 98 6-4-2 Rietveld refinement結果 99 6-4-3介電特性結果 100 6-5原始玻璃粉末與經一階段熱處理玻璃粉末動力學分析 102 6-6 結論 105 第七章 理想二次相形成對透輝石相微波介電特性之提升及微觀結構研究 106 7-1 前言與目的 106 7-2實驗流程與步驟 108 7-3 XRD與介電特性分析 108 7-4 TEM微觀結構分析 111 7-5電子微探儀成份掃描分析 113 7-6結論 115 第八章 透輝石相玻璃陶瓷還原氣氛下燒結之缺陷研究與抗還原設計及機制探討 116 8-1前言與目的 116 8-2實驗流程與步驟 117 8-3試片於不同氣氛下燒結之XRD結果與晶格應力分析 118 8-4試片於不同氣氛下燒結之元素鍵結能分析 121 8-5試片於不同氣氛下燒結之電性分析 125 8-6藉由透輝石相結構進行抗還原設計 126 8-7兩性元素摻雜後之密度與電性分析結果 128 8-8兩性元素摻雜後之元素鍵結能變化 131 8-9利用XPS結果進行氧含量定量 134 8-4 結論 137 第九章 總結 138 9-1透輝石相玻璃陶瓷之合成 138 9-2不同熱處理方式與設計成相反應路徑對介電特性之提升 138 9-3設計具抗還原特性的透輝石相玻璃陶瓷系統 139 參考文獻 140 作者簡介 150

    1. R. J. Cava, Dielectric materials for applications in microwave Communication. Journal of Materials Chemistry., 11, 54-62, 2001.
    2. J. Wan, Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization. Journal of Electronic Science and Technology of China., 6, 342-345, 2008.
    3. J. Krupka, Extremely high-Q factor dielectric resonators for Millimeter-wavapplications. IEEE Transactions on Microwave theory and Techniques., 53, 702-712, 2005.
    4. I. Nicolaescu, A.Ioachim, I. Toacsan, I. Radu, and G. Banciu, High k materials used to manufacture miniaturized dielectric antennas for military applications. Journal of Optoelectronics and Advanced Materials., 9, 3592-3597, 2007.
    5. C. C. Chiang, S. F. Wang, Y. R. Wang, W. Cheng, and J. Wei, Densification and microwavedielectric properties of CaO–B2O3–SiO2 system glass–ceramics. Ceramics International., 34, 599–604, 2008.
    6. M. T. Sebastian, and H. Jantunen, Low loss dielectric materials for LTCC Applicatio-ns: a review. International Materials Reviews., 53, 57-90, 2008.
    7. J. M. Osepchuk, A History of Microwave Heating Applications. Microwave Theory & Techniques., 9, 1200-1224, 1984.
    8. R. D. Richtmyer, Dielectric Resonator. Japanese Journal of Applied Physics., 10, 391-398, 1939.
    9. A. Okaya, The Rutile Microwave Resonator. Proceeding of the IRE., 48, 1921, 1960.
    10. H. M. O. Bryan, J. Thomson, and J. K. Plourde, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 450-453, 1974.
    11. S. H. Kim, D. W. Cho, S. Y. Hong, and K. S. Yoon, Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system. Journal of the European Ceramic Society., 23, 2549-2552, 2003.
    12. X. M. Chen, Y. H. Sun, and X. H. Zheng, High permittivity and low loss dielectric ceramics in the BaO–La2O3–TiO2–Ta2O5 system. Journal of the European Ceramic Society., 23, 1571-1575, 2003.
    13. C. L. Pan, C. L. Shium, and S. J. Huang, Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics. Materials Chemistry and Physics., 78, 111-115, 2003.
    14. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975.
    15.李俊遠, GPS微波介電材料與GPS天線設計概念, 電子與材料雜誌第14期, 第102至108頁, 2002年.
    16. S. X. Dai, R. F. Huang, and D. L.Wilcox, Use of Titanates to Achieve a Temperature-Stable Low-Temperature Cofired Ceramic Dielectric for Wireless Applications. Journal of American Ceramic Society., 85, 828–832, 2002.
