簡易檢索 / 詳目顯示

研究生: 安杜勒姆·貝拉切夫·沃克
Andualem Belachew Workie
論文名稱: 以噴霧熱裂解法製備磷灰石-矽灰石玻璃陶瓷及其結構對生物活性與細胞毒性之影響
An investigation of in-vitro bioactivity and biocompatibility of spray pyrolyzed apatite wollastonite glass-ceramics
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
楊永欽
Yung-Chin Yang
施劭儒
Shao-Ju Shih
游進陽
Chin-Yang Yu
邱德威
Te-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 104
中文關鍵詞: 磷灰石矽灰石玻璃細胞毒性生物活性降解噴霧熱解
外文關鍵詞: A-W glass-ceramic, Cytotoxicity, Bioactivity, Degradation, Spray pyrolysis
相關次數: 點閱:386下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷灰石矽灰石玻璃(AWGCs)陶瓷最早由Kukobo於1982年所創造,因其優異的機械性能及高生物相容性而被廣泛應用於醫學領域。這些材料由磷灰石及方解石組成,經熱處理後形成磷灰石、方解石和白鎖骨石的微細晶體。這種晶體之生成可增加材料機械強度且提升其生物活性。儘管這些材料應用廣泛,但尚未有利用噴霧熱解技術合成之A-W GCs生物活性和細胞毒性相關研究。因此,進行以確定這些材料之性能研究。
    大量樣品將在700ºC至1100ºC之區間進行燒結並利用X光繞射和掃描式電子顯微鏡分析了樣品之相組成和形貌分析。此外,進行A-W GCs之降解速率檢測。
    研究結果顯示,在所有AWGC樣品中以1100ºC燒結之樣品擁有最高生物活性。同時,此樣品之低毒性也表明在生物應用中具有高度相容性。
    這些發現表明,AWGCs因擁有優異之生物相容性及機械性質,故利用噴霧熱解技術合成AW GCs可為生醫領域中一個可行替代方案。進一步研究並改進新型A-W GCs可帶來更強大潛力之醫學應用領域。


    This study focuses on the synthesis, characterization, and in vitro testing of an apatite-wollastonite glass ceramic (AWGC) with specific percentages of apatites, wollastonite, and an amorphous phase. The AWGC was first introduced by Kokubo in 1982, combining the desirable properties of bioactive wollastonite and apatite with those of a resorbable P-Ca-rich glass. To enhance the material's bioactivity, heat treatment was conducted at different temperatures (ranging from 700ºC to 1100ºC), resulting in the precipitation of fine crystals of apatite, wollastonite, and whitlockite. This treatment increased the average surface density to 2.49±0.32 g/cm3. The bioactivity of the AWGC was assessed by immersing samples in a simulated bodily fluid (SBF) for varying time periods (3, 5, 7, 14, and 21 days) at 37°C. The results indicated a correlation between bioactivity, sintering temperature, and soaking time in SBF. The continuous disintegration of the amorphous and wollastonite phases occurred, releasing P and Ca ions into the SBF medium during soaking.
    The phase compositions and morphologies were analyzed using X-ray diffraction and scanning electron microscopy, while degradation rates were calculated to determine average weight loss (%), found to be 2.59±1.6. Notably, the AWGC sample sintered at 1100ºC demonstrated the highest bioactivity after SBF immersion. One key advantage of the AWGC sample is its pH value produced during SBF immersion, falling within the range of (7.4-8.2) and remaining below 8.5. This indicates improved compatibility for biological applications with reduced toxicity, making it a promising material for biomedical uses.

