簡易檢索 / 詳目顯示

研究生: 劉榮展
Jung-Chan Liou
論文名稱: 磷灰石/矽礦石複合β-三鈣磷酸鹽生醫玻璃陶瓷骨替代材之開發
Development of apatite/wollastonite and β-TCP glass-ceramic-based bone implants
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
陳祥和
Hsiang-Ho Chen
鍾仁傑
Ren-Jei Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 116
中文關鍵詞: A/W 生醫玻璃陶瓷β-三鈣磷酸鹽生物活性降解噴霧熱解
外文關鍵詞: A/W glass-ceramic, β-tricalcium phosphate, Bioactivity, Degradation, Spray pyrolysis
相關次數: 點閱:341下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從1982年日本Kokubo團隊等人發明A/W 生醫玻璃陶瓷 (A/W glass-ceramic)後,因為其具有高強度、高硬度等機械性質,且同時擁有良好的生物活性,於臨床上廣泛的被應用於人工脊椎骨、椎間盤以及股骨等方面的修補;然而該材料降解速率極為緩慢,不利於新生骨生成時提供足夠的生長空間。為了彌補A/W 生醫玻璃陶瓷低降解速率的缺點,本研究藉由結合可吸收性生醫陶瓷β-三鈣磷酸鹽與A/W生醫玻璃陶瓷以改善其不足。實驗中以噴霧熱解法製備A/W-CP 生醫玻璃陶瓷前驅粉體,將其製作成塊材後以不同熱處理(700-1100oC)溫度進行燒結,並將燒結後塊材浸泡於模擬人體體液進行體外生物活性測試,發現經由1100 oC熱處理後之A/W-CP生醫玻璃陶瓷具有最佳生物活性,且較商用塊材(Cerabone®A-W) 有較高的降解性。本實驗以X光繞射儀分析熱處理後塊材之相組成,並鑑定生物活性測試後塊材相比例之變化;以掃描式電子顯微鏡觀察磷灰石層於表面生成情形。


    The apatite/wollastonite glass-ceramic (A/W GC) was first reported by Kokubo in 1982. It has been widely applied in clinical fields such as artificial vertebrae, disc and femur repairing, because the A/W GC has the advantages of superior bioactivity and excellent mechanical properties. However, for A/W GC there are still some disadvantages, for instance, the degradation rate (almost no degradation) is too slow to provide the space for the new bone generation. In order to overcome the drawbacks of slow degradation rate, this study combined the A/W GC with resorbable bioceramics namely β-tricalcium phosphate (β-TCP) to increase the degradation rate. The apatite/wollastonite/β-TCP glass-ceramic powders were prepared by spray pyrolysis method, and as-prepared bulk samples were sintered under the various sintering temperatures of 700-1100oC. The phase compositions,and morphologies were characterized using X-ray diffraction and scanning electron microscopy, respectively. Also, the degradation rates of A/W-CP GC were measured. In conclusion, 1100 oC sintered A/W-CP GC sample has the highest bioactivity among samples. Moreover, A/W-CP GC samples have higher degradation rate than commercial product (Cerabone®AW).

    摘要 I Abstract IV 致謝 VI 目錄 VII 第一章、 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章、文獻回顧 3 2.1生醫陶瓷簡介 3 2.1.1 生醫材料之簡介 3 2.1.2 生醫材料之定義 3 2.1.3 生醫材料之基本要求 4 2.1.4 生醫材料之分類 5 2.1.5 生醫陶瓷之市場需求及種類 7 2.2 近惰性生醫陶瓷 10 2.2.1氧化鋁 10 2.2.2氧化鋯 12 2.3 可吸收性生醫陶瓷 15 2.3.1 半水硫酸鈣 16 2.3.2 磷酸鈣骨水泥 18 2.4 表面生物活性陶瓷 21 2.4.1 生物活性之介紹 22 2.4.2 生物活性鍵結之機制 25 2.4.3 氫氧基磷灰石 (Hydroxyapatite) 27 2.4.4生物活性玻璃 (Bioactive glass) 29 2.4.5 A/W生醫玻璃陶瓷 (A/W glass-ceramic) 33 2.5 A/W 生醫玻璃陶瓷 33 2.5.4 A/W 生醫玻璃陶瓷之機械性質 34 2.5.4 A/W 生醫玻璃陶瓷之合成方法 35 2.6 三鈣磷酸鹽 (TCP) 36 2.7 噴霧熱解法介紹 38 2.7.1 噴霧熱解法之簡介 38 2.7.2 顆粒成型機制 40 2.7.3 靜電沉積技術 43 第三章、實驗目的與方法 45 3.1 實驗設計及其目的 45 3.2 實驗原料 47 3.3 實驗儀器設備 48 3.4 樣品製備之步驟 