簡易檢索 / 詳目顯示

研究生: 張俊堯
Chun-Yao Chang
論文名稱: 透輝石相玻璃陶瓷低溫共燒擴散效應與高頻天線特性探討
Low temperature co-fired diopside glass ceramic with silver, copper diffusion effect and microwave antenna characteristics
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 馮奎智
NONE
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 126
中文關鍵詞: DRA天線銀電極共燒銅電極共燒LTCC天線低介電常數高品質因子微波介電趨近於零的共振溫度頻率係數透輝石相玻璃陶瓷
外文關鍵詞: DRA antenna, LTCC antenna
相關次數: 點閱:324下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討所開發之微波介電材料應用於高頻元件製作。透輝石相玻璃陶瓷(CaMgSi2O6)具低介電常數 (low dielectric constant, k)、高品質因子值(high quality factor, Qxf) 和低共振溫度頻率係數(Temperature coefficient of the resonance frequency, τf)等特性,因此適用於微波電路元件使用。本研究深入探討此材料系統共燒特性,發展出可於大氣下與銀共燒、氮氣下與銅電極共燒匹配(≦1000℃)材料系統,並使用低溫共燒技術(LTCC, low temperature co-fired ceramic)製作微波元件。
    首先為了建立CaMgSi2O6玻璃陶瓷在微波元件適用性,將此材料做成塊材與特殊電路饋入形成DRA天線(dielectric resonator antenna),利用透輝石相玻璃陶瓷高品質因子值之特性設計優越天線元件,大氣及氮氣燒結透輝石相玻璃陶瓷系統,其兩系統製成DRA天線其S11反射係數分別為-12.008dB、-12.679 dB;效率則高達75.08%、82.59%,顯示優良元件特性。
    為發揮透輝石相玻璃陶瓷低溫燒結優勢,利用低溫共燒技術製成微波元件是一大特點,因此探討此系統分別與銀及銅異質共燒效應。而此系統共燒過程與大部分LTCC材料相似,皆有銀擴散現象發生,但擴散樣貌與其他文獻有些許不同;本系統屬高結晶度玻璃陶瓷,銀擴散是以銀氧化後與玻璃鍵結擴散,伴隨透輝石相玻璃陶瓷結晶過程會把銀推向玻璃基質,析出後銀會呈現不規則片狀並分布於電極邊界。在900 oC 2hr燒結條件下,銀會擴散至玻璃陶瓷體60μm,以相定量評估,銀會約以45%存在於擴散體中。為了解決銀擴散問題,本研究採用非晶質氧化矽添加。當非晶質氧化矽添加至4wt%,可以有效抑制銀擴散:因非晶質氧化矽可提高玻璃黏度、降低銀擴散動能,另外奈米非晶質氧化矽在達銀大量擴散溫度前,會慢慢結晶形成石英相(Quatz),阻絕原本融入玻璃體的銀繼續與玻璃體鍵結,因此可發現銀存在邊界約3μm距離,此區屬原本已融入玻璃體銀元素,在奈米石英相阻絕下抑制與其於玻璃體繼續擴散。
    銅共燒擴散反應與銀金屬不同,會形成銅化合物如Cu2MgO3、Ca2CuO3及Ca2MgSi2O7、Mg2SiO4、SiO2二次相,電極邊界元素不規則變化形成區塊性相分布,為抑制銅擴散需減少銅化合物Cu2MgO3、Ca2CuO3產生可能性,而添加4wt%氧化矽則可發揮抑制銀擴散相同機制,達到抑制銅擴散效果。
    最後以IEEE 802.11a 5.8GHz為目標規範,將CaMgSi2O6透輝石相玻璃陶製成LTCC微波天線,利用雙層介電質三層電極共燒,設計兩種激發模態使天線達寬頻化,而天線分別以不同程度銀擴散匹配製成元件,結果顯示材料設計對於元件製造非常重要,良好微波介電料開發及匹配可以發展優越微波通訊元件。而本研究中利用透輝石相玻璃陶瓷添加氧化矽(4wt%)抑制銀擴散製作優良匹配LTCC天線,其特性,反射損耗:-27.19dB、中心共振頻率:5.43GHz、頻寬:135MHz、增益:2.47dB、效率47.85%。


    The object of this study is to investigate the microwave dielectric materials used in the development of high-frequency components production. Diopside glass ceramics with low dielectric constant (k), high quality factor (Qxf) and low resonance frequency temperature coefficient (τf) is suitable for be used in the microwave circuit elements. Development the material system which can co-fired well with a silver and the copper electrodes,and manufactured microwave components by low temperature co-fired ceramic, were also carried out in this work .
