簡易檢索 / 詳目顯示

研究生: 謝易儒
Yi-Ju Hsieh
論文名稱: 矽酸鋅粉體表面改質應用於低溫共燒陶瓷製程
Surface modification of willemite powders for low temperature cofired ceramic applications
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
林子仁
Tzu-Jen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 140
中文關鍵詞: 噴霧乾燥法矽酸鋅暫態液相燒結介電性質酸蝕
外文關鍵詞: Spray drying, Zn2SiO4, Transient liquid phase sintering, Dielectric properties, Etching
相關次數: 點閱:178下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊之傳輸頻寬發展迅速,業界對於5G通訊之材料選用上也有更嚴謹之要求。5G(第五代無線系統)通訊擁有高速傳遞及低延遲時間等優點,應用於人工智慧、物聯網(IOT)與自駕車等為使其繼續發展之動力。
    矽酸鋅(Zn2SiO4)因具有低介電常數(εr=6.6)及高品質因子(Q.F.=219000GHz),為5G基板候選材料之一。雖然矽酸鋅有較佳之介電性質,但其較高之燒結溫度不利於應用於低溫共燒陶瓷製程。以往研究會利用添加助熔劑使其燒結溫度降低,但助熔劑會使矽酸鋅之品質因子下降,進而影響整體矽酸鋅之介電性質。如何降低矽酸鋅之燒結溫度且不劇烈影響其介電性質為本研究之首要目標。
    本實驗利用噴霧乾燥法(Spray drying, SD)進行球型矽酸鋅粉體合成,藉由改變不同之螯合劑、前驅液濃度及煅燒溫度,最終選擇檸檬酸(critic acid)、1.0M之前驅液濃度以及1350℃之鍛燒溫度作為利用噴霧乾燥法合成球型矽酸鋅之最佳參數。之後利用醋酸(acetic acid, HAc)在不同酸蝕濃度及酸蝕時間下,使矽酸鋅粉體表面生成非晶層並利用非晶層進行暫態液相燒結。最終在酸蝕24小時以及1.00M之醋酸濃度條件下,利用非晶層進行暫態液相燒結,得到燒結溫度下降最多約50℃及最高緻密性約86%之矽酸鋅粉體。最終,將矽酸鋅粉體進行介電性質之量測。
    各階段之實驗結果會經由X光繞射儀(X-Ray diffractometer, XRD)進行晶體結構分析,使用掃描式電子顯微鏡(Scanning Electron Microscope, SEM)觀察顆粒表面與晶粒大小之統計,使用比表面積分析儀(BET)分析粉體之比表面積,使用穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)觀察粉體之非晶層厚度,使用阿基米德法(Archimedes' principle)觀察矽酸鋅錠之整體緻密性,使用熱膨脹分析儀(TMA)觀察酸蝕矽酸鋅粉體之收縮率以及使用(LCR)測量粉體之介電常數與品質因子。


    With the rapid improvement of communication transmission bandwidth technology, the selection of 5G communication materials for company also have more strict requirements. 5G “The fifth generation wireless system” which has the advantage of high-speed transition and low latency, these advantages can apply on AI (artificial intelligence), IOT (Internet of Things) and self-driving cars that can become the driving force for continued development.
    Zinc silicate (Zn2SiO4) is one of the candidate materials for 5G substrates due to its low dielectric constant (εr=6.6) and high quality factor (Q.F.=219000GHz). Zn2SiO4 has better dielectric properties. However, its high sintering temperature is not conductive for the application in LTCC process. According to previous researches, most of the methods to reducing sintering temperature is adding fluxes. Nevertheless, the fluxes will make the quality factor of Zn2SiO4 decrease and affect the whole of the dielectric properties. In this research, how to decrease the sintering temperature of Zn2SiO4 and not affect its dielectric properties is the primary goal.
    In this experiment, the spherical Zn2SiO4 powder was synthesized by SD (Spray drying) methods. With carious chelating agents, precursor solution and calcination temperature, the final choice was critic acid with 1.0M and calcined at 1350°C for the best parameters to synthesis the spherical Zn2SiO4 powder. Next, using HAc (acetic acid) to process for liquid phase sintering with various etching time and etching concentration. Under the condition of etching 24h and 1.00M concentration, the Zn2SiO4 powder will have the largest drop in sintering temperature and the highest density.