49 3.4.1 磷灰石 (Apatite, A)粉體之製備與收集 49 3.4.2 矽礦石 ( β-Wollastonite, W)粉體之製備與收集 49 3.4.1 A/W-CP生醫玻璃陶瓷粉體之製備與收集 49 3.4.2 A/W-CP生醫玻璃陶瓷塊材之製備 50 3.5體外生物活性評估 51 3.6降解測試 51 3.7 粉體與塊材的性質及分析方法 52 3.7.1 X光繞射儀分析 (X-Ray diffraction analysis, XRD) 52 3.7.2 場發射掃描式電子顯微鏡 (Field-emission scanning electron microscope, FE-SEM) 56 第四章、實驗結果 58 4.1 前驅物之熱重分析 58 4.2磷灰石 (Apatite) 粉體之性質分析 59 4.2.1 X光繞射分析 59 4.3 矽礦石 ( β-Wollastonite) 粉體之性質分析 61 4.3.1 X光繞射分析 61 4.4 A/W-CP 玻璃陶瓷粉體之性質分析 63 4.4.1 X光繞射分析 63 4.4.2場發射掃描式電子顯微鏡分析 64 4.5 A/W-CP 玻璃陶瓷塊材之性質分析 65 4.5.1 X光繞射分析 65 4.5.2場發射掃描式電子顯微鏡分析 67 4.6 塊材之體外( In vitro)生物活性測試 69 4.6.1 700°C-sintered samples 70 4.6.2 800°C-sintered samples 73 4.6.3 900°C-sintered samples 76 4.6.4 1000°C-sintered samples 79 4.6.5 1100°C-sintered samples 82 4.7 降解測試 85 第五章、討論 86 5.1 相比例之組成 86 5.2 700°C-sintered samples 88 5.3 800°C-sintered samples 89 5.4 900°C-sintered samples 92 5.5 1000°C-sintered samples 93 5.6 1100°C-sintered samples 95 5.7 生物活性探討 97 5.8 pH 值變化 99 5.9 降解行為 100 第六章、結論 102 第七章、未來工作 103 參考文獻 104

    [1] J.F. Shackelford, Bioceramics, Taylor & Francis2003.
    [2] N. Price, S.P. Bendall, C. Frondoza, R.H. Jinnah, D.S. Hungerford, Human osteoblast-like cells (MG63) proliferate on a bioactive glass surface, Journal of Biomedical Materials Research, 37 (1997) 394-400.
    [3] G.L. de Lange, K. Donath, Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants, Biomaterials, 10 (1989) 121-125.
    [4] J. Park, Biomaterials science and engineering, Springer Science & Business Media2012.
    [5] H.F. Wolf, E. Rateitschak, K.H. Rateitschak, T. Hassel, Color atlas of dental medicine, Periodontology. Thieme. 3rd, (2005).
    [6] J. Park, R.S. Lakes, Biomaterials: an introduction, Springer Science & Business Media2007.
    [7] A.S. Coetzee, REgeneration of bone in the presence of calcium sulfate, Archives of Otolaryngology, 106 (1980) 405-409.
    [8] A. Gisep, Research on ceramic bone substitutes: current status, Injury, 33 88-92.
    [9] T.W. Bauer, G.F. Muschler, Bone Graft Materials: An Overview of the Basic Science, Clinical Orthopaedics and Related Research, 371 (2000) 10-27.
    [10] S.L. Weinstein, J.A. Buckwalter, Turek's Orthopaedics: Principles and Their Application, Lippincott Williams & Wilkins2005.
    [11] M.R. Urist, B.T. O'Connor, R.G. Burwell, Bone Grafts, Derivatives, and Substitutes, Butterworth-Heinemann1994.
    [12] E.C.E. L. L. Hench, Biomaterials: an interfacial approach Academic Press, Biomaterials, 6 (1982) 380.
    [13] L.L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, 74 (1991) 1487-1510.
    [14] S. Hulbert, J. Bokros, L. Hench, J. Wilson, G. Heimke, Ceramics in clinical applications, past, present and future, High Tech Ceramics.(Part A), (1986) 189-213.
    [15] L.L. Hench, An Introduction to Bioceramics, Imperial College Press2013.
