簡易檢索 / 詳目顯示

研究生: 陳炳宜
Pin-yi Chen
論文名稱: 鈦酸鉍鈉鉀無鉛鐵電陶瓷材料缺陷行為、微觀結構與電性之研究
Defect Behavior, Microstructures and Electrical Properties of (Bi0.5Na0.5-xKx)TiO3 Lead-Free Ferroelectric Ceramics
指導教授: 周振嘉
Chen-chia Chou
口試委員: 程海東
Haydn Chen
曾俊元
Tseung-yuen Tseng
陳英忠
Ying-chung Chen
郭東昊
Dong-hau Kuo
蔡大翔
Dah-shyang Tsai
李信義
Hsin-yi Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 218
中文關鍵詞: 缺陷微觀結購鐵電介電無鉛壓電陶瓷微波燒結
外文關鍵詞: Microstructures
相關次數: 點閱:461下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於國際上對於環保問題的日漸重視,使得許多有毒元素及材料已逐漸被禁止,由於壓電陶瓷目前是以含鉛材料為主(如PZT陶瓷),所以尋找可替代之材料是現今刻不容緩的研究方向。本論文針對無鉛壓電陶瓷材料中較具發展潛力的鈦酸鉍鉀鈉(Bi0.5Na0.5-xKx)TiO3 [BNKT]二元固溶系統,探討材料缺陷評估,微觀特徵與材料燒結環境對電性行為的影響。另外,利用電子顯微鏡和Impedance spectroscopy進行導電率的量測與分析去探討BNT-based和PZN-based壓電陶瓷之晶粒與晶界微觀結構與電性之關聯性。同時微波燒結之製程技術被運用於燒結鉛系壓電陶瓷0.5 (0.94PbZn1/3Nb2/3O3 + 0.06BaTiO3) + 0.5 PbZr0.52Ti0.48O3 (PBZNZT)材料與非鉛壓電陶瓷(BNKT)材料,去瞭解微波能量對不同材料作用之差異性及探討材料吸收微波之機制。
    實驗結果顯示:BNKT陶瓷具有二次相之存在,二次相之形成可能起因於鈦離子與鉀離子基於燒結期間熱力學反應能量較穩定,因而形成二次相,此結果形成了材料內化學計量比之偏離導致鈦空缺、氧空缺、鈦價數轉移,並影響了鐵電與介電特性,而非僅是文獻所提因為元素揮發造成之缺陷並影響電性。試片經由高氧氣氛下燒結或經由退火處理,能夠改善鈦價數轉移並且有效地降低漏電流,提升鐵電與介電特性。鋰之添加抑制二次相與鈦價數轉移缺陷之形成,結果降低漏電流並且提升了鐵電與介電特性,這可能歸因於鋰加強了A,B-site離子與氧之鍵結強度進而穩定perovskite 結構和抑制二次相生成。
    交流阻抗圖譜技術分析BNKT 和 PBZNZT壓電陶瓷探討微觀結構和導電率之間的關聯性,結果顯示在BNKT 和 PBZNZT材料上由於不同的微觀結構展現不同的導電行為,BNKT陶瓷的晶界呈現較完整的原子排列和薄的晶界,同時試片破斷面之SEM影像展現穿晶破裂。交流阻抗分析之複數阻抗圖譜顯現偏向只有一個半圓弧出現在複數阻抗圖譜上,並且在高溫量測時晶界之半圓貢獻不明顯,同時晶界導電率活化能高於晶粒導電率活化能,意含著BNKT陶瓷晶粒內Bi2O3 的揮發導致晶粒內誘發一個比較容易的導電路徑。另一方面,PBZNZT陶瓷在晶界處展現一個比較厚的非晶相層,而且試片破斷面之SEM影像展現沿晶破裂。交流阻抗分析之複數阻抗圖譜呈現了二個較明顯半圓弧圖形,而導電率活化能分析指出晶界導電率活化能低於晶粒導電率活化能,這可能歸因於高溫下處於晶界之非晶相層電荷載子參與了導電行為。一種導電模式基於晶粒與晶界之間之傳導行為被提出,晶界厚度藉由AC impedance數據被計算,並比較於電子顯微鏡之微觀研究,結果發現AC impedance之結果與微觀結構之間有一致的關聯性,建議阻抗圖譜能作為鐵電陶瓷晶界微觀結構之評估手法。
    微波燒結製程使用於鉛基PBZNZT與非鉛BNKT壓電陶瓷,實驗結果顯示PBZNZT與BNKT壓電陶瓷展現不同的微波吸收效率,在相同密度下PBZNZT與BNKT陶瓷微波製程試片之晶粒尺寸較傳統製程試片之晶粒尺寸小,同時PBZNZT陶瓷之微波製程燒結溫度明顯展現較傳統製程之燒結溫度低,意謂著PBZNZT陶瓷擁有較佳之微波吸收能力,這可能歸因於介電常數與偶極損失(dipole loss)的貢獻,因此介電特性可能是導致鐵電/壓電陶瓷材料能否有效吸收微波能量之重要依據。HRTEM與EDS研究指出PBZNZT陶瓷之微波燒結製程較傳統製程在相同密度下比較展現少的PbO 與 ZnO元素之偏析,另一方面,BNKT陶瓷微波與傳統燒結試片晶界處並未有明顯之成份偏析,然而PBZNZT與BNKT陶瓷之微波製程試片展現較均勻之成份與結晶性,這結果改善了材料之電性。


    In recent years, lead-based Pb(ZrTi)O3 materials have been restricted to use by legislation in some countries. The toxicity of lead oxide jeopardize human's health and pollute the environment. Recently, many scientists are devoted to investigating lead-free piezoelectric ceramics. (Bi0.5Na0.5)TiO3 [BNT] ceramics is thought to be the candidates as the alternative system. Therefore, the aims of this dissertation are attempted to investigate (Bi0.5(Na1-xKx)0.5)TiO3 ceramics with the effects of defects on electrical properties. On the other hand, the microstructural difference at grain and grain boundary between BNKT and PBZNZT ceramics using electron microscopy and correlated with measurements of electrical conductivity by complex impedance analysis. At the same time, comparative study was also carried out to understand microstructures and electrical properties of PBZNZT and BNKT ceramics by microwave heating technology.