    First, to establish applicability of CaMgSi2O6 in microwave components, making the cylinder CaMgSi2O6 fed into special circuitry to formed dielectric resonator antenna, designed outstanding antenna elements by using high quality factor material. Diopside sintered in atmospheric and in nitrogen, which S11 reflection coefficient are -12.008dB, -12.679 dB; efficiency 75.08%, 82.59%, respectively, showing excellent device characteristics.
    Furthermore, explore the co-firing effect with a silver and a copper in this system, however. Different from other LTCC material systems, Diopside ceramic glass is a highly crystalline materail, and the silver spread with glass bonding after oxidized, so the silver be pushed to the glass substrate in the bonding process, after precipitation, the silver will be distributed in electrode boundary by irregular flakes way, in the 900oC, 2hr sintering. Silver will spread to the glass ceramic body 60μm, and exist in the diffusion body about 45% by evaluated in quantitative Phase. On the other hand, in order to solve the problem of silver diffusion, this study added amorphous silicon oxide according to the literature. It can be effectively suppressed diffuse of silver when the amorphous silicon oxide is added, because the amorphous silicon oxide can increase the glass viscosity, reduced the kinetic energy of silver diffuse. In addition, before the nano amorphous silicon oxide particles reached the temperature of a large number of silver diffusion, it was gradually crystallized into quartz phase (Quartz) to block the silver which already integrated into the vitreous continue bond with the vitreous. So can be found the silver in the electrode boundary(3μm).Additionally, magnesium zinc silicon ceramics can reduce the amount of material in the vitreous, but it still can't suppressed the silver diffusion effectively.
    The diffusion reaction with the Copper is different from the silver metal,it will form copper compounds as Cu2MgO3, Ca2CuO3 and Ca2MgSi2O7, Mg2SiO4, SiO2 secondary phase, irregular changes of electrode boundary element formed block distribution. To suppress copper diffusion need to reduce the possibility of produced Cu2MgO3 and Ca2CuO3, when adding 4wt% silicon oxide, can be used in suppressed the diffusion of copper, using these method the boundary element distribution significantly.
    Finally, as IEEE 802.11a 5.8GHz as target specification to manufacture LTCC antenna by CaMgSi2O6, designed the broadband antenna using adjacent mode, and different degrees of diffusion of silver. In the result, making outstanding LTCC antenna by using CaMgSi2O6 added silicon oxide (4wt%) to suppress the diffusion of silver, the reflection loss: -27.19dB, center resonance frequency: 5.43GHz, Bandwidth: 135MHz, gain: 2.47dB, efficiency: 47.85%. Therefore, the excellent microwave dielectric electrical materials development and matching can develop a superior microwave communications component