    17. H. M. O’Bryan JR, and J. Thomson JR, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 522-526, 1974.
    18. M. H. Weng, and C. L. Huang, Single Phase Ba2Ti9O20 Microwave dielectric Ceramics prepared by low temperature liquid phase Sintering. Japanese Journal of Applied Physics., 39, 3528-3529, 2000.
    19. M. H. Weng, T. J. Liang, and C. L. Huang, Lowering of sintering temperature and Microwave dielectric properties of BaTi4O9 ceramics prepared by the Polymeric precursor method. Journal of the European Ceramic Society., 22, 1693–1698, 2002.
    20. H. Ohsato, S. Nishigaki, and T. Okuda, Superlattice and Dielectric Properties of BaO-R2O3-TiO2 (R=La, Nd and Sm) Microwave Dielectric Compounds. Japanese Journal Applied Physics., 31, 3136-3138, 1992
    21. K. Wakino, K. Minai, and H. Tamura, Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators. Journal of the American Ceramic Society., 67, 278-281, 1984.
    22. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu, and S. Jinga, Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics. Romanian Journal of Information Science and Technology., 10, 261-268, 2007.
    23. M. Takata, and K. Kageyama, Microwave Characteristics of A(B1/23+ B1/25+ )O3 Ceramics. Journal of American Ceramic Society., 72, 1955-1959, 1990.
    24. R. R. Tummala, Ceramic and glass–ceramic packaging in the 1990s. Journal of American Ceramic Society., 74, 895–908, 1991.
    25. N. Sakamoto, T. Motoki, and H. Sano, U. S. Pat.No. 6233134, 2001.
    26. T. Joseph, and M. T. Sebastian, Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M=Ba, Sr, Ca). Materials Letters., 65, 891-893, 2011.
    27. T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. Journal of the European Ceramic Society., 26, 2097-2100, 2006.
    28. G. K. Choi, J. R. Kim, S. H. Yoon, and K. S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. Journal of the European Ceramic Society., 27, 3063-3067, 2007.
    29. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and S. Nomura, BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. Journal of American Ceramic Society., 71, C11-C17, 1988.
    30. S. H. Yoon, D.-W. Kim, S.-Y. Cho, and K. S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society., 26, 2051-2054, 2006.
    31. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics. Key Engineer Materials., 269, 199–202, 2004.
    32. M. E. Song, J. S. Kim, M. R. Joung, and S. Nahm, Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics. Journal of American Ceramic Society., 91, 2747-2750, 2008.
    33. Q. L. Zhang, H. Yang, and H. P. Sun, A new microwave ceramic with low-permittivity for LTCC applications. Journal of the European Ceramic Society., 28, 605–609, 2008.
    34. H. P. Wang, Q. L. Zhang, H. Yang, and H. P. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceramics International., 34, 1405-1408, 2008.
    35. J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, and S.Nahm, Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics. Journal of the European Ceramic Society., 30, 375-379, 2010.
    36. J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H, Yoon, and H. J. Kim, Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 Ceramics. Journal of the European Ceramic Society., 23, 2413–2416, 2003.
    37. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, Microstructure and Microwave dielectric properties of the Li2CO3-Added Sr2V2O7 Ceramics. Journal of American Ceramic Society., 93, 2132-2135, 2010.
    38. R. Lebourgeoisa, S. Dugueyb, J. P. Gannea, and J. M. Heintz, Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites. Journal of Magnetism and Magnetic Materials., 312, 328-330, 2007.
    39. S. F. Wang, T. C. K. Yang, Y. R. Wang, and Y. Kuromitsu, Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic. Ceramics International., 27, 157-162, 2001.
    40. Q. L. Zhang, H. Yang, and J. X. Tong, Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5. Material Letters., 60, 1188-1191, 2006.
    41. M. Ohsahi, H. Ogawa, A. Kan, and E. Tanaka, Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic. Journal of the European Ceramic Society., 25, 2877–2881, 2005.