    According to our investigations, the second phase formation in BNKT ceramics might arise from thermodynamic stability of potassium titanate during sintering. The results produce compositional inhomogeneity and generate more oxygen and titanium vacancies in defective perovskite lattice, which obviously affects electrical properties in BNKT ceramics. The specimens sintered under higher oxygen atmosphere and post-oxidation annealing treatment could improve Ti valence transition and effectively decreases the leakage current. On the other hand, Li addition to BNKT ceramics can suppress formation of second phase and Ti valence transition, which decreased leakage current and promoted ferroelectric and dielectric properties. This might be attributed to that Li addition contributes to the binding energy among A, B-site cations with oxygen to stabilize the structure.
    Impedance spectroscopy studies have been successfully performed in BNKT and PBZNZT piezoelectric ceramics to correlate microstructures with electrical conduction behavior. The results indicate that different microstructures between BNKT and PBZNZT ceramics display distinct differences in conductivity behavior. BNKT ceramics exhibit clean and thin grain boundaries and transgranular fracture surface. Impedance analysis shows only one semicircle in complex impedance plots and the contribution of grain boundaries is not obvious at higher temperatures. The activation energy of grain boundary conductivity is higher than that of grains for BNKT system, indicating Bi2O3 evaporation of grains induces an easy conduction path through grains in BNKT ceramics. On the other hand, PBZNZT ceramics exhibit a thick amorphous layer at grain boundaries and intergranular type fracture. Impedance analysis shows obvious two semicircles in complex impedance plots and activation energy of grain boundary conductivity is lower than that of grains for PBZNZT. This might be attributed to the charged particles in the amorphous phase at the grain boundaries, participating in the conduction process at high temperatures. A conduction model based upon microstructures considering both grain and grain boundary conductivities was proposed. The grain boundary thickness was calculated through AC impedance data and compared with the electron microscopic investigations. It was found that microstructural characteristics and AC impedance data of the ferroelectric ceramics can be correlated fairly well, suggesting that impedance spectroscopy can be employed in grain boundary engineering for ferroelectric ceramics.
    Microwave sintering process had been successfully performed in PBZNZT and BNKT piezoelectric ceramics. The results indicate that PBZNZT and BNKT specimens displayed the different absorption efficiency of microwave energy. The grain size of MWS process for PBZNZT and BNKT specimens was smaller than that of CS process under the same densification and PBZNZT samples could achieve a significantly lower sintering temperature in MWS process, which implied that PBZNZT specimens displayed more efficient adsorption ability of microwave energy. It might be attributed to the contribution of dielectric constant and dipole loss. Therefore, the dielectric properties might dominant the adsorption ability of microwave energy for ferroelectric and pizeoelctric materials. HRTEM and energy dispersive spectroscopic investigations show that the grain boundaries of MW samples contain less PbO and ZnO segregation than those of the CS samples for PBZNZT specimens. On the other hand, BNKT specimens display no compositional segregation at grain boundaries for CS and MWS process. However, MWS process could efficiently achieve more uniform composition for PBZNZT and BNKT ceramics, and the result improved the electrical properties.

    中文摘要………………………………………………………….…………I 英文摘要…………..…………………………………………….…………IV 誌謝……………………………………………………….………………VII 目錄……………………………………………………………...…………IX 表索引……………………………………………………………………XIV 圖索引………………………………………………………….………… XVI 第一章 緒論…………………………………………………….….………1 第二章 文獻回顧………………………………………………..…………6 2-1. 非鉛壓電陶瓷材料發展介紹……………………….…….....……..6 2-1-1. BaTiO3 (簡稱BT)系之無鉛壓電陶瓷材料……………….…6 2-1-2. Bi0.5Na0.5TiO3(簡稱BNT)系之無鉛壓電陶瓷材料….………8 2-1-3. 鈮酸鹽系無鉛壓電陶瓷材料………………………...….…11 2-1-3-1鹼金屬鈣鈦礦結構鈮酸鹽陶瓷…………….…....…11 2-1-3-2 鎢青銅結構鈮酸鹽陶瓷………………….…..……15 2-1-4. 鉍層結構無鉛壓電陶瓷材料……………………….…..…15 2-2. 無鉛壓電陶瓷材料系統之設計原則及面臨之問題…………..….17 2-3. X光光電子光譜儀(XPS)分析原理…………………….………22 2-4. 電化學交流阻抗圖譜(EIS)介紹…………………….…….……25 2-4-1電化學交流阻抗圖譜之基礎理論……………………….…26 2-4-2 電化學交流阻抗圖譜之等效電路…………………………27 2-5. 微波燒結簡介……………………………………………………..31 2-5-1 微波燒結原理………………………………………………32 2-5-2 微波與材料的作用…………………………………………34 2-5-3 微波燒結擴散理論…………………………………………39 2-5-4 影響微波燒結之其他因素…………………………………46 第三章 實驗方法及特性分析………………………………..………….…72 3-1. (Bi0.5Na0.5-xKx)TiO3陶瓷製備原料與實驗儀器…………….……...72 3-2. BNKT基陶瓷製備過程………………………………………..…..73 3-2-1成型(Forming)…………………………………..…….…..…73 3-2-2 燒結(Sintering)…………………………………………..….73 3-2-3電極塗佈與極化處理製作………………………….…..…...73 3-3. 基本性質量測與觀察…………………………………….….….…74 3-3-1粉末粒徑分析…………………………………………..