    摘要 目錄 圖目錄 表目錄 第一章 緒論 1-1 背景 1-2 目的 第二章 文獻回顧 2-1 微波介電材料的特性與原理 2.1.1介電原理與性質 2.1.2品質因子 2.1.3共振頻率溫度係數 2.1.4微波材料量測技術 2-2 微波介電材料系統的發展 2-2-1 HTCC高溫共燒陶瓷系統之微波介電材料 2-2-2 LTCC低溫共燒陶瓷系統之微波介電材料 2-3 透輝石相玻璃陶瓷材料系統設計 2-3-1透輝石相之化學成分與結晶構造 2-4 微波天線 2-4-1天線規格 2-4-1-1阻抗匹配(Impedance) 2-4-1-2諧振頻率 2-4-1-3頻寬 2-4-1-4輻射場型 2-4-1-5天線效率與增益 2-4-2DRA天線 2-4-3 LTCC天線 2-5 LTCC製程應用與問題 2-5-1薄帶漿料配比與收縮 2-5-2電極匹配與擴散 2-5-2-1電極銀擴散 2-5-2-2抑制電極銀擴散 第三章 實驗流程與分析方法 3-1 不同介電常數試片製備過程 3-2 DRA天線製作 3-3 薄帶製作 3-3-1漿料配比 3-3-2刮刀成型 3-3-3熱疊壓 3.4 實驗儀器與規格 3.5 材料性質量測方法 3.5.1 SEM/BEI 微觀分析 3.5.2 XRD相結構分析 3.5. 3 品質因子與介電常數量測 3.5.4 共振溫度頻率係數量測 3.5.5天線s參數量測與輻射場型量測 第四章 結果與討論 4.1 透輝石相玻璃陶瓷DRA天線製作 4.1.1透輝石相玻璃陶瓷DRA天線噴膠黏貼 4.1.2透輝石相玻璃陶瓷DRA天線不導電膠黏貼 4.1.2.1開槽饋入(slot) 4.1.2.2圓圈饋入(circle) 4.1.3DRA天線微波場型與效率量測 4.2 透輝石相玻璃陶瓷薄帶特性與電極匹配 4.2.1透輝石相玻璃陶瓷燒結與疊壓 4.2.2透輝石相玻璃陶瓷銀電極擴散與抑制 4.2.2.1透輝石相玻璃陶瓷銀擴散 4.2.2.2透輝石相玻璃陶瓷材料改質抑制銀擴散 4.2.2.3透輝石相玻璃陶瓷抑制銀擴散 4.2.3透輝石相玻璃陶瓷銅電極擴散與抑制 4.2.3.1透輝石相玻璃陶瓷銅電極擴散 4.2.3.2透輝石相玻璃陶瓷抑制銅擴散 4.2.4電極表面分析 4.3 透輝石相玻璃陶瓷低溫共燒天線 4.3.1低溫共燒設計條件 4.3.2透輝石相玻璃陶瓷銀擴散效應與雙模態天線特性 4.3.2.1雙模態天線銀擴散 4.3.2.2銀擴散與雙模態天線阻抗匹配 4.3.2.3銀擴散與雙模態天線增益與效率 4.3.2.4銀擴散與雙模態天線特性 第五章 結論 第六章 參考文獻 附錄

    1. R. J. Cava, Dielectric materials for applications in microwave Communication. Journal of Materials Chemistry., 11, 54-62, 2001.
    2. J. Wan, Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization. Journal of Electronic Science and Technology of China., 6, 342-345, 2008.
    3.J. Krupka, Extremely high-Q factor dielectric resonators for Millimeter-wavapplications. IEEE Transactions on Microwave theory and Techniques., 53, 702-712, 2005.
    4. I. Nicolaescu, A.Ioachim, I. Toacsan, I. Radu, and G. Banciu, High k materials used to manufacture miniaturized dielectric antennas for military applications. Journal of Optoelectronics and Advanced Materials., 9, 3592-3597, 2007.
    5. C. C. Chiang, S. F. Wang, Y. R. Wang, W. Cheng, and J. Wei, Densification and microwavedielectric properties of CaO–B2O3–SiO2 system glass–ceramics. Ceramics International., 34, 599–604, 2008.
    6. M. T. Sebastian, and H. Jantunen, Low loss dielectric materials for LTCC Applicatio-ns: a review. International Materials Reviews., 53, 57-90, 2008.
    7. J. M. Osepchuk, “A History of Microwave Heating Applications.” IEEE Trans.” Microwave Theory & Tech., 9, 1200-1224, 1984.
    8. R. D. Richtmyer, Dielectric Resonator. Japanese Journal of Applied Physics., 10, 391-398, 1939.
    9. A. Okaya, The Rutile Microwave Resonator. Proceeding of the IRE., 48, 1921, 1960.
    10. H. M. O. Bryan, J. Thomson, and J. K. Plourde, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 450-453, 1974.
    11. 趙克玉, 許福永編著,“微波原理與技術”,高等敎育出版社, 2006 .
    12. Vernon John著,蔡希杰譯,工程材料基礎篇第三版,俊傑書局股份有限公公司,2001。
    13. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons., New York, 1975
    14. 李俊遠,GPS微波介電材料與GPS天線設計概念,電子與材料雜誌,第14期。

    15. Basics of Measuring the Dielectric Properties of Materials Application Note, Agilent,www.agilent.com/find/materials, 2005
    16. J. Baker-Jarvis, M. Janezic, B. Riddle, C. Holloway, N. Paulter and J. Blendell, “.
    Dielectric and Conductor-Loss Characterization and Measurements on ElectronicPackaging Materials,” NIST Technical Note 1520, 2001
    17. H. M. O’Bryan JR, and J. Thomson JR, A new BaO-TiO2 compound with temperature-Stable High Permittivity and Low Microwave Loss. Journal of American Ceramic Society., 57, 522-526, 1974.