    [16] B. Kingery, H. Bowen, Uhlmann, introduction to Ceramics, John Wiley&Sons, New York, (1976).
    [17] S. Zinelis, A. Thomas, K. Syres, N. Silikas, G. Eliades, Surface characterization of zirconia dental implants, Dental Materials, 26 (2010) 295-305.
    [18] C.J. Frandsen, K.S. Brammer, K. Noh, L.S. Connelly, S. Oh, L.-H. Chen, S. Jin, Zirconium oxide nanotube surface prompts increased osteoblast functionality and mineralization, Materials Science and Engineering: C, 31 (2011) 1716-1722.
    [19] A.H. De Aza, J. Chevalier, G. Fantozzi, M. Schehl, R. Torrecillas, Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses, Biomaterials, 23 (2002) 937-945.
    [20] L. Hu, C.-A. Wang, Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics, Ceramics International, 36 (2010) 1697-1701.
    [21] T. Kasuga, M. Yoshida, A.J. Ikushima, M. Tuchiya, H. Kusakari, Stability of zirconia-toughened bioactive glass-ceramics: in vivo study using dogs, Journal of Materials Science: Materials in Medicine, 4 (1993) 36-39.
    [22] S. Xu, K. Lin, Z. Wang, J. Chang, L. Wang, J. Lu, C. Ning, Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics, Biomaterials, 29 (2008) 2588-2596.
    [23] M. Bohner, Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury, 31, Supplement 4 (2000) D37-D47.
    [24] K.A. al Ruhaimi, Effect of adding resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits, Int J Oral Maxillofac Implants, 15 (2000) 859-864.
    [25] M. Vallet-Regí, J.M. González-Calbet, Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry, 32 (2004) 1-31.
    [26] M. Nilsson, E. Fernández, S. Sarda, L. Lidgren, J.A. Planell, Characterization of a novel calcium phosphate/sulphate bone cement, Journal of Biomedical Materials Research, 61 (2002) 600-607.
    [27] M.S. Tung, W.E. Brown, An intermediate state in hydrolysis of amorphous calcium phosphate, Calcif Tissue Int, 35 (1983) 783-790.
    [28] L.C. Chow, Development of Self-Setting Calcium Phosphate Cements, Journal of the Ceramic Society of Japan, 99 (1991) 954-964.
    [29] L. Hench, Bioactive ceramics: theory and clinical applications, Bioceramics, 7 (1994) 3-14.
    [30] P. Ducheyne, Bioceramics: material characteristics versus in vivo behavior, Journal of Biomedical Materials Research, 21 (1987) 219.
    [31] J. Wilson, A. Clark, E. Douek, J. Krieger, W.K. Smith, J.S. Zamet, Clinical applications of bioglass implants, Bioceramics, 7 (1994) 415-422.
    [32] K. de Groot, Bioceramics of Calcium Phosphate, Journal of Clinical Engineering, 9 (1984) 52.
    [33] A.E. Clark, C.G. Pantano, L.L. Hench, Auger Spectroscopic Analysis of Bioglass Corrosion Films, Journal of the American Ceramic Society, 59 (1976) 37-39.
    [34] D.M. Sanders, L.L. Hench, Mechanisms of Glass Corrosion, Journal of the American Ceramic Society, 56 (1973) 373-377.
    [35] K. De Groot, Medical applications of calciumphosphate bioceramics, Journal of the Ceramic Society of Japan, 99 (1991) 943-953.
    [36] S. Hulbert, J. Bokros, L. Hench, J. Wilson, G. Heimke, P. Vincenzini, High Tech Ceramics, Elsevier, Amsterdam, 1987.
    [37] S.-H. Rhee, J. Tanaka, Hydroxyapatite Coating on a Collagen Membrane by a Biomimetic Method, Journal of the American Ceramic Society, 81 (1998) 3029-3031.
    [38] A. Cuneyt Tas, F. Korkusuz, M. Timucin, N. Akkas, An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics, Journal of Materials Science: Materials in Medicine, 8 (1997) 91-96.
    [39] R.R. Rao, H.N. Roopa, T.S. Kannan, Solid state synthesis and thermal stability of HAP and HAP – β-TCP composite ceramic powders, Journal of Materials Science: Materials in Medicine, 8 (1997) 511-518.
    [40] H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang, M.T. Lui, Hydroxyapatite synthesized by a simplified hydrothermal method, Ceramics International, 23 (1997) 19-25.