…....74 3-3-2 熱分析(Thermal analysis)……………………………..…....75 3-3-3密度量測與分析(Density analysis)……………….……...…75 3-3-4 X光繞射分析(X-ray diffraction analysis)…………..…..….75 3-3-5 掃瞄式電子顯微鏡(SEM)分析……………………………76 3-3-6穿透式電子顯微鏡(TEM)分析…………………………….76 3-3-7 X光光電子光譜(XPS)量測………………………………76 3-4. 電性量測………………………………………………………….77 3-4-1 極化值與電場(P-E)曲線量測………………..………77 3-4-2 介電常數對溫度(D-T)曲線量測…………….………77 3-4-3 壓電特性量測…………………………………………..…78 3-4-4 漏電流量測(Leakage current measurement)………………79 3-4-5 交流阻抗量測(AC Impedance measurement)………….….79 第四章 傳統燒結製備非鉛BNKT陶瓷及其特性分析…………….……86 4-1. (Bi0.5Na0.5-xKx)TiO3粉末之TGA分析…………………………....86 4-2燒結緻密度與微觀形貌觀察.…………………………..…..87 4-3 (Bi0.5Na0.5-xKx)TiO3之XRD相鑑定……………………….……..88 4-4 介電性質量測………………………………………………...……90 4-5鐵電性質量測………………………………………………..….….91 4-6壓電性質量測…………………………………..………….……….92 第五章 BNKT陶瓷二次相及缺陷形成機制與對電性影響之研究….…107 5-1. 簡介………………………………………….……..……………..107 5-2. 實驗方法…………………………………………………….……108 5-3. 結果與討論……………………………………………………….109 5-4. 結論…………………………………………………………….…119 第六章 鉛基PBZNZT陶瓷與非鉛BNKT陶瓷之微觀結構與電性相關性研究-交流複數阻抗圖譜(AC complex impedance spectroscopy)分析……………………………………………………….………...131 6-1. 簡介………………………………………………………….…....131 6-2. 實驗方法………………………………………………………….132 6-3. 結果和討論…………………………..…………..………….……133 6-4 . 結論………………………………………………………………140 第七章 微波燒結製備含鉛PBZNZT陶瓷材料與非鉛BNKT陶瓷材料之比較研究結論……………………………...………………………148 7-1. 前言…………………………………………..………………..….148 7-2. 實驗方法…………………………………………………………150 7-3. 結果與討論………………………………..……..………………151 7-3-1 感應體(susceptor)對微波燒結製程的影響………………151 7-3-2 感應體(SiC)之設計與升溫實驗………………………….153 7-3-3 Bi系與Pb系陶瓷材料對微波吸收效率差異之探討…….156 7-3-4 Bi系與Pb系陶瓷材料對微波燒結機制之探討………. 160 7-3-5 微波燒結PZNZT與BNKT陶瓷之電性與微觀結構研究.164 7-4. 結論………………………………………………………………168 第八章 總結與未來展望………………………………………………..187 8-1. 總結論.………………………………………….………………..187 8-2. 未來展望…………………………………………………………189 參考文獻…………………………………………………………………...192

    1.Q. Xu, X. L. Chen, W. Chen, M. Chen, S. L. Xu, B. H. Kim, and J. H. Lee, "Effect of MnO addition on structure and electrical properties of 0.94(Na0.5Bi0.5)TiO3-0.06BaTiO3 ceramics prepared by citrate method," Materials Science and Engineering B, Vol. 130, pp. 94-100 (2006).
    2.S. Wu, Q. Xu, X. Zhao, T. Liu, and Y. Li, "Processing and properties of CeO2-doped ferroelectric (Na0.5Bi0.5)0.94Ba0.06TiO3," Materials Letters, Vol. 60, pp. 1453-1458 (2006).
    3.T. Takenaka and H. Nagata, "Current status and prospects of lead-free piezoelectric ceramics," Journal of the European Ceramic Society, Vol. 25, pp. 2693-2700 (2005).
    4.Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, "Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics," Journal of Applied Physics, Vol. 92, pp. 1489 (2002).
    5.Y. Yuan, S. Zhang, X. Zhou, and J. Liu, "Phase transition and temperature dependences of electrical properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics," Japanese Journal of Applied Physics, Vol. 45, pp. 831-834 (2006).
    6.H. Nagata, T. Takahashi, Y. Yano, and T. Takenaka, "Electrical properties of SrxBi4-xTi3-xTaxO12 (0≤x≤1) lead-free piezoelectric ceramics," Key Engineering Materials, Vol. 214, pp. 25-30 (2002).
    7.Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, and R. Xu, "Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3-NaNbO3 ceramics," Materials Science and Engineering B, Vol. 112, pp. 5-9 (2004).
    8.X. X. Wang, S. H. Choy, X. G. Tang, and H. L. W. Chan, "Dielectric behavior and microstructure of (Bi1/2Na1/2)TiO3 - (Bi1/2K1/2)TiO3 - BaTiO3 lead-free piezoelectric ceramics," Journal of Applied Physics, Vol. 97, pp. 1-4 (2005).
    9.T. Wada, K. Toyoike, Y. Imanaka, and Y. Matsuo, "Dielectric and piezoelectric properties of (A0.5Bi0.5)TiO3-ANbO3 (A = Na, K) systems," Japanese Journal of Applied Physics, Vol. 40, pp. 5703-5705 (2001).
    10.Y. Hosono, K. Harada, and Y. Yamashita, "Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3," Japanese Journal of Applied Physics, Vol. 40, pp. 5722-5726 (2001).
    11.Y. M. Li, W. Chen, J. Zhou, Q. Xu, X. Y. Gu, and R. H. Liao, "Impedance spectroscopy and dielectric properties of Na0.5Bi 0.5TiO3-NaNbO3 ceramics," Physica B: Condensed Matter, Vol. 365, pp. 76-81 (2005).
    12.Y. Zhi, R. Guo, and A. S. Bhalla, "Growth of Ba(Ti1-xZrx)O3 single crystals by the laser heated pedestal growth technique," Journal of Crystal Growth, Vol. 233, pp. 460-465 (2001).
    13.H. Nagata and T. Takenaka, "Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics," Journal of the European Ceramic Society, Vol. 21, pp. 1299-1302 (2001).
    14.B. J. Chu, G. R. Li, X. P. Jiang, and D. R. Chen, "Piezoelectric property and relaxation phase transition of Na1/2Bi1/2TiO3-BaTiO3 system," Journal of Inorganic Materials, Vol. 15, pp. 821 (2000).
    15.S.-E. Park, S.-J. Chung, I.-T. Kim, and K. S. Hong, "Nonstoichiometry and the long-range cation ordering in crystals of (Na1/2Bi1/2)TiO3," Journal of the American Ceramic Society, Vol. 77, pp. 2641-2647 (1994).
    16.A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, "Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems," Japanese Journal of Applied Physics, Vol. 38, pp. 5564-5567 (1999).