    18. M. H. Weng, and C. L. Huang, Single Phase Ba2Ti9O20 Microwave dielectric Ceramics prepared by low temperature liquid phase Sintering. Japanese Journal of Applied Physics., 39, 3528-3529, 2000.
    19. M. H. Weng, T. J. Liang, and C. L. Huang, Lowering of sintering temperature and Microwave dielectric properties of BaTi4O9 ceramics prepared by the Polymeric precursor method. Journal of the European Ceramic Society., 22, 1693–1698, 2002.
    20. H. Ohsato, S. Nishigaki, and T. Okuda, Superlattice and Dielectric Properties of BaO-R2O3-TiO2 (R=La, Nd and Sm) Microwave Dielectric Compounds. Japanese Journal Applied Physics., 31, 3136-3138, 1992
    21. K. Wakino, K. Minai, and H. Tamura, Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators. Journal of the American Ceramic Society., 67, 278-281, 1984.
    22. A. Ioachim, M. I. Toacsan, L. Nedelcu, M. G. Banciu, C. A. Dutu, E. Andronescu, and S. Jinga, Thermal Treatments Effects on Microwave Dielectric Properties of Ba(Zn1/3Ta2/3)O3 Ceramics. Romanian Journal of Information Science and Technology., 10, 261-268, 2007.
    23. M. Takata, and K. Kageyama, Microwave Characteristics of A(B1/23+ B1/25+ )O3 Ceramics. Journal of American Ceramic Society., 72, 1955-1959, 1990.
    24. R. R. Tummala, Ceramic and glass–ceramic packaging in the 1990s. Journal of American Ceramic Society., 74, 895–908, 1991.
    25. N. Sakamoto, T. Motoki, and H. Sano, U. S. Pat.No. 6233134, 2001.
    26. T. Joseph, and M. T. Sebastian, Microwave dielectric properties of alkaline earth orthosilicates M2SiO4 (M=Ba, Sr, Ca). Materials Letters., 65, 891-893, 2011.
    27. T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato, Microwave dielectric properties of forsterite-based solid solutions. Journal of the European Ceramic Society., 26, 2097-2100, 2006.

    28. G. K. Choi, J. R. Kim, S. H. Yoon, and K. S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. Journal of the European Ceramic Society., 27, 3063-3067, 2007.
    29. S. Nishigaki, S. Yano, H. Kato, T. Hirai, and S. Nomura, BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4. Journal of American Ceramic Society., 71, C11-C17, 1988.
    30. S. H. Yoon, D.-W. Kim, S.-Y. Cho, and K. S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. Journal of the European Ceramic Society., 26, 2051-2054, 2006.
    31. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics. Key Engineer Materials., 269, 199–202, 2004.
    32. M. E. Song, J. S. Kim, M. R. Joung, and S. Nahm, Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics. Journal of American Ceramic Society., 91, 2747-2750, 2008.
    33. Q. L. Zhang, H. Yang, and H. P. Sun, A new microwave ceramic with low-permittivity for LTCC applications. Journal of the European Ceramic Society., 28, 605–609, 2008.
    34. H. P. Wang, Q. L. Zhang, H. Yang, and H. P. Sun, Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceramics International., 34, 1405-1408, 2008.
    35. J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, and S.Nahm, Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics. Journal of the European Ceramic Society., 30, 375-379, 2010.
    36. J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H, Yoon, and H. J. Kim, Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 Ceramics. Journal of the European Ceramic Society., 23, 2413–2416, 2003.
    37. M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, Microstructure and Microwave dielectric properties of the Li2CO3-Added Sr2V2O7 Ceramics. Journal of American Ceramic Society., 93, 2132-2135, 2010.
    38. R. Lebourgeoisa, S. Dugueyb, J. P. Gannea, and J. M. Heintz, Influence of V2O5 on the magnetic properties of nickel-zinc-copperferrites. Journal of Magnetism and Magnetic Materials., 312, 328-330, 2007.
    39. S. F. Wang, T. C. K. Yang, Y. R. Wang, and Y. Kuromitsu, Effect of Glass composition on the densification and dielectric properties of BaTiO3 ceramic. Ceramics International., 27, 157-162, 2001.
    40. Q. L. Zhang, H. Yang, and J. X. Tong, Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5. Material Letters., 60, 1188-1191, 2006.