    Each stage of results will be analyzed by XRD for crystal phase, using SEM to observe the morphology and particle size of Zn2SiO4. Using BET to analyze the surface area of the powder. Using TEM to observe the inner morphology of powder. Using Archimedes' principle to observe the overall compactness of Zn2SiO4. Using TMA to observe the shrinkage rate of etching powder. Finally, using LCR meter to measure the dielectric constant and quality factor for Zn2SiO4 powders.

    摘要 i Abstract iii 致謝 iv 目錄 viii 圖目錄 xi 表目錄 xvi 第一章 緒論 1 第二章 文獻回顧 2 2.1 無線通訊之發展 2 2.2 介電材料之特點 6 2.2.1 低介電常數 6 2.2.2 高品質因子 7 2.2.3 溫度震盪係數 8 2.3 介電材料之選擇 10 2.3.1 矽酸鹽類 12 2.3.2 氧化鋁(Al2O3) 15 2.3.3 複合物型介電材料 17 2.4 矽酸鋅之常用製程 19 2.4.1 熔膠凝膠法 19 2.4.2 固態反應法 20 2.4.3 水熱法 20 2.4.4 噴霧熱裂解法 21 2.4.5 噴霧乾燥法 21 2.5 噴霧乾燥法介紹 22 2.6 液相燒結(Liquid phase sintering) 24 2.6.1 低溫共燒陶瓷製程簡介 24 2.6.2 液相燒結之簡介 28 2.6.3 晶界遷移率與液相燒結之關係 36 第三章 實驗方法與目的 39 3.1 實驗藥品 39 3.2 實驗儀器設備 40 3.3 樣品製備之流程 41 3.3.1 矽酸鋅粉末之制備與收集 41 3.3.2 利用醋酸進行液相燒結製備 43 3.3.3 介電性質之量測 46 3.4 材料分析 48 3.4.1 X-Ray繞射儀 48 3.4.2 場發射掃描式電子顯微鏡 50 3.4.3 穿透式電子顯微鏡 51 3.4.4 阿基米德法 52 3.4.5 熱機械分析儀 54 3.4.6 電阻電容及電感量度儀 55 第四章 實驗結果 56 4.1 矽酸鋅前驅液之選擇 58 4.1.1 不同螯合劑對於矽酸鋅粉體表面形貌 59 4.1.2 不同前驅液濃度對於矽酸鋅粉體表面形貌 62 4.1.3 不同煅燒溫度對於矽酸鋅粉體之形貌與組成影響 66 4.1.4 不同煅燒溫度對於矽酸鋅粉體之形貌與組成影響 68 4.1.5 不同煅燒溫度對於矽酸鋅粉體之化學組成 71 4.2 矽酸鋅之液相燒結 73 4.2.1 不同酸蝕濃度對於矽酸鋅粉體之形貌與組成影響 74 4.2.2 不同酸蝕濃度對於矽酸鋅粉體之形貌影響 75 4.2.3 不同酸蝕濃度對於矽酸鋅非晶層厚度影響 76 4.2.4 不同酸蝕濃度對於矽酸鋅粉體之收縮率影響 78 4.2.5 不同酸蝕濃度對於矽酸鋅粉體緻密性影響 80 4.2.6 不同酸蝕時間對於矽酸鋅粉體之相組成影響 82 4.2.7 不同酸蝕時間對於矽酸鋅粉體之形貌影響 83 4.2.8 不同酸蝕時間對於矽酸鋅非晶層厚度影響 84 4.2.9 不同酸蝕時間對於矽酸鋅緻密性影響 86 4.2.10 不同燒結溫度對於矽酸鋅粉體緻密性影響 87 4.3 介電材料之介電性質量測 88 4.3.1 液相燒結對於矽酸鋅之介電性質影響 89 第五章 結果討論 91 5.1 前驅液濃度與螯合劑對於粉體形貌及增圓率之影響 91 5.2 檸檬酸對於粉體形貌之影響 96 5.2.1 檸檬酸莫耳數與前驅液配比之影響 97 5.2.2 煅燒溫度 98 5.3 不同酸蝕濃度對於液相燒結之影響 100 5.4 液相燒結對於介電性質之影響 108 5.5 不同製程對於粉體性質之影響 110 第六章 結論 112 第七章 未來工作 113 參考文獻 114

    [1] M. Ando, H. Ohsato, D. Igimi, Y. Higashida, A. Kan, S. Suzuki, Y. Yasufuku, I. Kagomiya, Low-temperature sintering of silica-boric acid-doped willemite and microwave dielectric properties, Jpn. J. Appl. Phys., 54 (2015) 6.