    17.T. Takenaka, "Piezoelectric properties of some lead-free ferroelectric ceramics," Ferroelectrics, Vol. 230, pp. 389-400 (1999).
    18.H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi, and T. Takenaka, "Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3-BiFeO3 system," Ferroelectrics, Vol. 229, pp. 273-278 (1999).
    19.T. Takenaka and H. Nagata, "Present Status of Non-Lead-Based Piezoelectric Ceramics," Key Engineering Materials, Vol. 157, No. 1, pp. 57-64 (1999).
    20.Y. M. Chiang, G. W. Farrey, and A. N. Soukhojak, "Lead-free high-strain single-crystal piezoelectrics in the alkaline - bismuth - titanate perovskite family," Applied Physics Letters, Vol. 73, No. 25, pp. 3683-3685 (1998).
    21.H. Nagata and T. Takenaka, "Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-KNbO3-1/2Bi2O3 Sc2O3) system," Japanese Journal of Applied Physics, Vol. 37, pp. 5311-5314 (1998).
    22.Y. Makiochi, R. Aoyagi, Y. Hiruma, H. Nagata, and T. Takenakd, " (Bi1/2Na1/2)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 Based Lead-Free Piezoelectric Ceramics," Japanese Journal of Applied Physics, Vol. 44, pp. 4350-4353 (2005)
    23.M. Kimura, T. Minamikawa, A. Ando, and Y. Sakabe, "Temperature characteristics of (Ba1-xSrx)2NaNb5O15 ceramics," Japanese Journal of Applied Physics, Vol. 36, pp. 6051-6054 (1997).
    24.H. Nagata and T. Takenaka, "Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3 Sc2O3) system," Japanese Journal of Applied Physics, Vol. 36, pp. 6055-6057 (1997).
    25.T. Takenaka, T. Okuda, and K. Takegahara, "Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3," Ferroelectrics, Vol. 196, pp. 175-178 (1997).
    26.T. Takenaka and H. Nagata, "Current status and prospects of lead-free piezoelectric ceramics," Journal of the European Ceramic Society, Vol. 25, pp. 2693-2700 (2005).
    27.T. Takenaka, K.-i. Maruyama, and K. Sakata, "(Bi1/2Na1/2)TiO3 - BaTiO3 system for lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, Vol. 30, pp. 2236-2239 (1991).
    28.M. Kimura, A. Ando, T. Sawada, and K. Hayashi, U.S. Pat., 6258291, (2001).
    29.T. Takenaka, M. Hirose, and K. Miyabe, U.S. Pat., 6004474, (1999).
    30.T. Takenaka, U.S. Pat., 5637542, (1997).
    31.M. Kimura, T. Ogawa, and A. Ando, U.S. Pat., 6093339, (2000).
    32.Murata Manufacturing Co., Ltd., Japan Pat., 56778, (2006).
    33.Murata Manufacturing Co., Ltd., Japan Pat., 3259677, (2005).
    34.TDK, Japan Pat., 2942535, (2005).
    35.TDK, Japan Pat., 082422, (2005).
    36.Taiyo Yuden, Japan Pat., 75449, (2004).
    37.Kyocera, Japan Pat., 34574, (2003).
    38.E. Cross, "Lead-free at last," Nature, Vol. 432, pp. 24-25 (2004).
    39.Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-free piezoceramics," Nature, Vol. 432, pp. 84-87 (2004).
    40.G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainic, “New ferroelectric of complex composition,” Sov. Phys. Solid State 2, pp. 2651 (1961).
    41.C.W. Nelson, MIT Tech Rep. Lab Insulation Res., 179, (1963).
    42.K. Miura and M. Tanaka, "Origin of fatigue in ferroelectric perovskite oxides," Japanese Journal of Applied Physics, Vol. 35, pp. 2719-2725 (1996).
    43.Z. Xie, J. Yang, X. Huang, and Y. Huang, "Microwave processing and properties of ceramics with different dielectric loss," Journal of the European Ceramic Society, Vol. 19, pp. 381-387 (1999).
    44.A. Goldstein and M. Kravchik, "Sintering of PZT powders in MW furnace at 2.45 GHz," Journal of the European Ceramic Society, Vol. 19, pp. 989-992 (1999).
    45.W. B. Harrison, M. R. B. Hanson, and B. G. Koepke, "Microwave processing and sintering of PZT and PLZT ceramics," Materials Research Society Symposium - Proceedings, Vol. 124, pp. 279–286 (1988).
    46.H. Takahashi, K. Kato, J. Qiu, and J. Tani, "Property of lead zirconate titanate actuator manufactured with microwave sintering process," Japanese Journal of Applied Physics, Vol. 40, pp. 724-727 (2001).
    47.S. Rhee, D. Agrawal, T. Shrout, and M. Thumm, "Investigation of high microwave frequency (2.45 GHz, 30 GHz) sintering for Pb-based ferroelectrics and microscale functional devices," Ferroelectrics, Vol. 261, pp. 15–20 (2001).
    48.S. Rhee, T. R. Shrout, T. A. Ritter, and M. Thumm, "Investigation of high frequency (2.45 GHz, 30 GHz) processing of Pb-based piezoelectrics for ultrasound transducers," Proceedings of the IEEE Ultrasonics Symposium. San-Juan, China, pp. 981-984 (2000).
    49.C. C. Chou, P. H. Chen, and I. N. Lin, "Microstructural characteristics of microwave-sintered semi-conductive Pb0.6Sr0.4TiO3 ceramics," Ferroelectrics, Vol. 231, pp. 37-42 (1999).
    50.P. H. Chen, H. C. Pan, C. C. Chou, and I. N. Lin, "Microstructures and properties of semiconductive (Pb0.6Sr0.4)TiO3 ceramics using PbTiO3-coated SrTiO3 powders,". Journal of the European Ceramic Society, Vol. 21, pp.1905–1908 (2001).
    51.N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, "Perovskite phase formation and ferroelectric properties of the lead nickel niobate-lead zinc niobate-lead zirconate titanate ternary system," Journal of Materials Research, Vol. 18, pp. 2882-2889 (2003).
    52.H. Fan and H. E. Kim, "Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate-lead zirconate titanate," Journal of Applied Physics, Vol. 91, pp. 317-322 (2002).