    I. Preface ii 摘要 iv II. Abstract v III. Acknowledgments vi IV. Table of Contents viii V. List of Figures x VI. List of tables xiii CHAPTER 1. Introduction 1 1.1. Append 1 1.2. Research Motivation and Purpose 3 CHAPTER 2. Literature Review 6 2.1. Introduction to Biomaterials 6 2.2. Requirements for biomaterials 9 2.3. Biomedical material in Tissue engineering 10 2.3.1. Bio-passive (Bio-inert) 13 2.3.2. Bioactive Materials 13 2.3.3. Resorbable Bio-ceramics 14 2.4. Bioactive Glasses 15 2.5. Glass–Ceramics 16 2.5.1. Apatite-wollastonite glass ceramics 17 2.5.2. Apatite glass ceramics 21 2.5.3. Apatite-Mullite glass ceramics 22 2.5.4. Fluor-Canasite glass ceramics 22 2.5.5. Potassium Fluorrichterite glass ceramics 23 2.6. Synthesizing Methods 23 2.6.1 Melt-Quenching Technique 25 2.6.2 Sol–Gel 27 2.6.3 Spray Pyrolysis 28 CHAPTER 3. Experiment Objectives and Methods 31 3.1 Experimental design and its purpose 31 3.2 Experimental materials 32 3.3 Experimental equipment 32 3.4 Steps of sample preparation 32 3.4.1 Preparation and collection of A-W glass-ceramics 32 3.4.2 Preparation of AWGC Bulk Materials 33 3.5 Powder and bulk material properties and methods of analysis 34 3.5.1 X-Ray diffraction analysis (XRD) 34 3.5.2 Qualitative analysis 34 3.5.3 Quantitative Analysis 35 3.5.3.1 Direct Comparison Method 35 3.5.3.2 Internal Standard Method 36 3.5.3.3 Analysis of Crystallinity 36 3.5.4 Field-emission scanning electron microscope (FE-SEM) 37 3.6 In vitro activity test 37 3.7 Degradation 38 3.8 In vitro cytotoxicity tests 39 3.9 Statistical analysis 39 CHAPTER 4. Experimental Results 41 4.1 X-ray diffraction analysis 41 4.2 Field Emission Scanning Electron Microscope Analysis (FE-SEM) 42 4.3 Density 48 4.4 In vitro activity test 52 4.5 In Vitro degradation 68 4.6 In Vitro Cytotoxicity 73 CHAPTER 5. Discussion 76 CHAPTER 6. Conclusion 81 CHAPTER 7. Future Work 82

    References

    [1] A.L. Boskey, R. Coleman, Aging and bone, Journal of dental research, 89 (2010) 1333-1348.
    [2] S. Wei, J.-X. Ma, L. Xu, X.-S. Gu, X.-L. Ma, Biodegradable materials for bone defect repair, Military medical research, 7 (2020) 1-25.
    [3] G. Tang, Z. Liu, Y. Liu, J. Yu, X. Wang, Z. Tan, X. Ye, Recent trends in the development of bone regenerative biomaterials, Frontiers in Cell and Developmental Biology, 9 (2021) 665813.
    [4] C.J. Bullock, C. Bussy, Biocompatibility considerations in the design of graphene biomedical materials, Advanced Materials Interfaces, 6 (2019) 1900229.
    [5] X. Li, R. Cui, W. Liu, L. Sun, B. Yu, Y. Fan, Q. Feng, F. Cui, F. Watari, The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials, Journal of Nanomaterials, 2013 (2013).
    [6] H. Oonishi, L. Hench, J. Wilson, F. Sugihara, E. Tsuji, S. Kushitani, H. Iwaki, Comparative bone growth behavior in granules of bioceramic materials of various sizes, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 44 (1999) 31-43.
    [7] M. Xue, J. Ou, D.L. Zhou, D. Feng, W.Z. Yang, G. Li, D.P. Liu, Y.S. Wang, Preparation and properties of porous apatite-wollastonite bioactive glass-ceramic, Key Engineering Materials, Trans Tech Publ, 2007, pp. 169-172.
    [8] S.A. Saadaldin, A.S. Rizkalla, Synthesis and characterization of wollastonite glass–ceramics for dental implant applications, Dental materials, 30 (2014) 364-371.
    [9] T. Kokubo, Bioactive glass ceramics: properties and applications, Biomaterials, 12 (1991) 155-163.
    [10] P. Du, K. Li, B. Zhu, T. Xiang, G. Xie, Development of non-toxic low-cost bioactive porous Ti-Fe-Si bulk metallic glass with bone-like mechanical properties for orthopedic implants, Journal of Materials Research and Technology, (2022).
    [11] A. Saberi, A. Behnamghader, B. Aghabarari, A. Yousefi, D. Majda, M.V.M. Huerta, M. Mozafari, 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles, International Journal of Biological Macromolecules, 207 (2022) 9-22.
    [12] T. Kokubo, M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, S. Higashi, Apatite-and wollastonite-containg glass-ceramics for prosthetic application, Bulletin of the Institute for Chemical Research, Kyoto University, 60 (1982) 260-268.
    [13] T. Yamamuro, Clinical Application of Glass Ceramics, Biomechanics and Biomaterials in Orthopedics, (2016) 153-157.
    [14] S.-J. Shih, Y.-J. Chou, L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass, Ceramics International, 39 (2013) 8773-8779.
    [15] J. Park, A. Ozturk, Tribological properties of MgO–CaO–SiO2–P2O5–F-based glass-ceramic for dental applications, Materials letters, 61 (2007) 1916-1921.