    [2] F. Kamutzki, S. Schneider, J. Barowski, A. Gurlo, D.A.H. Hanaor, Silicate dielectric ceramics for millimetre wave applications, J. Eur. Ceram. Soc., 41 (2021) 3879-3894.
    [3] https://www.fetnet.net/content/cbu/tw/network/index/5G-trend-applied-articles/13-5G-now-future.html.
    [4] H.L. Hao, D. Hui, D. Lau, Material advancement in technological development for the 5G wireless communications, Nanotechnol. Rev., 9 (2020) 683-699.
    [5] M.D. Hill, D.B. Cruickshank, I.A. MacFarlane, Perspective on ceramic materials for 5G wireless communication systems, Appl. Phys. Lett., 118 (2021) 9.
    [6] R. Przesmycki, M. Bugaj, L. Nowosielski, Broadband Microstrip Antenna for 5G Wireless Systems Operating at 28 GHz, Electronics, 10 (2021) 19.
    [7] https://www.managertoday.com.tw/articles/view/60321
    [8] https://investanchors.com/home/articles/7.
    [9] H. Ohsato, Research and development of microwave dielectric ceramics for wireless communications, J. Ceram. Soc. Jpn., 113 (2005) 703-711.
    [10] S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review, J. Ceram. Process. Res., 11 (2010) 316-321.
    [11] R.C. Buchanan, Ceramic materials for electronics: processing, properties, and applications, Marcel Dekker Ltd1986.
    [12] Y.P. Guo, H. Ohsato, K.I. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency, J. Eur. Ceram. Soc., 26 (2006) 1827-1830.
    [13] H.B. Bafrooei, B. Liu, W.T. Su, K.X. Song, Ca3MgSi2O8: Novel low-permittivity microwave dielectric ceramics for 5G application, Mater. Lett., 263 (2020) 4.
    [14] H. Ohsato, M. Ando, T. Tsunooka, Synthesis of Forsterite with High Q and Near Zero TC f for Microwave/Millimeterwave Dielectrics, Journal of the Korean Ceramic Society, 44 (2007) 597-606.
    [15] A. Moulson andJ, M. Herbert, Electroceramics, Chapman and Hall, New York, 1990.
    [16] H. Ohsato, T. Tsunooka, T. Sugiyama, K. Kakimoto, H. Ogawa, Forsterite ceramics for millimeterwave dielectrics, J. Electroceram., 17 (2006) 445-450.
    [17] H. Jantunen, A. Turunen, US Patent 5302924, 1994, USA.
    [18] H. Ohasto, T. Tsunooka, M. Ando, Y. Ohishi, Y. Miyauchi, Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant, Journal of the Korean Ceramic Society, 40 (2003) 350-353.
    [19] N.M. Alford, S.J. Penn, Sintered alumina with low dielectric loss, J. Appl. Phys., 80 (1996) 5895-5898.
    [20] S.H. Wu, G.Q. Wang, Y.S. Zhao, H. Su, BaO-TiO2 microwave ceramics, J. Eur. Ceram. Soc., 23 (2003) 2565-2568.
    [21] H.J. Lee, K.S. Hong, S.J. Kim, I.T. Kim, Dielectric properties of MNb2O6 compounds (where M=Ca, Mn, Co, Ni, or Zn), Mater. Res. Bull., 32 (1997) 847-855.
    [22] I.S. Kim, W.H. Jung, Y. Inaguma, T. Nakamura, M. Itoh, Dielectric-properties of A-site deficient perovskite-type lanthanum-calcium-titanium oxide solid-solution system (1-X)La2/3TiO3-XCaTiO(3) (0.1-less-than-or-equal-to-X-less-than-or-equal-to-0.96), Mater. Res. Bull., 30 (1995) 307-316.