    53.N. Vittayakorn, G. Rujijanagul, X. Tan, H. He, M. A. Marquardt, and D. P. Cann, "Dielectric properties and morphotropic phase boundaries in the x Pb(Zn1/3Nb2/3)O3 - (1−x) Pb(Zr0.5Ti0.5)O3 pseudo-binary system," Journal of Electroceramics, Vol. 16, pp. 141-149 (2006).
    54.B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London and New York (1971).
    55.H. F. Kay, and P. Vousden, “Symmetry Change in Barium Titanate at Low Temperature and Their Relation to Its Ferroelectricity Properties,” Phil. Mag., Vol. 40, pp. 1019-1040 (1949).
    56.H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering," Japanese Journal of Applied Physics, Vol. 45, pp. 7405-7408 (2006).
    57.T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, "Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder," Japanese Journal of Applied Physics, Vol. 46, pp. L97-L98 (2007).
    58.S. Wada, A. Seike, and T. Tsurumi, "Poling treatment and piezoelectric properties of potassium niobate ferroelectric single crystals," Japanese Journal of Applied Physics, Vol. 40, pp. 5690-5697 (2001).
    59.K. I. Kakimoto, I. Masuda, and H. Ohsato, "Ferroelectric and piezoelectric properties of KNbO3 ceramics containing small amounts of LaFeO3," Japanese Journal of Applied Physics, Vol. 42, pp. 6102-6105 (2003).
    60.H. Nagata, M. Yoshida, Y. Makiuchi, and T. Takenaka, "Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanate-Bismuth Potassium Titanate-Barium Titanate near the Morphotropic Phase Boundary," Japanese Journal of Applied Physics, Vol. 42, pp. 7401-7403 (2003).
    61.Y. Guo, K. I. Kakimoto, and H. Ohsato, "Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics," Applied Physics Letters, Vol. 85, pp. 4121-4123 (2004).
    62.Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, "Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics," Japanese Journal of Applied Physics, Vol. 44, pp. 5040-5044 (2005).
    63.T. Takenaka, H. Nagata, and Y. Hiruma, "Current developments and prospective of lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, Vol. 47, pp. 3787-3801 (2008).
    64.Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, "Piezoelectric Properties of BaTiO3-(Bi1/2K1/2)TiO3 ferroelectric ceramics," Japanese Journal of Applied Physics, Vol. 43, pp. 7556-7559 (2004).
    65.H. Birol, D. Damjanovic, and N. Setter, "Preparation and chaacterization of KNbO3 ceramics," Journal of the American Ceramic Society, Vol. 88, pp. 1754-1759 (2005).
    66.K. Matsumoto, Y. Hiruma, H. Nagata, and T. Takenaka, "Piezoelectric properties of pure and Mn-doped potassium niobate ferroelectric ceramics," Japanese Journal of Applied Physics, Vol. 45, pp. 4479-4483 (2006).
    67.K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, "Electrical properties and depolarization temperature of (Bi 1/2Na1/2)TiO3-(Bi1/2K 1/2)TiO3 lead-free piezoelectric ceramics," Japanese Journal of Applied Physics, Vol. 45, pp. 4493-4496 (2006).
    68.H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, "Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics," Applied Physics Letters, Vol. 89, pp. 062906-3 (2006).
    69.V. Bobnar, J. Bernard, andM. Kosec, "Relaxorlike dielectric properties and history-dependent effects in the lead-free K0.5Na0.5NbO3-SrTiO3 ceramic system," Applied Physics Letters, Vol. 85, No. 6, pp. 994-996 (2004).
    70.G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi, B. Q. Ming, J. Du, L. M. Zheng, S. Zhang, and T. R. Shrout, "Perovskite (Na0.5 K0.5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics," Applied Physics Letters, Vol. 88, No. 21, pp. 212908-3 (2006).
    71.Y. Guo, K. I. Kakimoto, and H. Ohsato, "(Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics," Materials Letters, Vol. 59, pp. 241-244 (2005).
    72.R. Zuo, X. Fang, andC. Ye, "Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics," Applied Physics Letters, Vol. 90, No. 9, pp. 092904-3 (2007).
    73.Y. Wang, J. Wu, D. Xiao, J. Zhu, Y. Jin, P. Yu, L. Wu, andX. Li, "Microstructure, dielectric, and piezoelectric properties of (Li, Ag, Ta) modified (K0.50Na0.50)NbO3 lead-free ceramics with high Curie temperature," Journal of Applied Physics, Vol. 102, No. 5, pp. 054101-5 (2007).
    74.R. J. Xie, Y. Akimune, K. Matsuo, T. Sugiyama, N. Hirosaki, and T. Sekiya, "Dielectric and ferroelectric properties of tetragonal tungsten bronze Sr2-xCaxNaNb5O15 (x = 0.05-0.35) ceramics," Applied Physics Letters, Vol. 80, No. 5, pp. 835-837 (2002).
    75.K. Umakantham, S. Narayana Murty, K. Sambasiva Rao and A. Bhanumathi, "Effect of rare-earth ions on the properties of modified (SrBa)Nb2O6 ceramics," Journal of Materials Science Letters Vol. 6, pp. 565-567 (1987).
    76.A. I. Robin, A. V. Prasada Rao, A. R. Sabasiv, "Effect of rare-eath substitution on the dielectric and piezoelectric properties of Ba2AgNb5O15," Ferroelectrics, Vol. 153, pp. 285-290 (1994).
    77.M. Kimura, T. Minamikawa, A. Ando, andY. Sakabe, "Temperature characteristics of (Ba1-xSrx)2NaNb5O15 ceramics," Japanese Journal of Applied Physics, Vol. 36, pp. 6051-6054 (1997).
    78.Y. Doshida, S. Kishimoto, K. Ishii, H. Kishi, H. Tamura, Y. Tomikawa, and S. Hirose, "Miniature cantilever-type ultrasonic motor using Pb-free multilayer piezoelectric ceramics," Japanese Journal of Applied Physics, Vol. 46, pp. 4921-4925 (2007).
    79.M. Villegas, A. C. Caballero, C. Moure, P. Duran, and J. F. Fernandez, "Factors affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics," Journal of the American Ceramic Society, Vol. 82, No. 9, pp. 2411-2416 (1999).