    [16] J. Park, S.-H. You, D.-W. Shin, A. Ozturk, Tribological behavior of alumina-added apatite–wollastonite glass–ceramics in simulated body fluid, Materials Chemistry and Physics, 124 (2010) 113-119.
    [17] A. Salinas, J. Roman, M. Vallet-Regi, J. Oliveira, R. Correia, M. Fernandes, In vitro bioactivity of glass and glass-ceramics of the 3CaO· P2O5–CaO· SiO2–CaO· MgO· 2SiO2 system, Biomaterials, 21 (2000) 251-257.
    [18] L. Radev, V. Hristov, I. Michailova, B. Samuneva, Sol-gel bioactive glass-ceramics Part I: Calcium phosphate silicate/wollastonite glass-ceramics, Open Chemistry, 7 (2009) 317-321.
    [19] J. Suwanprateeb, R. Sanngam, W. Suvannapruk, T. Panyathanmaporn, Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing, Journal of Materials Science: Materials in Medicine, 20 (2009) 1281-1289.
    [20] M. Ito, K. Abumi, H. Moridaira, Y. Shono, Y. Kotani, A. Minami, K. Kaneda, Iliac crest reconstruction with a bioactive ceramic spacer, European Spine Journal, 14 (2005) 99-102.
    [21] M. Diba, O.-M. Goudouri, F. Tapia, A.R. Boccaccini, Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications, Current opinion in solid state and materials science, 18 (2014) 147-167.
    [22] S.S. Hossain, S. Yadav, S. Majumdar, S. Krishnamurthy, R. Pyare, P. Roy, A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid wastes, Ceramics International, 46 (2020) 833-843.
    [23] R. Belli, U. Lohbauer, F. Goetz-Neunhoeffer, K. Hurle, Crack-healing during two-stage crystallization of biomedical lithium (di) silicate glass-ceramics, Dental Materials, 35 (2019) 1130-1145.
    [24] A. Stoddart, V. Cleave, The evolution of biomaterials, Nature Materials, 8 (2009) 444-445.
    [25] H. Qu, H. Fu, Z. Han, Y. Sun, Biomaterials for bone tissue engineering scaffolds: A review, RSC advances, 9 (2019) 26252-26262.
    [26] O.V. Bitkina, H.K. Kim, J. Park, Usability and user experience of medical devices: An overview of the current state, analysis methodologies, and future challenges, International Journal of Industrial Ergonomics, 76 (2020) 102932.
    [27] T. Yaqoob, H. Abbas, M. Atiquzzaman, Security vulnerabilities, attacks, countermeasures, and regulations of networked medical devices—A review, IEEE Communications Surveys & Tutorials, 21 (2019) 3723-3768.
    [28] M. Vallet-Regí, Evolution of bioceramics within the field of biomaterials, Comptes Rendus Chimie, 13 (2010) 174-185.
    [29] T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, T. Yamamuro, Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application, Journal of Materials Science, 20 (1985) 2001-2004.
    [30] J. Henstock, L. Canham, S. Anderson, Silicon: the evolution of its use in biomaterials, Acta biomaterialia, 11 (2015) 17-26.
    [31] J.-J. Kim, J.-H. Lee, J.C. Kim, J.-B. Lee, I.-S.L. Yeo, Biological responses to the transitional area of dental implants: Material-and structure-dependent responses of peri-implant tissue to abutments, Materials, 13 (2019) 72.
    [32] C. Valles, X. Rodríguez-Ciurana, M. Clementini, M. Baglivo, B. Paniagua, J. Nart, Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: a systematic review and meta-analysis, Clinical oral investigations, 22 (2018) 555-570.
    [33] M.W. Tibbitt, C.B. Rodell, J.A. Burdick, K.S. Anseth, Progress in material design for biomedical applications, Proceedings of the National Academy of Sciences, 112 (2015) 14444-14451.
    [34] M. Navarro, A. Michiardi, O. Castano, J. Planell, Biomaterials in orthopaedics, Journal of the royal society interface, 5 (2008) 1137-1158.
    [35] F. Mahyudin, L. Widhiyanto, H. Hermawan, Biomaterials in orthopaedics, Biomaterials and Medical Devices, Springer2016, pp. 161-181.
    [36] L.L. Hench, I. Thompson, Twenty-first century challenges for biomaterials, Journal of the Royal Society Interface, 7 (2010) S379-S391.
    [37] V. Migonney, History of biomaterials, Biomaterials, (2014) 1-10.
    [38] T. Kitsugi, T. Yamamuro, T. Nakamura, T. Kokubo, Bone bonding behavior of MgO-CaO-SiO2-P2O5 -CaF2 glass (mother glass of A· W‐glass‐ceramics), Journal of biomedical materials research, 23 (1989) 631-648.