    [23] C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou, P. Skafidas, Permittivity properties of thermally treated TiO2, Mater. Lett., 58 (2004) 1502-1507.
    [24] I. Levin, T.G. Amos, J.C. Nino, T.A. Vanderah, I.M. Reaney, C.A. Randall, M.T. Lanagan, Crystal structure of the compound Bi2Zn2/3Nb4/3O7, J. Mater. Res., 17 (2002) 1406-1411.
    [25] J.H. Choy, Y.S. Han, J.H. Sohn, M. Itoh, Microwave characteristics of BaO-TiO2 Ceramics prepared via a citrate route, J. Am. Ceram. Soc., 78 (1995) 1169-1172.
    [26] G. Dou, M. Guo, Y.X. Li, J.N. Lin, Effects of low melting point materials on sinterability and microwave dielectric properties of X2SiO4-CaTiO3 (X = Mg, Zn) for LTCC, J. Mater. Sci.-Mater. Electron., 26 (2015) 9195-9199.
    [27] X.Y. Liu, M. Kanzaki, X.Y. Xue, Crystal structures of Zn2SiO4 III and IV synthesized at 6.5-8 GPa and 1,273 K, Phys. Chem. Miner., 40 (2013) 467-478.
    [28] Y. Lv, R.Z. Zuo, Z.X. Yue, Structure and microwave dielectric properties of Ba-3(VO4)(2)-Zn2-xSiO4-x ceramic composites, Mater. Res. Bull., 48 (2013) 2011-2017.
    [29] Y. Syono, S.-I. Akimoto, Y. Matsui, High pressure transformations in zinc silicates, Journal of Solid State Chemistry, 3 (1971) 369-380.
    [30] J. Williamson, F. Glasser, Crystallisation of zinc silicate liquids and glasses, Phys. Chem. Glasses, 5 (1964) 52-59.
    [31] L.G. Xia, Z.H. Liu, P.A. Taskinen, Experimental determination of the liquidus temperatures of the binary (SiO2-ZnO) system in equilibrium with air, J. Eur. Ceram. Soc., 35 (2015) 4005-4010.
    [32] Y.M. Lai, Y.M. Zeng, J. Han, X.F. Liang, X.L. Zhong, M.Z. Liu, B. Duo, H. Su, Structure dependence of microwave dielectric properties in Zn2-xSiO4-x-xCuO ceramics, J. Eur. Ceram. Soc., 41 (2021) 2602-2609.
    [33] J. Nishizawa, T. Ikeda-Fukazawa, Surface structures and properties of forsterite in crystalline and glassy states, Chem. Phys. Lett., 714 (2019) 197-201.
    [34] S.A. Wen, D.D.L. Chung, Effect of stress on the dielectric constant of alumina, J. Electron. Packag., 127 (2005) 235-236.
    [35] J. Molla, R. Heidinger, A. Ibarra, Alumina ceramics for heating-systems, J. Nucl. Mater., 212 (1994) 1029-1034.
    [36] C.L. Huang, J.J. Wang, C.Y. Huang, Sintering behavior and microwave dielectric properties of nano alpha-alumina, Mater. Lett., 59 (2005) 3746-3749.
    [37] C.L. Huang, J.J. Wang, C.Y. Huang, Microwave dielectric properties of sintered alumina using nano-scaled powders of alpha alumina and TiO2, J. Am. Ceram. Soc., 90 (2007) 1487-1493.
    [38] J.A. Spencer, A.L. Mock, A.G. Jacobs, M. Schubert, Y.H. Zhang, M.J. Tadjer, A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3, Appl. Phys. Rev., 9 (2022) 126.
    [39] H. Ogawa, A. Kan, S. Ishihara, Y. Higashida, Crystal structure of corundum type Mg-4(Nb2-xTax)O-9 microwave dielectric ceramics with low dielectric loss, J. Eur. Ceram. Soc., 23 (2003) 2485-2488.
    [40] F. Antoncik, D. Sedmidubsky, A. Jirickova, M. Lojka, T. Hlasek, K. Ruzicka, O. Jankovsky, Thermodynamic Properties of Stoichiometric Non-Superconducting Phase Y2BaCuO5, Materials, 12 (2019) 11.
    [41] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, superconductivity at 93-K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett., 58 (1987) 908-910.