    42. J. S. Kim, J. C. Lee, C. I. Cheon, and C. H. Lee, International Symposium on Research reactor and neutron science., Daejeon, Korea, 2005, 682–685.
    43. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. Journal of the European Ceramic Society., 25, 2865–2870, 2005.
    44. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, and A. Kan, Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic. Journal of Alloys and Compounds., 424, 388-393, 2006.
    45. H. Jantunen, A. Uusima¨ki, R. Rautioaho, and S. Leppa¨vuori, Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society., 20, 2331–2336, 2000.
    46. N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies. Journal of the European Ceramic Society., 26, 1925–1928, 2006.
    47. C. Zhong, Y. Yuan, S. Zhang, Y. Pang, and B. Tang, Low-fired BiNbO4 microwave dielectric ceramics modified by CuV2O6 addition sintered in N2 atmosphere. Journal ceramics silikaty., 54, 103-107, 2010.
    48. J. J. Jean, and Y. C. Fang, Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO-B2O3–SiO2 glass–ceramic. Journal of American Ceramic Society., 84, 1354–1360, 2001.
    49. C. R. Chang, and J. J. Jean, Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics. Journal of American Ceramic Society., 82, 1725–1732, 1999.
    50. P. Hudon, I. H. Jung, and D. R. Baker, Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa. Journal of Petrology., 46, 1859-1880, 2005.
    51. G. H. Beall, Design and Properties of Glass-Ceramics. Annual Review Materials Science., 22, 91–119, 1992.
    52. 陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程 (第三版),全華圖書,1996.
    53. 汪建民主編, 陶瓷技術手冊 (下), 中華民國粉末冶金協會,1994.
    54. W. D. Kingery, and B. Uwmann, Introduction to Ceramics. Second Edition, John Wiley & Sons (SEA) Press., Singapore, 1991.
    55. W. Hinz, Nucleation and Crystal Growth. Journal of Non-Crystalline Solids., 25, 215-260, 1979.
    56. M. M. Mahmoud, Crystallization of Lithium Disilicate Glass using Variable Frequency Microwave Processing. Ph.D. in Materials Science and Engineering, Faculty of the Virginia Polytechnic Institute and State University, 2007.
    57. R. D. Rawlings, J. P. Wu, and A. R. Boccaccini., Glass-Ceramics: Their Production from Wastes-A Review. Journal Materials Science., 41, 733-761, 2006.
    58. H. E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards., 57, 217-221, 1956.
    59. T. Ozawa, Kinetic analysis of derivative curves in thermal analysis. Journal of Thermal Analysis and Calorimetry., 2, 301–24, 1970.
    60. J. A. Augis, and J. E. Bennett, Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method. Journal of Thermal Analysis and Calorimetry., 13, 283–92, 1978.
    61. N. Morimoto, Nomenclature of pyroxenes. Canadian Mineralogist., 27, 143-156, 1989.
    62. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals 2A. Second Edition, Single Chain Silivate. John Wiley., New York, 1978.
    63. B. J. Wood, and R. Trigila, Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chemical Geology., 172, 213-223, 2001.
    64. G. W. C. Kaye, and T. H. Laby, Tables of Physical and Chemical Constants. 15th edn, Longman Science., London, 1986.
    65. J. M. Herbert, High-permittivity ceramics sintered in hydrogen. Transactions and Journal of the British Ceramic Society., 62, 645-658, 1963.
    66. I. Burn, Mn-doped polycrystalline BaTiO3. Journal of Materials Science., 14, 2453-2458, 1979.
    67. I. Burn, Ceramic Disk Capacitor with Base-Metal Electrode. Ceramic Bulletin., 57, 600-604, 1978.
    68. X. W. Zhang, Y. H. Han, M. Lal, and D. M. Smyth, Defect Chemistry of BaTiO3 with Additions of CaTiO3. Journal of American Ceramic Society., 70, 100-103, 1987.
    69. Y. Sakabe, Dielectric Materials for Base-Metal Multilayer Ceramic Capacitors. Ceramic Bulletin., 66, 1338-1341, 1987.