    [39] J. Zaki, N. Yusuf, A. El-Khadem, R.J. Scholten, K. Jenniskens, Efficacy of bone-substitute materials use in immediate dental implant placement: A systematic review and meta-analysis, Clinical implant dentistry and related research, 23 (2021) 506-519.
    [40] N.H. Lin, S. Gronthos, P. Bartold, Stem cells and periodontal regeneration, Australian dental journal, 53 (2008) 108-121.
    [41] S.Y. Shin, H.F. Rios, W.V. Giannobile, T.-J. Oh, Periodontal regeneration: Current therapies, Stem Cell Biology and Tissue Engineering in Dental Sciences, Elsevier2015, pp. 459-469.
    [42] J. Nuñez, F. Vignoletti, R.G. Caffesse, M. Sanz, Cellular therapy in periodontal regeneration, Periodontology 2000, 79 (2019) 107-116.
    [43] C. Hulet, B. Sonnery-Cottet, C. Stevenson, K. Samuelsson, L. Laver, U. Zdanowicz, S. Stufkens, J. Curado, P. Verdonk, T. Spalding, The use of allograft tendons in primary ACL reconstruction, Knee Surgery, Sports Traumatology, Arthroscopy, 27 (2019) 1754-1770.
    [44] P. Baldwin, D.J. Li, D.A. Auston, H.S. Mir, R.S. Yoon, K.J. Koval, Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery, Journal of orthopaedic trauma, 33 (2019) 203-213.
    [45] T. Tanaka, R. Nishie, S. Ueda, S. Miyamoto, S. Hashida, H. Konishi, S. Terada, Y. Kogata, H. Sasaki, S. Tsunetoh, Patient-Derived Xenograft Models in Cervical Cancer: A Systematic Review, International Journal of Molecular Sciences, 22 (2021) 9369.
    [46] X. Chen, Y. Li, T. Yao, R. Jia, Benefits of zebrafish xenograft models in cancer research, Frontiers in Cell and Developmental Biology, 9 (2021) 616551.
    [47] A. Motameni, A.Z. Alshemary, Z. Evis, A review of synthesis methods, properties and use of monetite cements as filler for bone defects, Ceramics International, 47 (2021) 13245-13256.
    [48] R.S. Valtanen, Y.P. Yang, G.C. Gurtner, W.J. Maloney, D.W. Lowenberg, Synthetic and Bone tissue engineering graft substitutes: What is the future?, Injury, 52 (2021) S72-S77.
    [49] N.A. Naidu, K. Wadher, M. Umekar, An overview on biomaterials: pharmaceutical and biomedical applications, Journal of Drug Delivery and Therapeutics, 11 (2021) 154-161.
    [50] P. Zadehnajar, M.H. Mirmusavi, S. Soleymani Eil Bakhtiari, H.R. Bakhsheshi‐Rad, S. Karbasi, S. RamaKrishna, F. Berto, Recent advances on akermanite calcium‐silicate ceramic for biomedical applications, International Journal of Applied Ceramic Technology, 18 (2021) 1901-1920.
    [51] H. Xu, M. Shen, H. Shang, W. Xu, S. Zhang, H.-R. Yang, D. Zhou, M. Hakkarainen, Osteoconductive and antibacterial poly (lactic acid) fibrous membranes impregnated with biobased nanocarbons for biodegradable bone regenerative scaffolds, Industrial & Engineering Chemistry Research, 60 (2021) 12021-12031.
    [52] D. Zhao, T. Nuntanaranont, N. Thuaksubun, J. Meesane, Osteo-conductive hydrogel scaffolds of poly (vinylalcohol) with silk fibroin particles for bone augmentation: Structural formation and in vitro testing, Journal of Bioactive and Compatible Polymers, 36 (2021) 481-496.
    [53] X. Wang, J. Fang, W. Zhu, C. Zhong, D. Ye, M. Zhu, X. Lu, Y. Zhao, F. Ren, Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair, Advanced Functional Materials, 31 (2021) 2010068.
    [54] E. Mazzoni, M.R. Iaquinta, C. Lanzillotti, C. Mazziotta, M. Maritati, M. Montesi, S. Sprio, A. Tampieri, M. Tognon, F. Martini, Bioactive materials for soft tissue repair, Frontiers in bioengineering and biotechnology, 9 (2021) 613787.
    [55] D.B. Sequeira, A.R. Oliveira, C.M. Seabra, P.J. Palma, C. Ramos, M.H. Figueiredo, A.C. Santos, A.L. Cardoso, J. Peça, J.M. Santos, Regeneration of pulp-dentin complex using human stem cells of the apical papilla: In vivo interaction with two bioactive materials, Clinical oral investigations, 25 (2021) 5317-5329.