    [42] M. Watanabe, H. Ogawa, H. Ohsato, C. Humphreys, Microwave dielectric properties of Y2Ba(Cu1-xZnx)O-5 solid solutions, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 37 (1998) 5360-5363.
    [43] A. Kan, H. Ogawa, H. Ohsato, Microwave dielectric properties of Y2BaCuO5 compound substituted Ni for Cu, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 79 (2001) 180-182.
    [44] A. Kan, H. Ogawa, H. Ohsato, Microwave dielectric properties of R2Ba(Cu1-xMx)O-5 (R = Y and Yb, M = Zn and Ni) solid solutions, Mater. Chem. Phys., 79 (2003) 184-186.
    [45] F. Fernandez, C. Colon, A. Duran, R. Barajas, A. d'Ors, M. Becerril, J. Llopis, S.E. Paje, R. Saez-Puche, I. Julian, The Y2BaCuO5 oxide as green pigment in ceramics, J. Alloy. Compd., 275 (1998) 750-753.
    [46] S.S.A. Rashid, S.H. Ab Aziz, K.A. Matori, M.H.M. Zaid, N. Mohamed, Comprehensive study on effect of sintering temperature on the physical, structural and optical properties of Er3+ doped ZnO-GSLS glasses, Results Phys., 7 (2017) 2224-2231.
    [47] M. Takesue, H. Hayashi, R.L. Smith, Thermal and chemical methods for producing zinc silicate (willemite): A review, Prog. Cryst. Growth Charact. Mater., 55 (2009) 98-124.
    [48] D.Y. Kong, M. Yu, C.K. Lin, X.M. Liu, J. Lin, J. Fang, Sol-gel synthesis and characterization of Zn2SiO4 : Mn@SiO2 spherical core-shell particles, J. Electrochem. Soc., 152 (2005) H146-H151.
    [49] H.X. Zhang, C.H. Kam, Y. Zhou, X.Q. Han, S. Buddhudu, Y.L. Lam, C.Y. Chan, Deposition and photoluminescence of sol-gel derived Tb3+: Zn2SiO4 films on SiO2/Si, Thin Solid Films, 370 (2000) 50-53.
    [50] N.H. Nguyen, J.B. Lim, S. Nahm, J.H. Paik, J.H. Kim, Effect of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4 ceramics, J. Am. Ceram. Soc., 90 (2007) 3127-3130.
    [51] Z.Z. Weng, C.X. Song, Z.X. Xiong, H. Xue, W.F. Sun, Y. Zhang, B. Yang, M.J. Reece, H.X. Yan, Microstructure and broadband dielectric properties of Zn2SiO4 ceramics with nano-sized TiO2 addition, Ceram. Int., 45 (2019) 13251-13256.
    [52] Y.N. He, X.L. Zhao, X.Y. Wang, L. Chen, W.B. Peng, X.P. Ouyang, Characterizations of an X-ray detector based on a Zn2SiO4 film, Sens. Actuator A-Phys., 236 (2015) 98-103.
    [53] L. Reynaud, C. BroucaCabarrecq, A. Mosset, H. Ahamdane, A new solution route to silicates .3. Aqueous sol-gel synthesis of willemite and potassium antimony silicate, Mater. Res. Bull., 31 (1996) 1133-1139.
    [54] S. Park, G.S. Herman, D.A. Keszler, Oxide films: low-temperature deposition and crystallization, Journal of Solid State Chemistry, 175 (2003) 84-87.
    [55] J.H. Zeng, H.L. Fu, T.J. Lou, Y. Yu, Y.H. Sun, D.Y. Li, Precursor, base concentration and solvent behavior on the formation of zinc silicate, Mater. Res. Bull., 44 (2009) 1106-1110.
    [56] H.S. Roh, Y.C. Kang, C.H. Lee, H.D. Park, S.B. Park, Morphological control of Zn2SiO4 : Mn phosphor particles by adding citric acid in spray pyrolysis process, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 42 (2003) 3429-3433.
    [57] J.S. Cho, S.M. Lee, K.Y. Jung, Y.C. Kang, Large-scale production of fine-sized Zn2SiO4:Mn phosphor microspheres with a dense structure and good photoluminescence properties by a spray-drying process, RSC Adv., 4 (2014) 43606-43611.