    41. M. Ohsahi, H. Ogawa, A. Kan, and E. Tanaka, Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic. Journal of the European Ceramic Society., 25, 2877–2881, 2005.
    42. J. S. Kim, J. C. Lee, C. I. Cheon, and C. H. Lee, International Symposium on Research reactor and neutron science., Daejeon, Korea, 2005, 682–685.
    43. R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. Journal of the European Ceramic Society., 25, 2865–2870, 2005.
    44. R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, and A. Kan, Low-temperature sintering microwave dielectric properties relations in Ba3(VO4)2 ceramic. Journal of Alloys and Compounds., 424, 388-393, 2006.
    45. H. Jantunen, A. Uusimaぴki, R. Rautioaho, and S. Leppaぴvuori, Compositions of MgTiO3–CaTiO3 ceramic with two borosilicate glasses for LTCC technology. Journal of the European Ceramic Society., 20, 2331–2336, 2000.
    46. N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies. Journal of the European Ceramic Society., 26, 1925–1928, 2006.
    47. C. Zhong, Y. Yuan, S. Zhang, Y. Pang, and B. Tang, Low-fired BiNbO4 microwave dielectric ceramics modified by CuV2O6 addition sintered in N2 atmosphere. Journal ceramics silikaty., 54, 103-107, 2010.
    48. J. J. Jean, and Y. C. Fang, Devitrification kinetics and mechanism of K2O–CaO–SrO–BaO-B2O3–SiO2 glass–ceramic. Journal of American Ceramic Society., 84, 1354–1360, 2001.
    49. C. R. Chang, and J. J. Jean, Crystallization kinetics and mechanism of low dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass–ceramics. Journal of American Ceramic Society., 82, 1725–1732, 1999.
    50. P. Hudon, I. H. Jung and D. R. Baker, “Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa.” Journal of Petrology., 46, 2005.
    51. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals 2A. Second Edition, Single Chain Silivate. John Wiley., New York, 1978.
    52. N. Morimoto, Nomenclature of pyroxenes. Canadian Mineralogist., 27, 143-156, 1989.
    53. B. J. Wood, and R. Trigila, Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chemical Geology., 172, 213-223, 2001.
    54. R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and Fluorides.” Acta Cryst., B25, 925, 1969.
    55. 劉賾銘,低介電之透輝石相玻璃陶瓷的合成及應用於LTCC氮氣製程下品質因子改善之研究,國立台灣科技大學碩士論文,中華民國100年。
    56. 莊舜傑,二次熱處理與鈦酸鈣添加對透輝石玻璃陶瓷微波介電材料的燒結與特性影響,國立台灣科技大學碩士論文,中華民國101年。
    57. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, “Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics.” Key Engineer Materials., 269, 199–202, 2004.
    58. Y. Guo, H. Ohsato and K. Kakimoto, “Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency.” Journal of the European Ceramic Society., 26, 1827-1830, 2006.
    59. S. Nahmw, N. H. Nguyen, J. B. Lim, J. H. Paik and J. H. Kim, “Effect of Zn/Si Ratio on the Microstructural and Microwave Dielectric Properties of Zn2SiO4 Ceramics.” Journal of American Ceramic Society., 90, 3127-3130, 2007.
    60. K. X. Song, X. M. Chen and C. W. Zheng, “Microwave dielectric characteristics of ceramics in Mg2SiO4–Zn2SiO4 system.” Ceramics International., 34, 917-920, 2008.
    61. 柳邦凱,透輝石相玻璃陶瓷添加陶瓷粉體共燒之微波介電特性改善與研究,國立台灣科技大學碩士論文,中華民國102年。
    62. 吳朗,電子陶瓷-絕緣陶瓷,全欣出版,中華民國83年。
    63. Kingery. Bowen. Uhlmann 著,陳皇鈞譯,陶瓷材料概論(下冊),曉園出版,1988.
    64. G H. Beall, Design and Properties of Glass-Ceramics. Annual Review Materials Science., 22, 91–119, 1992.
    65. 陳文照,廖金喜,蔡明雄,蔡丕樁,材料科學與工程 (第三版),全華圖書,1996.
    66. 汪建民主編, 陶瓷技術手冊 (下), 中華民國粉末冶金協會,1994.
    67. W. D. Kingery, and B. Uwmann, Introduction to Ceramics. Second Edition, John Wiley & Sons (SEA) Press., Singapore, 1991.