    [56] E. Maevskaia, N. Khera, C. Ghayor, I. Bhattacharya, J. Guerrero, F. Nicholls, C. Waldvogel, R. Bärtschi, L. Fritschi, D. Salamon, Three-Dimensional Printed Hydroxyapatite Bone Substitutes Designed by a Novel Periodic Minimal Surface Algorithm Are Highly Osteoconductive, 3D Printing and Additive Manufacturing, (2022).
    [57] Y. Han, J. Ryu, C. Oh, S. Kim, A. Schiffer, J.P. Killgore, S. Hong, Deciphering osteoconductive surface charge effects in sintered hydroxyapatite via piezoresponse force microscopy, Journal of Applied Physics, 129 (2021) 094902.
    [58] J. Zhou, S. Sun, Y. He, T. Yan, J. Sun, J. Pan, S. Zhu, L. Chen, P. Zhu, B. Xu, Role of magnesium-doped calcium sulfate and β-tricalcium phosphate composite ceramics in macrophage polarization and osteo-induction, Odontology, (2022) 1-12.
    [59] D.P. Pioletti, H. Takei, T. Lin, P. Van Landuyt, Q.J. Ma, S.Y. Kwon, K.-L.P. Sung, The effects of calcium phosphate cement particles on osteoblast functions, Biomaterials, 21 (2000) 1103-1114.
    [60] A. Zambon, G. Malavasi, A. Pallini, F. Fraulini, G. Lusvardi, Cerium containing bioactive glasses: a review, ACS Biomaterials Science & Engineering, 7 (2021) 4388-4401.
    [61] R.G. Ribas, V.M. Schatkoski, T.L. do Amaral Montanheiro, B.R.C. de Menezes, C. Stegemann, D.M.G. Leite, G.P. Thim, Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review, Ceramics International, 45 (2019) 21051-21061.
    [62] H.S. Ningsih, L. Tannesia, H.-H. Chen, S.-J. Shih, Fabrication, characterization and in vitro cytotoxicity of mesoporous β-tricalcium phosphate using the spray drying method, Crystals, 11 (2021) 252.
    [63] J. Ma, W. Lin, L. Xu, S. Liu, W. Xue, S. Chen, Resistance to long-term bacterial biofilm formation based on hydrolysis-induced Zwitterion material with biodegradable and self-healing properties, Langmuir, 36 (2020) 3251-3259.
    [64] A. Manicardi, E. Cadoni, A. Madder, Hydrolysis of 5-methylfuran-2-yl to 2, 5-dioxopentanyl allows for stable bio-orthogonal proximity-induced ligation, Communications Chemistry, 4 (2021) 1-9.
    [65] W. Shang, Z. Peng, Y. Huang, F. Gu, J. Zhang, H. Tang, L. Yang, W. Tian, M. Rao, G. Li, Production of glass-ceramics from metallurgical slags, Journal of Cleaner Production, 317 (2021) 128220.
    [66] J. Zhong, D. Chen, Y. Peng, Y. Lu, X. Chen, X. Li, Z. Ji, A review on nanostructured glass ceramics for promising application in optical thermometry, Journal of Alloys and Compounds, 763 (2018) 34-48.
    [67] C.F. Dunne, G. Cooke, S. Keane, D. de Faoite, S. Donnelly, K.T. Stanton, Nanostructured apatite-mullite glass-ceramics for enhanced primary human osteoblast cell response, Materials Letters, 214 (2018) 268-271.
    [68] K. Fu, S. Wang, G. Wang, Y. Wang, The effects of calcium oxide on fluorapatite crystal morphology and mechanical property of functional glass-ceramics, Ceramics International, 44 (2018) 20531-20538.
    [69] L. Hench, T. Kokubo, Properties of bioactive glasses and glass-ceramics, Handbook of biomaterial properties, Springer1998, pp. 355-363.
    [70] H.R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, G.E. Stan, J.M. Ferreira, Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering, Materials, 11 (2018) 2530.
    [71] L. Hallmann, P. Ulmer, M. Kern, Effect of microstructure on the mechanical properties of lithium disilicate glass-ceramics, Journal of the Mechanical Behavior of Biomedical Materials, 82 (2018) 355-370.
    [72] A. Sakamoto, S. Yamamoto, Glass–ceramics: engineering principles and applications, International Journal of Applied Glass Science, 1 (2010) 237-247.