    80.T. Takeuchi, T. Tani, and Y. Saito, "Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method," Japanese Journal of Applied Physics, Vol. 38, pp. 5553-5556 (1999).
    81.M. V. Gelfuso, D. Thomazini, and J. A. Eiras, "Synthesis and structural, ferroelectric, and piezoelectric properties of SrBi4Ti4O15 ceramics," Journal of the American Ceramic Society, Vol. 82, No. 9, pp. 2368-2372 (1999).
    82.B. Jimenez, L. Pardo, A. Castro, P. Millan, R. Jimenez, M. Elaatmani, and M. Oualla, "Influence of the preparation on the microstructure and ferroelectricity of the (SBN)1-x(BTN)x ceramics," Ferroelectrics, Vol. 241, No. 1, pp. 279-286 (2000).
    83.H. Yan, C. Li, J. Zhou, W. Zhu, L. He, and Y. Song, "A-site (MCe) substitution effects on the structures and properties of CaBi4Ti4O15 ceramics," Japanese Journal of Applied Physics, Vol. 39 pp. 6339-6342 (2000).
    84.R. Jain, A. K. S. Chauhan, V. Gupta, and K. Sreenivas, "Piezoelectric properties of nonstoichiometric Sr1-xBi2+2x3Ta2O9 ceramics," Journal of Applied Physics, Vol. 97, pp. 124101-6 (2005).
    85.C. Karthik, N. Ravishankar, K. B. R. Varma, M. Maglione, R. Vondermuhll, and J. Etourneau, "Relaxor behavior of K0.5La0.5Bi2Nb 2O9 ceramics," Applied Physics Letters, Vol. 89, pp. 042905-3 (2006).
    86.H. D. Li, C. D. Feng, and W. L. Yao, "Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic phase boundary composition," Materials Letters, Vol. 58(7-8), pp. 1194-1198 (2004).
    87.X. Wang, H. L. W. Chan, and C. L. Choy, "Piezoelectric and dielectric properties of CeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics," Solid State Communications, Vol. 125(7-8), pp. 395-399 (2003).
    88.B. J. Chu, D. R. Chen, G. R. Li, and Q. R. Yin, "Electrical properties of Na1/2Bi1/2TiO3-BaTiO3 ceramics," Journal of the European Ceramic Society, Vol. 22, No. 13, pp. 2115-2121 (2002).
    89.H. Nagata, T. Shinya, Y. Hiruma, T. Takenaka, I. Sakaguchi, and H. Haneda, "Piezoelectric properties of bismuth sodium titanate ceramics," Ceramic Transactions, Vol. 167, pp. 213-221 (2005).
    90.Y. Hiruma, Y. Makiuchi, R. Aoyagi, H. Nagata, and T. Takenaka, "Lead-free piezoelectric ceramic based on (Bi1/2Na 1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 solid solution," Ceramic Transactions, Vol. 174, pp. 139-146 (2006).
    91.Y. Hiruma, K. Yoshii, R. Aoyagi, H. Nagata, and T. Takenaka, "Piezoelectric properties and depolarization temperatures of (Bi 1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics," Key Engineering Materials, Vol. 320, pp. 23-26 (2006).
    92.Y. Guo, K. I. Kakimoto, and H. Ohsato, "Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics," Solid State Communications, Vol. 129, No. 5, pp. 279-284 (2004).
    93.R. C. Chang, S. Y. Chu, Y. F. Lin, C. S. Hong, P. C. Kao, and C. H. Lu, "The effects of sintering temperature on the properties of (Na0.5K0.5)NbO3-CaTiO3 based lead-free ceramics," Sensors and Actuators, A: Physical, Vol. 138, No. 2, pp. 355-360 (2007).
    94.Y. H. Lee, J. H. Cho, B. I. Kim, and D. K. Choi, "Piezoelectric properties and phase transition behaviors of (Bi1/2Na1/2)1-xCaxTiO3 ceramics," Journal of the Korean Ceramic Society, Vol. 45, No. 5, pp. 263-267 (2008).
    95.R. C. Chang, S. Y. Chu, Y. F. Lin, C. S. Hong, and Y. P. Wong, "An investigation of (Na0.5K0.5)NbO3-CaTiO3 based lead-free ceramics and surface acoustic wave devices," Journal of the European Ceramic Society, Vol. 27, No. 16, pp. 4453-4460 (2007).
    96.Egerton, R. E. J. a. L., "Hot pressing of tassium-sodium niobates," Journal of the American Ceramic Society, Vol. 45, pp. 209 (1962).
    97.B. Jaffe, W. R. C., and H. Jaffe, "Piezoelectric ceramics," academic, New York, (1971).
    98.B. Jaffe, R. S. R., and S. Marzullo, "Properties of piezoelectric ceramics in the solid-solution series lead titanate zirconate-lead oxide: tin oxide and lead titanate lead hafnate," J. Res. Natl. Bur. Stand., Vol. 55, pp. 239 (1955).
    99.H. D. Megaw, "SEVEN PHASES OF SODIUM NIOBATE," Ferroelectrics, Vol. 7(1-4), pp. 87-89. (1974).
    100.H. Ishii, H. Nagata, and T. Takenaka, "Morphotropic phase boundary and electrical properties of bisumuth sodium titanate - Potassium niobate solid-solution ceramics," Japanese Journal of Applied Physics, Vol. 40, No. 9B, pp. 5660-5663 (2001).
    101.H. Odagawa and K. Yamanouchi, "Superhigh electromechanical coupling and zero-temperature characteristics of KNbO3 and wide band filter applications," Japanese Journal of Applied Physics, Vol. 37, No. 5 B, pp. 2929-2932 (1998).
    102.R. Wang, R. Xie, T. Sekiya, and Y. Shimojo, "Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method," Materials Research Bulletin, Vol. 39, No. 11, pp. 1709-1715 (2004).
    103.G. H. Haertling, "Properties of hot-pressed ferroelectric alkali niobate ceramics," Journal of the American Ceramic Society, Vol. 50, pp. 329. (1967).