    [58] C. Santivarangkna, U. Kulozik, P. Foerst, Alternative drying processes for the industrial preservation of lactic acid starter cultures, Biotechnol. Prog., 23 (2007) 302-315.
    [59] M. Lahti, K. Kautio, M. Karppinen, K. Keranen, J. Ollila, P. Karioja, Review of LTCC Technology for Millimeter Waves and Photonics, Int. J. Electron. Telecommun., 66 (2020) 361-+.
    [60] J.S. Kim, M.E. Song, M.R. Joung, J.H. Choi, S. Nahm, J.H. Paik, B.H. Choi, H.J. Lee, Low-Temperature Sintering and Microwave Dielectric Properties of V2O5-Added Zn2SiO4 Ceramics, J. Am. Ceram. Soc., 91 (2008) 4133-4136.
    [61] K. Tang, Q. Wu, X.Y. Xiang, Low temperature sintering and microwave dielectric properties of zinc silicate ceramics, J. Mater. Sci.-Mater. Electron., 23 (2012) 1099-1102.
    [62] M.Z. Dong, Z.X. Yue, H. Zhuang, S.Q. Meng, L.T. Li, Microstructure and Microwave Dielectric Properties of TiO2-Doped Zn2SiO4 Ceramics Synthesized Through the Sol-Gel Process, J. Am. Ceram. Soc., 91 (2008) 3981-3985.
    [63] C.C. Xia, D.H. Jiang, G.H. Chen, Y. Luo, B. Li, C.L. Yuan, C.R. Zhou, Microwave dielectric ceramic of LiZnPO4 for LTCC applications, J. Mater. Sci.-Mater. Electron., 28 (2017) 12026-12031.
    [64] V. Chaware, R. Deshmukh, C. Sarode, S. Gokhale, G. Phatak, Low-Temperature Sintering and Microwave Dielectric Properties of Zn2SiO4 Ceramic Added with Crystalline Zinc Borate, J. Electron. Mater., 44 (2015) 2312-2320.
    [65] R. Deshmukh, V. Chaware, R. Ratheesh, G.J. Phatak, Synthesis and Microwave Dielectric Properties of BBSZ-Zinc Silicate Based Material for LTCC Applications, J. Electron. Mater., 50 (2021) 1323-1330.
    [66] J.S. Kim, M.E. Song, M.R. Joung, J.H. Choi, S. Nahm, S.I. Gu, J.H. Paik, B.H. Choi, Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics, J. Eur. Ceram. Soc., 30 (2010) 375-379.
    [67] C.M. Franzin, X.M. Gong, P. Teriete, F.M. Marassi, Structures of the FXYD regulatory proteins in lipid micelles and membranes, J. Bioenerg. Biomembr., 39 (2007) 379-383.
    [68] R. German, P. Suri, S. Park, Review: liquid phase sintering, J. Mater. Sci., 44 (2009) 1-39.
    [69] H.Y. Kim, J.A. Lee, J.J. Kim, Densification behaviors of fine-alumina and coarse-alumina compacts during liquid-phase sintering with the addition of talc, J. Am. Ceram. Soc., 83 (2000) 3128-3134.
    [70] J. Kim, T. Kimura, T. Yamaguchi, Effect of bismuth oxide content on the sintering of zinc-oxide, J. Am. Ceram. Soc., 72 (1989) 1541-1544.
    [71] D. Dey, R.C. Bradt, Grain-growth of ZnO during Bi2O3 liquid-phase sintering, J. Am. Ceram. Soc., 75 (1992) 2529-2534.
    [72] D.F.K. Hennings, R. Janssen, P.J.L. Reynen, Control of liquid-phase-enhanced discontinuous grain-growth in Barium-Titanate J. Am. Ceram. Soc., 70 (1987) 23-27.
    [73] J. Haussonne, G. Desgardin, P. Bajolet, B. Raveau, Barium titanate perovskite sintered with lithium fluoride, J. Am. Ceram. Soc., 66 (1983) 801-807.
    [74] J.P. Guha, H.U. Anderson, Reaction during sintering of barium titanate with lithium fluoride, J. Am. Ceram. Soc., 69 (1986) C‐193-C‐194.
    [75] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics, John wiley & sons1976.