    [73] I.C.J. Dechandt, P. Soares, M.J. Pascual, F.C. Serbena, Sinterability and mechanical properties of glass-ceramics in the system SiO2-Al2O3-MgO/ZnO, Journal of the European Ceramic Society, 40 (2020) 6002-6013.
    [74] J.J. Shyu, J.M. Wu, Journal. Effects of Composition Changes on the Crystallization Behavior of MgO‐CaO‐SiO2‐P2O5 Glass‐Ceramics, Journal of the American Ceramic Society, 74 (1991) 2123-2130.
    [75] I. Thompson, L. Hench, Mechanical properties of bioactive glasses, glass-ceramics and composites, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 212 (1998) 127-136.
    [76] S. Padilla, J. Roman, A. Carenas, M. Vallet-Regı, The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics, Biomaterials, 26 (2005) 475-483.
    [77] K.P. O’Flynn, K.T. Stanton, Controlling the crystallization of fluorapatite in apatite-mullite glass-ceramics, Crystal growth & design, 12 (2012) 1218-1226.
    [78] C. Shih, H. Chen, L. Huang, P. Lu, H. Chang, I. Chang, Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds, Materials Science and Engineering: C, 30 (2010) 657-663.
    [79] S. Likitvanichkul, W. Lacourse, Apatite–wollastonite glass-ceramics part I Crystallization kinetics by differential thermal analysis, Journal of materials science, 33 (1998) 5901-5904.
    [80] T. Duminis, S. Shahid, R.G. Hill, Apatite glass-ceramics: a review, Frontiers in Materials, 3 (2017) 59.
    [81] A. Festas, A. Ramos, J. Davim, Medical devices biomaterials–A review, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234 (2020) 218-228.
    [82] W. Frey, J. Mackenzie, Mechanical properties of selected glasscrystal composites, Journal of Materials Science, 2 (1967) 124-130.
    [83] D.J. Wronkiewicz, S.F. Wolf, T. DiSanto, Apatite-and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes, MRS Online Proceedings Library (OPL), 412 (1995).
    [84] D. Hasselman, D. Hirschfeld, H. Tawil, E.K. Beauchamp, Effect of inclusions on size of surface flaws in glass-crystal composites, Journal of materials science, 20 (1985) 4050-4056.
    [85] T. Kokubo, S. Ito, M. Shigematsu, S. Sakka, T. Yamamuro, Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application, Journal of Materials Science, 20 (1985) 2001-2004.
    [86] S. Shinzato, M. Kobayashi, W.F. Mousa, M. Kamimura, M. Neo, Y. Kitamura, T. Kokubo, T. Nakamura, Bioactive polymethyl methacrylate‐based bone cement: Comparison of glass beads, apatite‐and wollastonite‐containing glass–ceramic, and hydroxyapatite fillers on mechanical and biological properties, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 51 (2000) 258-272.
    [87] T. Kitsugi, T. Yamamuro, T. Nakamura, S. Higashi, Y. Kakutani, K. Hyakuna, S. Ito, T. Kokubo, M. Takagi, T. Shibuya, Bone bonding behavior of three kinds of apatite containing glass ceramics, Journal of biomedical materials research, 20 (1986) 1295-1307.
    [88] F. Baino, Bioactive Glasses and Glass-Ceramics for Ophthalmological Applications, Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses, Elsevier2019, pp. 357-382.
    [89] P.J. Haghighat, H. Majidian, I. Mobasherpour, S. Banijamali, A simple approach to design fluorapatite glass-ceramic coatings on the surface modified Ti6Al4V substrates for biomedical applications, Journal of the Australian Ceramic Society, 57 (2021) 673-685.
    [90] T. Kokubo, H.-M. Kim, M. Kawashita, T. Nakamura, REVIEW Bioactive metals: preparation and properties, Journal of Materials Science: materials in medicine, 15 (2004) 99-107.
    [91] T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, 24 (2003) 2161-2175.
    [92] V.O. Soares, J.K. Daguano, C.B. Lombello, O.S. Bianchin, L.M. Gonçalves, E.D. Zanotto, New sintered wollastonite glass-ceramic for biomedical applications, Ceramics International, 44 (2018) 20019-20027.
    [93] M. Miola, Y. Pakzad, S. Banijamali, S. Kargozar, C. Vitale-Brovarone, A. Yazdanpanah, O. Bretcanu, A. Ramedani, E. Vernè, M. Mozafari, Glass-ceramics for cancer treatment: so close, or yet so far?, Acta biomaterialia, 83 (2019) 55-70.
    [94] Q. Fu, E.M. Aaldenberg, E.N. Coon, T.M. Gross, A.M. Whittier, B.M. Abel, D.E. Baker, Tough, Bioinspired Transparent Glass‐Ceramics, Advanced Engineering Materials, 24 (2022) 2200350.