    70. I. Burn, and G. H. Maher, High resistivity BaTiO3 ceramics sintered in CO-COs atmospheres. Journal of materials science., 10, 633-640, 1975.
    71. K. Albertsen, D. F. K. Hennings, and O. Steigelmann, Donor-Acceptor Charge Complex Formation in Barium Titanate Ceramics: Role of Firing Atmosphere. Journal of Electroceramics., 2, 193-198, 1998.
    72. H. Kishi, Proceedings of the 7th. U.S. Japan Seminar on Dielectric and Piezoelectric Ceramics., 255, 1995.
    73. W. S. Lee, W. A. Groen, H. Schreinemacher, and D. F. K. Hennings, Dysprosium doped dielectric materials for sintering in reducing atmospheres. Journal of Electroceramics., 5, 31-36, 2000.
    74. L. Galley, A Type of Geiger-Müller Counter Suitable for the Measurement of Diffracted Mo K X-Rays. Review of Scientific Instruments., 6, 279-283, 1935.
    75. H. M. Rietveld, A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography., 2, 65-71, 1969.
    76. R. P. Hunt, A magnetoresistive readout transducer. IEEE Transactions on Magnetics., 70, 150-154, 1971.
    77. M. N. Baibich, J. M. Broto, and A. Fert, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters., 61, 2472-2475, 1988.
    78. G. H. Jonker, and J. H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. Physica., 16, 337-349, 1950.
    79. A. Kern, Heidelberger Geowiss. Abh., 89, 323, 1998.
    80. B. W. Hakki, and P. D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. IEEE Transactions on Microwave Theory and Techniques., 8, 402-410, 1960.
    81. W. E. Courtney, Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators. IEEE Transactions on Microwave Theory and Techniques., 18, 476-485, 1970.
    82. R. A. Young, The Rietveld Method. Oxford Science Publications, Oxford., United Kingdom, 1993.
    83. K. Yasukawa, Y. Terashi, and A. Nakayama, Crystallinity Analysis of Glass-Ceramics by the Rietveld Method. Journal of American Ceramic Society., 81, 2978-2982, 1998.
    84. M. T. Sebastian, Dielectric Materials for Microwave Communications. Elsevier Science Technology Publications, Oxford., United Kingdom, 2008.
    85. J. Du, B. Jones, and M. Lanagan, Preparation and characterization of dielectric glass-ceramics in Na2O-PbO-Nb2O5-SiO2 system. Materials Letters., 59, 2821-2826, 2005.
    86. J. W. Yan, Z. G. Lu, Y. Jiang, Y. L. Dong, C. Y. Yu, and W. Z. Li, Fabrication and Testing of a Doped Lanthanum Gallate Electrolyte Thin-Film Solid Oxide Fuel Cell. Journal of the Electrochemical Society., 149, A1132-A1135, 2002.
    87. S. Bhattacharyya, and T. Höche, Design of oxy-fluoride glass-ceramics containing NaLaF4 nano-crystals. Crystal Growth Design., 10, 379-385, 2010.
    88. L. Navias, and R. L. Green, Dielectric Properties of glasses at Ultra-high frequencies and their relation to composition. Journal of American Ceramic Society., 26, 267-276, 1949.
    89. P. Alizadeh, B. E. Yekta, and A. Gervei., Effect of Fe2O3 addition on the sinterability and machinability of glass-ceramics in the system MgO–CaO–SiO2–P2O5. Journal of the European Ceramic Society., 24, 3529-3533, 2004.
    90. F. Sandrolini, and P. Palmonari, Role of iron oxides in the bloating of vitrified ceramic materials. Transactions and Journal of the British Ceramic Society., 75, 25-32, 1976.
    91. M. Montanzerian, P. Alizadeh, and B. E. Yekta, Pressureless sintering and mechanical properties of mica glass–ceramic/Y-PSZ composite. Journal of the European Ceramic Society., 28, 2687-2692, 2008.
    92. A. karamanov, and M. Pelino, Sinter-crystallisation in the diopside–albite system: Part I. Formation of induced crystallisation porosity. Journal of the European Ceramic Society., 26, 2511-2517, 2006.