    68. W. Hinz,“Nucleation and Crystal Growth. Journal of Non-Crystalline Solids.”25, 215-260, 1979.
    69. B. J. Wood, and R. Trigila, Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chemical Geology., 172, 213-223, 2001.
    70. M. M. Mahmoud, Crystallization of Lithium Disilicate Glass using Variable Frequency Microwave Processing. Ph.D. in Materials Science and Engineering, Faculty of the Virginia Polytechnic Institute and State University, 2007.
    71. R. D. Rawlings, J. P. Wu, and A. R. Boccaccini., Glass-Ceramics: Their Production from Wastes-A Review. Journal Materials Science., 41, 733-761, 2006.
    72. 于曉樂,倪大寧,張福順,介質諧振器天線的研究進展,空間電子技術,第一期,2006
    73. Roger A. Kranenburg, Stuart A. Long,Coplanar Waveguide Excitation of Dielectric esonator Antennas. IEEE Transactions on Antenna and Propagation.,vol. 39, no.1, 1991.
    74. M. S. Al Salameh and Guy Séguin,Coplanar-Waveguide-Fed Slot-Coupled Rectangular Dielectric Resonator Antenna. IEEE Transactions on Antenna and Propagation., vol. 50, no. 10, October 2002
    75. 湯嘉倫,MLC多層陶瓷晶片天線設計與應用,CCL Technical Journal.,2002
    76. Marek Bugaj and Marian Wnuk,Bandwidth Optimization of Aperture-Coupled Stacked Patch Antenna.Advancement in Microstrip Antennas with Recent Applications,March 6, 2013
    77. RongLin Li, Gerald DeJean, Moonkyun Maeng, Kyutae Lim, Stephane Pinel,Manos M. Tentzeris and Joy Laskar,Design of Compact Stacked-Patch Antennas in LTCC Multilayer Packaging Modules for Wireless Applications. IEEE Transcation on Advanced Packaging, vol. 27, no. 4, November,2004.
    78. Kwang Bo Shim, Nan Tae Cho, Seon Woo Lee,Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications.Journal Of Materials Science.,35,813– 820,2000
    79. Markus Eberstein, Torsten Rabe, and Wolfgang Arno Schiller,Influences of the Glass Phase on Densification,Microstructure and Properties of Low-Temperature Co-Fired Ceramics. International Journal of Applied Ceramic Technology., 3 [6],428–436,2006.
    80. Yi-Ting Shih and Jau-Ho Jean and Shih-Chang Lin, Failure Mechanism of a Low-Temperature-Cofired Ceramic Capacitor with an Inner Ag Electrode.Journal of American Ceramic Society., 93 [10],3278–3283,2010.

    81. Jau-Ho Jean and Chia-Ruey Chang,Interfacial Reaction Kinetics between Silver and Ceramic-Filled Glass Substrate. Journal of American Ceramic Society., 87 [7],1287–1293,2004.
    82. Chi-Shiung Hsi ,Yung-Ren Chen ,Hsing-I Hsiang ,Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates. Journal of Materials Science.,46,4695–4700, 2011.
    83.RF-MLCC product note,高頻專用High Q Low ESR 貼片陶瓷電容器,華新科技股份有限公司, 2011.
    84.S. Takeoka , Y. Mizuno, Effect of Internal Electrode Materials in Multilayer Ceramic Capacitors on Electrical Properties. Japanese Journal of Applied Physics., 50, 2011.
    85.李宜芝,BaO-B2O3-SiO2 玻璃添加ZnO 對Ba-Ti-O 微波介電陶瓷低溫製程微觀結構與介電特性之影響,國立台灣科技大學碩士論文,中華民國98年。
    86.Taufik K. Aboud ,Leszek Stoch,Marcin Sroda, Quartz crystallization in soda-lime-silica glass. Optica Applicata., Vol. XXXV, No. 4, 2005
    87.蔡維哲,徐錦志,蔡獻逸, MgO-Al2O3-SiO2玻璃陶瓷之結晶與相變化研究,陶業年會論文,1996
    88.Yoshitoshi Saito, Takahiro Takei, Shigeo Hayashi, Atsuo Yasumori, and Kiyoshi Okada, Effects of Amorphous and Crystalline SiO2 Additives onγ-Al2O3-to-α-Al2O3 Phase Transitions, Journal of American Ceramic Society., 81 [8] ,2197–200 ,1998

    QR CODE