    [76] R.J. Brook, Preparation and electrical behaviour of zirconia ceramics, 'Science and Technology of Zirconia'. Proc. 1 st. Int. Conf. held at Cleveland, Ohio, June 16-18, 1980. Advances in Ceramics, 1980, pp. 272.
    [77] S.J. Shih, W.L. Tzeng, Z.M. Wang, P. Veteska, D. Galusek, W.H. Tuan, Surface modification of starting powder for dense polycrystalline SrTiO3 ceramics, Ceram. Int., 43 (2017) S10-S14.
    [78] B.K. Yoon, S.Y. Choi, T. Yamamoto, Y. Ikuhara, S.J.L. Kang, Grain boundary mobility and grain growth behavior in polycrystals with faceted wet and dry boundaries, Acta Mater., 57 (2009) 2128-2135.
    [79] I.J. Bae, S. Baik, Abnormal grain growth of alumina, J. Am. Ceram. Soc., 80 (1997) 1149-1156.
    [80] C.A. Handwerker, P.A. Morris, R.L. Coble, Effects of chemical inhomogeneIties in grain-growth and microstructure in Al2O3, J. Am. Ceram. Soc., 72 (1989) 130-136.
    [81] J.H. Choi, N.M. Hwang, D.Y. Kim, Pore-boundary separation behavior during sintering of pure and Bi2O3-doped ZnO ceramics, J. Am. Ceram. Soc., 84 (2001) 1398-1400.
    [82] S.J. Dillon, M. Tang, W.C. Carter, M.P. Harmer, Complexion: A new concept for kinetic engineering in materials science, Acta Mater., 55 (2007) 6208-6218.
    [83] S.J. Dillon, M.P. Harmer, Multiple grain boundary transitions in ceramics: A case study of alumina, Acta Mater., 55 (2007) 5247-5254.
    [84] M. Iijima, T. Hatakeyama, H. Hatakeyama, DSC and TMA Studies of Polysaccharide Physical Hydrogels, Anal. Sci., 37 (2021) 211-219.
    [85] Y. Rao, S. Ogitani, P. Kohl, C.P. Wong, Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application, J. Appl. Polym. Sci., 83 (2002) 1084-1090.
    [86] H. Ishizawa, O. Sakurai, N. Mizutani, M. Kato, Homogeneous Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/powder by spray pyrolysis method, Am. Ceram. Soc. Bull., 65 (1986).
    [87] M.M. Rashad, R.S. Mohammed, M.M. Hessien, I.A. Ibrahim, A.T. Kandil, Synthesis and characterization of lead titanate nanopowders by organic acid precursor, J. Optoelectron. Adv. Mater., 10 (2008) 1026-1031.
    [88] S.E. Lin, W.C.J. Wei, Synthesis and investigation of submicrometer spherical indium oxide particles, J. Am. Ceram. Soc., 91 (2008) 1121-1128.
    [89] S.J. Shih, L.P. Richardo, K.I. Sucipto, Z.M. Wang, Preparation of Ce-doped yttrium aluminum garnet phosphor particles using spray drying method, J. Asian Ceram. Soc., 9 (2021) 150-157.
    [90] T. Han, S.X. Cao, D.C. Zhu, C. Zhao, M.X. Ma, M.J. Tu, J. Zhang, Effects of annealing temperature on YAG:Ce synthesized by spray-drying method, Optik, 124 (2013) 3539-3541.
    [91] C.A. Handwerker, P.A. Morris, R.L. Coble, Effects of chemical inhomogeneities on grain-growth and microstructure in Al2O3 J. Am. Ceram. Soc., 72 (1989) 130-136.
    [92] C.L. Chen, F. Chen, Q. Shen, L.M. Zhang, F.Q. Yan, Liquid phase sintering (LPS) and dielectric constant of a-silicon nitride ceramic, J. Wuhan Univ. Technol.-Mat. Sci. Edit., 21 (2006) 98-100.
    [93] G. Chang, X.H. Zhou, Y.X. Li, S.R. Zhang, Sintering behavior and microwave dielectric properties of TiO2 added Ba-4(Sm0.5Nd0.5)(28/3)Ti18O54 ceramics with Li2O-Al2O3-B2O3 glass addition, J. Mater. Sci.-Mater. Electron., 25 (2014) 4750-4754.

    QR CODE