    93. A. karamanov, and M. Pelino, Inter-crystallization in the diopside–albite system: Part II. Kinetics of crystallization and sintering. Journal of the European Ceramic Society., 26, 2519-2526, 2006.
    94. A. F. Wells, Structural Inorganic Chemistry, Oxford University Press. Oxford., United Kingdom, 1984.
    95. C. J. Hoffman, and H. S. Gutowsky, Inorganic Syntheses McGraw-Hill., New York, 4, 145-146, 1953.
    96. W. Pan, and J. Gong, Key Engineering Materials., 1408-1411, 2008.
    97. J. W. P. Schmelzer, Nucleation Theory and Applications. Joint Institute for Nuclear Research Publishing Department., Russia, 2005.
    98. D. A. Porter, and K. E. Easterling, Phase transformations in metals and alloys. Chapman & Hall., London, 1992.
    99. R. F. Speyer, Thermal Analysis of Materials, Marcel Dekker Inc., New York, 1993.
    100. K. Yao, L. Zhang, X. Yao, and W. Zhu, Controlled Crystallization in Lead Zirconate Titanate Glass-Ceramics Prepared by the Sol-Gel Process. Journal of American Ceramic Society., 81, 1571-1576, 1998.
    101. A. Goel, A. A. Reddy, M. J. Pascual, L. Gremillard, A. Malchere, and J. M. F. Ferreira, Sintering behavior of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells. Journal of Materials Chemistry., 22, 10042-10054, 2012.
    102. S. Kemethmüller, A. Roosen, F. Goetz-Neunhoeffer, and J. Neubauer, Quantitative Analysis of Crystalline and Amorphous Phases in Glass–Ceramic Composites Like LTCC by the Rietveld Method. Journal of American Ceramic Society., 89, 2632–2637, 2006.
    103. FIZ Karlsruhe International Crystal Structure Data (ICSD)., Karlsruhe, Germany, 2000.
    104. S. L. Hwang, and I. W. Chen, Grain Size Control of Tetragonal Zirconia Polycrystals Using the Space Charge Concept. Journal of American Ceramic Society., 73, 3269-3277, 1990.
    105. K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics., 91, 69-86, 1989.
    106. T. Tsunooka, H. Sugiyama, K. Kakimoto, H. Ohsato, and H. Ogawa, Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics. Journal of the Ceramic Society of Japan., 112, S1638–S1640, 2004.
    107. T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, and H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. Journal of the European Ceramic Society., 23, 2573–2578, 2003.
    108. 森直哉、守屋要一、浦川淳、杉本安隆,絕緣體陶瓷組合物、絕緣性陶瓷燒結體及積層型陶瓷電子零件,中華民國專利字號I339197,2011年。
    109. S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, Cordierite glass-ceramics for multilayer ceramic packaging. The Bulletin of the American Ceramic Society., 72, 90–95, 1993.
    110. H. K. Zhu, M. Liu, H. Q. Zhou, L. Q. Li, and A. G. Lv, tudy on properties of CaO–SiO2–B2O3 system glass-ceramic. Materials Research Bulletin., 42, 1137-1144, 2007.
    111. K. X. Song, and X. M. Chen, Phase evolution and microwave dielectric characteristics of Ti-substituted Mg2SiO4 forsterite ceramics. Materials Letters., 62, 520-522, 2008.
    112. R. L. Shultz, Effects of Titanium Oxide on Equilibria Among Refractory Phases in the System CaO-MgO-Iron Oxide. Journal of American Ceramic Society., 56, 33-36, 1973.
    113. V. B. Glushkova, and E. N. Isupova, Inorganic Material., 1, 1047-1054, 1965.
    114. C. L. Huang, M. H. Weng, C. T. Lion, and C. C. Wu, Low temperature sintering and microwave dielectric properties of Ba2Ti9O20 ceramics using glass additions. Material Research Bulletin., 35, 2445-2456, 2000.
    115. M. Z. Jhou, and J. H. Jean, Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO–ZnO–B2O3 Glass. Journal of American Ceramic Society., 89, 786-791, 2006.