    [95] T.K. Ghosh, D. pradip Mukherjee, U.K. Ghorai, S.K. Das, Synthesis and crystallisation kinetics study of nano-Al2O3 containing bio-active glass-ceramics, Materials Today: Proceedings, 11 (2019) 794-803.
    [96] M.U. Tomalino, Mineralogy and Properties of Raw Materials and Crystalline Phases of Ceramics and Glass–Ceramics, Ceramics, Glass and Glass-Ceramics: From Early Manufacturing Steps Towards Modern Frontiers, (2021) 47-73.
    [97] A. Kraipok, P. Intawin, P. Bintachitt, W. Leenakul, O. Khamman, S. Eitssayeam, T. Tunkasiri, K. Pengpat, Influence of heat treatment temperature on the properties of the lithium disilicate‐fluorcanasite glass‐ceramics, International Journal of Applied Ceramic Technology, 19 (2022) 1415-1427.
    [98] H. Abo-Mosallam, E.A. Mahdy, Crystallization behavior and properties of fluorcanasite–lithium disilicate glasses for potential use in dental application, Ceramics International, 45 (2019) 21144-21149.
    [99] W. Wisniewski, C. Rüssel, Electrochemically induced nucleation of oxidic crystals in melts–a review, CrystEngComm, 23 (2021) 4419-4433.
    [100] H.A. Abo-Mosallam, M. Farag, Preparation, crystallization features and electro-magnetic properties of phosphate based glass-ceramics as solid electrolyte for lithium-ion batteries, Journal of the Australian Ceramic Society, 56 (2020) 353-361.
    [101] L. Deng, X. Zhang, M. Zhang, X. Jia, Z. Zhang, B. Li, Structure and properties of in situ synthesized FeSi2-diopside glass ceramic composites from Bayan Obo tailings, blast furnace slag, and fly ash, Journal of Alloys and Compounds, 785 (2019) 932-943.
    [102] A.B. Workie, H.S. Ningsih, S.-J. Shih, An comprehensive review on the spray pyrolysis technique: historical context, operational factors, classifications, and product applications, Journal of Analytical and Applied Pyrolysis, (2023) 105915.
    [103] F. Wang, Y. Wang, Q. Liao, J. Zhang, W. Zhao, Y. Yuan, H. Zhu, L. Li, Y. Zhu, Immobilization of a simulated HLW in phosphate based glasses/glass-ceramics by melt-quenching process, Journal of Non-Crystalline Solids, 545 (2020) 120246.
    [104] S.S. Berbano, I. Seo, C.M. Bischoff, K.E. Schuller, S.W. Martin, Formation and structure of Na2S+ P2S5 amorphous materials prepared by melt-quenching and mechanical milling, Journal of non-crystalline solids, 358 (2012) 93-98.
    [105] D. Magallon, I. Huhtiniemi, Corium melt quenching tests at low pressure and subcooled water in FARO, Nuclear Engineering and Design, 204 (2001) 369-376.
    [106] A. Hayashi, H. Yamashita, M. Tatsumisago, T. Minami, Characterization of Li2S–SiS2–LixMOy (M= Si, P, Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling, Solid State Ionics, 148 (2002) 381-389.
    [107] K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago, Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method, Solid State Ionics, 178 (2007) 837-841.
    [108] M. Saito, T. Daian, K. Hayashi, S.-y. Izumida, Fabrication of a polymer composite with periodic structure by the use of ultrasonic waves, Journal of applied physics, 83 (1998) 3490-3494.
    [109] H. Suzuki, H. Saito, T. Hayashi, Low temperature synthesis of glassy solids of the system Al2O3-P2O5-SiO2, Journal of materials science, 19 (1984) 396-402.
    [110] J. Roman, S. Padilla, M. Vallet-Regi, Sol− gel glasses as precursors of bioactive glass ceramics, Chemistry of materials, 15 (2003) 798-806.
    [111] A.A. Hossain, S. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1− xZnxFe2O4, Journal of Magnetism and Magnetic Materials, 312 (2007) 210-219.
    [112] W.N. Addison, F. Azari, E.S. Sørensen, M.T. Kaartinen, M.D. McKee, Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity, Journal of Biological Chemistry, 282 (2007) 15872-15883.
    [113] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
    [114] S. Ding, H.-A. Chen, O. Mekasuwandumrong, M.J. Hülsey, X. Fu, Q. He, J. Panpranot, C.-M. Yang, N. Yan, High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts, Applied Catalysis B: Environmental, 281 (2021) 119471.