    104.K. Singh, V. Lingwal, S. C. Bhatt, N. S. Panwar, and B. S. Semwal, "Dielectric properties of potassium sodium niobate mixed system," Materials Research Bulletin, Vol. 36(13-14), pp. 2365-2374 (2001).
    105.M. A. L. Nobre and S. Lanfredi, "Dielectric loss and phase transition of sodium potassium niobate ceramic investigated by impedance spectroscopy," Catalysis Today, Vol. 78[1-4 SPEC.], pp. 529-538 (2003).
    106.V. J. Tennery, "High-temperature phase transitions in NaNbO3,". Journal of the American Ceramic Society, Vol. 48, pp. 537 (1965).
    107.Shirane, F.J.a.G., "Ferroelectric crystals," Peramon, New York, (1962).
    108.M. Kosec and D. Kolar, "On activated sintering and electrical properties of NaKNbO3," Materials Research Bulletin, Vol. 10, No. 5, pp. 335-339 (1975).
    109.L. E. Bieling, a. C. A., "Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices," Ceramic Bulletin, Vol. 47, pp. 1151 (1968).
    110.M. Ichiki, L. Zhang, M. Tanaka, and R. Maeda, "Electrical properties of piezoelectric sodium-potassium niobate," Journal of the European Ceramic Society, Vol. 24, No. 6, pp. 1693-1697 (2004).
    111.Y. Guo, K. I. Kakimoto, and H. Ohsato, "Ferroelectric-relaxor behavior of (Na0.5K0.5)NbO3-based ceramics," Journal of Physics and Chemistry of Solids, Vol. 65, No. 11, pp. 1831-1835 (2004).
    112.S. Y. Chu, W. Water, Y. D. Juang, and J. T. Liaw, "Properties of (Na, K)NbO3 and (Li, Na, K)NbO3 ceramic mixed systems," Ferroelectrics, Vol. 287, pp. 23-33 (2003).
    113.Y. Guo, K. I. Kakimoto, and H. Ohsato, "Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics," Japanese Journal of Applied Physics, Vol. 43, No. 9B, pp. 6662-6666 (2004).
    114.R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Itoh, "Piezoelectric properties of spark-plasma-sintered (Na0.5K0.5)NbO3-PbTiO3 ceramics," Japanese Journal of Applied Physics, Vol. 41, No. 11B, pp. 7119-7122 (2002).
    115.W. H. Lee, W. A. Groen, H. Schreinemacher, and D. Hennings, "Dysprosium doped dielectric materials for sintering in reducing atmospheres," Journal of Electroceramics, Vol. 5, No. 1, pp. 31-36 (2000).
    116.O.M.a.R., Roy, "The Major Ternary Structural Families," Springer-Verlag, Berlin, (1974).
    117.D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallogr. A, Vol. 32, No. A, pp. 751 (1976).
    118.W. C. Lee, C. Y. Huang, L. K. Tsao, and Y. C. Wu, "Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics," Journal of the European Ceramic Society, Vol. 29, No. 8, pp. 1443-1448 (2009).
    119.R. Zuo, S. Su, Y. Wu, J. Fu, M. Wang, and L. Li, "Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5) TiO3 ceramics," Materials Chemistry and Physics, Vol. 110, No. 2-3, pp. 311-315 (2008).
    120.Y. R. Zhang, J. F. Li, B. P. Zhang, and C. E. Peng, "Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2)TiO3 - (Bi1/2 K1/2)TiO3 lead-free piezoelectric ceramics," Journal of Applied Physics, Vol. 103, No. 7, pp. 074109 1-5 (2008).
    121.X. X. Wang, X. G. Tang, K. W. Kwok, H. L. W. Chan, and C. L. Choy, "Effect of excess Bi2O3 on the electrical properties and microstructure of (Bi1/2Na1/2)TiO3 ceramics," Applied Physics A: Materials Science and Processing, Vol. 80, No. 5, pp. 1071-1075 (2005).
    122.Y. Wu and G. Cao, "Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping," Applied Physics Letters, Vol. 75, No. 17, pp. 2650-2652 (1999).
    123.D. R. Gaskell, "Introduction to the thermodynamics of materials," Taylor & Francis, New York, pp. 337-382 (2003).
    124.Y. Noguchi, T. Matsumoto, andM. Miyayama, "Impact of defect control on the polarization properties in Bi4Ti3O12 ferroelectric single crystals," Japanese Journal of Applied Physics, Vol. 44(16-19), pp. L570-L572 (2005).
    125.M. Takahashi, Y. Noguchi, and M. Miyayama, "Electrical conduction mechanism in Bi4Ti3O12 single crystal," Japanese Journal of Applied Physics, Vol. 41, No. 11B, pp. 7053-7056 (2002).
    126.Y. Kizaki, Y. Noguchi, and M. Miyayama, "Defect control for low leakage current in K0.5Na0.5NbO3 single crystals," Applied Physics Letters, Vol. 89, No. 14, pp. 142910 1-3 (2006).
    127.Y. Noguchi, M. Soga, M. Takahashi, and M. Miyayama, "Oxygen stability and leakage current mechanism in ferroelectric La-substituted Bi4Ti3O12 single crystals," Japanese Journal of Applied Physics, Vol. 44, No. 9B, pp. 6998-7002 (2005).
    128.A. Snedden, P. Lightfoot, T. Dinges, and M. S. Islam, "Defect and dopant properties of the Aurivillius phase Bi4Ti3O12," Journal of Solid State Chemistry, Vol. 177, No. 10, pp. 3660-3665 (2004).
    129.J. F. Watts, and J. Wolstenholme, "An Introduction to Surface Analysis by XPS and AES," Wiley press, New York, (2003).
    130.伍秀菁, 汪若文, 林美吟, "Introduction to Instrumentation:Surface Analysis Instrument," 行政院國家科學委員會精密儀器發展中心出版, 新竹, pp. 5-6 (1998).
    131.T. L. Barr, "Modern ESCA:The Principles and Practice of X-Ray Photoelectron Spectroscopy," CRC press, London, (1994).
    132.E. Barsoukov and J. R. Macdonald, "Impedance Spectroscopy, Theory Experiment and Applications," John Wiley & Sons. Inc., (2005).