    [41] P. Layrolle, A. Ito, T. Tateishi, Sol-Gel Synthesis of Amorphous Calcium Phosphate and Sintering into Microporous Hydroxyapatite Bioceramics, Journal of the American Ceramic Society, 81 (1998) 1421-1428.
    [42] A. Jillavenkatesa, R.A. Condrate Sr, Sol–gel processing of hydroxyapatite, J Mater Sci, 33 (1998) 4111-4119.
    [43] C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, Hydroxyapatite powders and thin films prepared by a sol-gel technique, Thin Solid Films, 326 (1998) 227-232.
    [44] M. Jarcho, Calcium Phosphate Ceramics as Hard Tissue Prosthetics, Clinical Orthopaedics and Related Research, 157 (1981) 259-278.
    [45] L.L. Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
    [46] A. Rámila, B. Muñoz, J. Pérez-Pariente, M. Vallet-Regí, Mesoporous MCM-41 as Drug Host System, Journal of Sol-Gel Science and Technology, 26 (2003) 1199-1202.
    [47] M. Vallet-Regí, Nanostructured mesoporous silica matrices in nanomedicine, Journal of Internal Medicine, 267 (2010) 22-43.
    [48] P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production, Biomaterials, 25 (2004) 2941-2948.
    [49] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research, 5 (1971) 117-141.
    [50] E. Carlisle, Silicon: A requirement in bone formation independent of vitamin D1, Calcif Tissue Int, 33 (1981) 27-34.
    [51] E.M. Carlisle, Silicon: a possible factor in bone calcification, Science (New York, N.Y.), 167 (1970) 279-280.
    [52] J.J.M. Damen, J.M. Ten Cate, Silica-induced Precipitation of Calcium Phosphate in the Presence of Inhibitors of Hydroxyapatite Formation, Journal of Dental Research, 71 (1992) 453-457.
    [53] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.
    [54] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, D. Magne, J. Guicheux, Phosphate-Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra-1, Journal of Bone and Mineral Research, 24 (2009) 1856-1868.
    [55] P.D. Saltman, L.G. Strause, The role of trace minerals in osteoporosis, Journal of the American College of Nutrition, 12 (1993) 384-389.
    [56] D. Arcos, D.C. Greenspan, M. Vallet-Regí, A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses, Journal of Biomedical Materials Research Part A, 65A (2003) 344-351.
    [57] R. Jugdaohsingh, K.L. Tucker, N. Qiao, L.A. Cupples, D.P. Kiel, J.J. Powell, Dietary Silicon Intake Is Positively Associated With Bone Mineral Density in Men and Premenopausal Women of the Framingham Offspring Cohort, Journal of Bone and Mineral Research, 19 (2004) 297-307.
    [58] P.J. Marie, The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis, Bone, 46 (2010) 571-576.
    [59] P. Valerio, M. Pereira, A. Goes, M.F. Leite, Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts, Biomedical Materials, 4 (2009) 045011.
    [60] M. Yamaguchi, Role of zinc in bone formation and bone resorption, The Journal of Trace Elements in Experimental Medicine, 11 (1998) 119-135.
    [61] H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, Journal of Biomedical Materials Research, 62 (2002) 175-184.
    [62] Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, N. Matsuura, Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion, Journal of Biomedical Materials Research, 62 (2002) 99-105.
    [63] T. Uysal, A. Ustdal, M.F. Sonmez, F. Ozturk, Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, The Angle Orthodontist, 79 (2009) 984-990.
    [64] T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, 24 (2003) 2161-2175.
    [65] Q. Chen, C. Zhu, G.A. Thouas, Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites, Progress in Biomaterials, 1 (2012) 2.
    [66] L.L. Hench, Bioceramics, Journal of the American Ceramic Society, 81 (1998) 1705-1728.
    [67] A. Ravaglioli, A. Krajewski, Bioceramics: Materials · Properties · Applications, Springer Netherlands2012.
    [68] M.D. O'Donnell, Melt‐Derived Bioactive Glass, Bio-Glasses: An Introduction, (2012) 13-27.
    [69] J. Park, Bioceramics: properties, characterizations, and applications, Springer Science & Business Media2009.
    [70] J.H. Welch, W. Gutt, 874. High-temperature studies of the system calcium oxide-phosphorus pentoxide, Journal of the Chemical Society (Resumed), (1961) 4442-4444.
    [71] K. Sugiyama, M. Tokonami, Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3 (PO4)2: A host to accommodate large lithophile elements in the earth's mantle, Phys Chem Minerals, 15 (1987) 125-130.