    [115] T. Kokubo, S. Ito, S. Sakka, T. Yamamuro, Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO 2-P 2 O 5, Journal of Materials Science, 21 (1986) 536-540.
    [116] J.B. Mooney, S.B. Radding, Spray pyrolysis processing, Annual review of materials science, 12 (1982) 81-101.
    [117] S.-J. Shih, Y.-J. Chou, I.-C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1-8.
    [118] R. Lagier, C.-A. Baud, Magnesium whitlockite, a calcium phosphate crystal of special interest in pathology, Pathology-Research and Practice, 199 (2003) 329-335.
    [119] S. Kozhukharov, S. Tchaoushev, Spray pyrolysis equipment for various applications, Journal of Chemical Technology and Metallurgy, 48 (2013) 111-118.
    [120] S.-J. Shih, L.-Y.S. Chang, C.-Y. Chen, K.B. Borisenko, D.J. Cockayne, Nanoscale yttrium distribution in yttrium-doped ceria powder, Journal of Nanoparticle Research, 11 (2009) 2145-2152.
    [121] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
    [122] F. Meierhofer, L. Mädler, U. Fritsching, Nanoparticle evolution in flame spray pyrolysis—Process design via experimental and computational analysis, AIChE Journal, 66 (2020) e16885.
    [123] S.-J. Shih, W.-L. Tzeng, Y.-J. Chou, C.-Y. Chen, Y.-J. Chen, The influence of phase separation on bioactivity of spray pyrolyzed bioactive glass, Journal of Nanoscience and Nanotechnology, 15 (2015) 4688-4696.
    [124] H. Li, S. Pokhrel, M. Schowalter, A. Rosenauer, J. Kiefer, L. Mädler, The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis, Combustion and flame, 215 (2020) 389-400.
    [125] D.S. Jung, H.Y. Koo, S.E. Wang, S.B. Park, Y.C. Kang, Ultrasonic spray pyrolysis for air-stable copper particles and their conductive films, Acta Materialia, 206 (2021) 116569.
    [126] T. Pradita, B. Aji, S. Shih, Sudibyo, Controlled morphological structure of magnesium oxide particles, AIP Conference Proceedings, AIP Publishing LLC, 2017, pp. 020044.
    [127] S.-J. Shih, K.B. Borisenko, L. Liu Jr, C.-Y. Chen, Multiporous ceria nanoparticles prepared by spray pyrolysis, Journal of Nanoparticle Research, 12 (2010) 1553-1559.
    [128] Y.J. Chou, C.J. Shih, S.J. Shih, Texture Evaluation of Sol-Gel Derived Mesoporous Bioactive Glass, Applied Mechanics and Materials, Trans Tech Publ, 2013, pp. 230-234.
    [129] T. Kokubo, H. Takadama, Simulated body fluid (SBF) as a standard tool to test the bioactivity of implants, Handbook of biomineralization: biological aspects and structure formation, (2007) 97-109.
    [130] M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials, 30 (2009) 2175-2179.
    [131] A.D.C. Juraski, A.C.D. Rodas, H. Elsayed, E. Bernardo, V.O. Soares, J. Daguano, The in vitro bioactivity, degradation, and cytotoxicity of polymer-derived wollastonite-diopside glass-ceramics, Materials, 10 (2017) 425.
    [132] E.A. Mahdy, H.Y. Ahmed, M.M. Farag, Combination of Na-Ca-phosphate and fluorapatite in wollastonite-diopside glass-ceramic: degradation and biocompatibility, Journal of Non-Crystalline Solids, 566 (2021) 120888.
    [133] T. Kokubo, Apatite formation on surfaces of ceramics, metals and polymers in body environment, Acta materialia, 46 (1998) 2519-2527.
    [134] F. Baino, D.U. Tulyaganov, Z. Kahharov, A. Rahdar, E. Verné, Foam-Replicated Diopside/Fluorapatite/Wollastonite-Based Glass–Ceramic Scaffolds, Ceramics, 5 (2022) 120-130.
    [135] A.-M. Galow, A. Rebl, D. Koczan, S.M. Bonk, W. Baumann, J. Gimsa, Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration, Biochemistry and biophysics reports, 10 (2017) 17-25.
    [136] W. Cao, L.L. Hench, Bioactive materials, Ceramics international, 22 (1996) 493-507.
    [137] B. Jin, Z. Liu, C. Shao, J. Chen, L. Liu, R. Tang, J.J. De Yoreo, Phase transformation mechanism of amorphous calcium phosphate to hydroxyapatite investigated by liquid-cell transmission electron microscopy, Crystal Growth & Design, 21 (2021) 5126-5134.

    QR CODE