    116. D. W. Kim, D. G. Lee, and K. S. Hong, Low-temperature firing and microwave dielectric properties of BaTi4O9 with Zn-B-O glass system. Material Research Bulletin., 36, 585-595, 2001.
    117. K. S. Hong, J. K. Lee, D. W. Kim, H. S. Jung, H. B. Hong, J. Y. Lee, and S. J. Yoon, Dielectric ceramic compositions and method of preparation therefor. U. S. Pat. No. 6316376, 2001.
    118. H. I. Hsiang, C. S. Hsi, C. C. Huang, and S. L. Fu, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC. Journal of Alloys and Compounds., 459, 307-310, 2008.
    119. K. C. Feng, C. C. Chou, C. S. Chen, L. W. Chu, and H. Chen, Phase Evolution and Electrical properties of copper-electroded BaTi4O9 Materials with BZBS glass system in reducing atmosphere. Ceramics International., 39, s321-s324, 2012.
    120. C. C. Chou, C. S. Chen, P. C. Wu, K. C. Feng, and L. W. Chu, Influence of glass compositions on the microstructure and dielectric properties of low temperature fired BaTi4O9 microwave material with copper electrodes in reducing atmosphere. Ceramics International., 38, s159-s162, 2012.
    121. W. Quin, and J. A. Szpunar, Origin of lattice strain in nanocrystalline materials. Philosophical Magazine Letters., 85, 649-656, 2005.
    122. V. Biju, N. Sugathan, V. Vrinda, and S. L. Salini, Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening. Journal of Materials Science., 43, 1175-1179, 2008.
    123. J. Daniels, K. H. Hardtl, D. Hennings, and R. Wernicke, Defect Chemistry and Electrical Conductivity of Doped Barium Titanate Ceramics. Philips Research Rep., 31, 487-543, 1996.
    124. D. M. Smyth, The effects of dopants on the properties of metal oxides. Solid State Ionics., 129, 5-12, 2000.
    125. Z. Valdez-Nava, C. Tenailleau, S. G. Fritsch, N. E. Horr, T. Lebey, P. Dufour, B. Durand, and J. Y. C. Ching, Structural characterization of dense reduced BaTiO3 and Ba0.95La0.05TiO3 nanoceramics showing colossal dielectric values. Journal of Physics and Chemistry of solids., 72, 17-23, 2010.
    126. V. P. Zakaznova-Herzog, H. W. Nesbitt, G. M. Bancroft, and J. S. Tse, High resolution core and valence band XPS spectra of non-conductor pyroxenes. Surface Science., 600, 3175-3186 ,2006.
    127. F. Teixeira, R. Berjoan, G. Peraudeau, and D. Perarnau, Solar preparation of SiOx (x ≈ 1) nanopowders from silicon vaporisation on a ZrO2 pellet. XPS and photoluminescence characterisation. Solar Energy., 78, 763-771, 2005.
    128. R. M. Thompson, and R. T. Downs, Model pyroxenes I: Ideal pyroxene topologies. American Mineralogist., 88, 653-666, 2003.
    129. M. P. Seah, Data compilations: their use to improve measurement certainty in surface analysis by aes and xps. Surface and Interface Analysis., 9, 85-89, 1986.
    130. S. Sato, Y. Nakano, A. Sato, and T. Nomura, Effect of Y-Doping on Resistance Degradation of Multilayer Ceramic Capacitors with Ni Electrodes under the Highly Accelerated Life Test. Japanese Journal of Applied Physics., 36, 6016-6020, 1997.
    131. J. Zhi, A. Chen, Y. Zhu, P. M. Vilarinho, and J. L. Baptista, Incorporation of Yttrium in Barium Titanate Ceramics. Journal of American Ceramic Society., 82, 1345-1348, 1999.
    132. C. S. Chen, and C. C. Chou, Rietveld Refinement on BaTiO3 Materials Doped with MgO/Y2O3 Additives. Ferroelectrics., 355, 159-164, 2007.

    QR CODE