    [72] H.-S. Ryu, K.S. Hong, J.-K. Lee, D.J. Kim, J.H. Lee, B.-S. Chang, D.-h. Lee, C.-K. Lee, S.-S. Chung, Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility, Biomaterials, 25 (2004) 393-401.
    [73] S.R. Radin, P. Ducheyne, The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation, Journal of Biomedical Materials Research, 27 (1993) 35-45.
    [74] S.R. Radin, P. Ducheyne, Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics, Journal of Biomedical Materials Research, 28 (1994) 1303-1309.
    [75] Q. Liu, J.R. de Wijn, C.A. van Blitterswijk, Covalent bonding of PMMA, PBMA, and poly(HEMA) to hydroxyapatite particles, Journal of Biomedical Materials Research, 40 (1998) 257-263.
    [76] H. Nakano, T. Ohno, S. Yamanaka, Nuclear Magnetic Resonance Spectroscopic Study on the Grafting of Ethylene Oxide onto the Interlayer Surface of Zirconium Phosphate, Chemistry Letters, 23 (1994) 9-12.
    [77] T.C. Pluym, Q.H. Powell, A.S. Gurav, T.L. Ward, T.T. Kodas, L.M. Wang, H.D. Glicksman, Solid silver particle production by spray pyrolysis, Journal of Aerosol Science, 24 (1993) 383-392.
    [78] T.C. Pluym, T.T. Kodas, L.-M. Wang, H.D. Glicksman, Silver-palladium alloy particle production by spray pyrolysis, Journal of Materials Research, 10 (1995) 1661-1673.
    [79] P.S. Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics, 59 (1999) 185-198.
    [80] C. Nascu, I. Pop, V. Ionescu, E. Indrea, I. Bratu, Spray pyrolysis deposition of CuS thin films, Materials Letters, 32 (1997) 73-77.
    [81] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, Journal of Aerosol Science, 22, Supplement 1 (1991) S7-S10.
    [82] C.F. Clement, I.J. Ford, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts, Atmospheric Environment, 33 (1999) 489-499.
    [83] C.Y. Chen, T.K. Tseng, S.C. Tsai, C.K. Lin, H.M. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceramics International, 34 (2008) 409-416.
    [84] H.F. Kraemer, H.F. Johnstone, Collection of Aerosol Particles in Presence of Electrostatic Fields, Industrial & Engineering Chemistry, 47 (1955) 2426-2434.
    [85] S. Liu, P.K. Dasgupta, Automated System for Chemical Analysis of Airborne Particles Based on Corona-Free Electrostatic Collection, Analytical Chemistry, 68 (1996) 3638-3644.
    [86] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, Journal of Biomedical Materials Research, 24 (1990) 721-734.
    [87] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006) 2907-2915.
    [88] T. Kokubo, Bioactive glass ceramics: properties and applications, Biomaterials, 12 (1991) 155-163.
    [89] J.P. Eberhart, Structural and Chemical Analysis of Materials: X-Ray, Electron and Neutron Diffraction; X-Ray, Electron and Ion Spectrometry; Electron Microscopy, Wiley1991.
    [90] C. Barrett, Advances in X-Ray Analysis, Springer US2013.
    [91] B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction: Pearson New International Edition, Pearson Education Limited2013.
    [92] B.E. Warren, X-ray Diffraction, Dover Publications1969.
    [93] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, Wiley1974.
    [94] M. Ladd, R. Palmer, Structure Determination by X-ray Crystallography: Analysis by X-rays and Neutrons, Springer US2014.
    [95] H.P. Klug, L.E. Alexander, X-ray diffraction procedures: for polycrystalline and amorphous materials, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974., 1 (1974).
    [96] R. Hill, An alternative view of the degradation of bioglass, J Mater Sci Lett, 15 (1996) 1122-1125.
    [97] Q. Fu, M.N. Rahaman, H. Fu, X. Liu, Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation, Journal of Biomedical Materials Research Part A, 95A (2010) 164-171.
    [98] S.B. Jung, D.E. Day, Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite, Physics and Chemistry of Glasses - European Journal of Glass Science andTechnology Part B, 50 (2009) 85-88.
    [99] R.M. Urban, T.M. Turner, D.J. Hall, N. Inoue, S. Gitelis, Increased Bone Formation Using Calcium Sulfate-Calcium Phosphate Composite Graft, Clinical Orthopaedics and Related Research, 459 (2007) 110-117.

    QR CODE