    133.C. H. Hsu, and F. Mansfeld, Corrosion, Vol. 57, No. 9, pp. 747 (2001).
    134.J. M. Osepchuk, “A History of Microwave Heating Applications,” IEEE Trans. Microwave Theory & Tech., MTT-32, Vol. 9, pp. 1200-1224 (1984).
    135.M. L. Levinson, U S Pat., 3585258, (1971).
    136.W. R. Tinga and W. A. G. Voss, “Microwave Power Engineering,” Academic Press, New York (1968).
    137.A. J. Berteaud and J. C. Badot, "High temperature microwave heating in refractory materials," Journal of Microwave Power, Vol. 11, No. 4, pp. 315-320 (1976).
    138.W. H. Sutton, "Microwave processing of ceramic materials," American Ceramic Society Bulletin, Vol. 68, No. 2, pp. 376-386 (1989).
    139.Z. Xie, J. Yang, and Y. Huang, "Densification and grain growth of alumina by microwave processing," Materials Letters, Vol. 37, No. 4-5, pp. 215-220 (1998).
    140.R. D. Blake and T. T. Meek, "Microwave processed composite materials," Journal of Materials Science Letters, Vol. 5, No. 11, pp. 1097-1098 (1986).
    141.J. D. Katz, R. D. Blake and J. J. Petrovic, “Microwave Sintering of Alumina-Silicon Carbide Composites at 2.45 and 60 GHz,” Ceramics. engineering science processing, Vol. 9, No. 7-8, pp. 725-734 (1988).
    142.M. C. Valecillos, M. Hirota, M. E. Brito, K. Hirao, and M. Toriyama, "Microstructure and mechanical properties of microwave sintered silicon nitride," Journal of the Ceramic Society of Japan, Vol. 106, No. 12, pp. 1162-1166 (1998).
    143.J. J. Thomas, R. J. Christensen, D. L. Johnson, and H. M. Jennings, “Nonisothermal Microwave Processing of Reaction-Bonded Silicon Nitride,” Journal of the American Ceramic Society, Vol. 76, No. 5, pp. 1384-1386 (1993).
    144.M. Aliouat, L. Mazo, G. Desgardin, andB. Raveau, "Microwave sintering of the high TC superconductor YBa2Cu3O7-δ," Materials Chemistry and Physics, Vol. 26, No. 2, pp. 109-115 (1990).
    145.K. G. K. Warrier, H. K. Vama, T. V. Mani, and A. D. Damodaran, “Rapid Method for the Preparation of Superconductor Using Microwaves,” Journal of the American Ceramic Society, Vol. 75, No. 7, pp. 1990-1992 (1992).
    146.A. Birnboim, D. Gershon, J. Calame, A. Birman, Y. Carmel, J. Rodgers, B. Levush, Y. V. Bykov, A. G. Eremeev, V. V. Holoptsev, V. E. Semenov, D. Dadon, P. L. Martin, M. Rosen, and R. Hutcheon, "Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz," Journal of the American Ceramic Society, Vol. 81, No. 6, pp. 1493-1501 (1998).
    147.W. C. Lee, K. S. Liu, andI. N. Lin, "Electrical properties of microwave-sintered ZnO varistors," Japanese Journal of Applied Physics, Vol. 38, pp. 5500-5504 (1999).
    148.R. J. Lauf, C. Hamby, C. E. Holcombe, and W. F. Vierow, “Microwave Processing of Tantalum Capacitor Anodes,” in Microwave Processing of Materials III, Mater. Res. Soc. Symp, Proc., Vol. 269, pp. 2178-2222 (1992).
    149.H. Fukushima, T. Noritake, andH. Hasegawa, "Microwave sintering of multilayer ceramics containing capacitor," Journal of the Ceramic Society of Japan, Vol. 108, No. 2 132-137 (2000).
    150.H. Fukushima, H. Mori, T. Hatanaka, and M. Matsui, "Properties and microstructure of PZT ceramics sintered by microwave," Journal of the Ceramic Society of Japan, Vol. 103, No. 1202, pp. 1011-1016 (1995).
    151.F. Selmi, F. Guerin, X. D. Yu, V. K. Varadan, V. V. Varadan, and S. Komarneni, "Microwave calcination and sintering of barium strontium titanate," Materials Letters, Vol. 12, No. 6, pp. 424-428 (1992).
    152.C. E. Holcombe and N. L. Dykes, "Importance of "casketing" for microwave sintering of materials," Journal of Materials Science Letters, Vol. 9, No. 4, pp. 425-428 (1990).
    153.R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, Nature, Vol. 399, No. 17, pp. 668-670 (1999).
    154.R. M. Anklekar, D. K. Agrawal and R. Roy, “Microwave Sintering and Mechanical Properties of PM Copper Steel,” Powder Metallurgy, Vol. 44, No. 4, pp. 355-362 (2001).
    155.Robert E. Collin, “Foundations for Microwave Engineering,” McGraw-Hill, New York, 2nd ed., pp. 450-476 (1992).
    156.E. Hund, “Microwave Communications-Components and Circuits,” McGraw-Hill, Chap. 2 (1989).
    157.D. Michael, P. Mingos, and David R. Baghurst, “Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry,” Chemistry Society Rev., Vol. 20, pp. 1-47 (1991).
    158.B. Meng, J. Booske, R. Cooper, and S. Freeman, “Microwave Absorption in NaCl Crystals with Various Controlled Defect Conditions,” Materials Research Society Symposium Proceedings, Vol. 347, pp. 467-472 (1994).
    159.D. L. Johnson, “Microwave Heating of Grain Boundaries in Ceramics,” Journal of the American Ceramic Society, Vol. 74, No. 4, pp. 849-850 (1991).
    160.I. Bunget and M. Popescu, “Physics of Solid Dielectrics,” Elsevier Ansterdan, Oxford-New York-Tokyo, pp.282 (1984).
    161.M. A. Janney and H. D. Kimrey, “Diffusion-Controlled Processes in Microwave–Fired OxideCeramic,” Mater. Res. Symp. Proc., Vol. 189, pp. 215-227 (1990).
    162.M. A. Janney and H. D. Kimrey, “Microwave Sintering of Alumina at 28 GHz,” Ceramic Transactions, Vol. 1(IIB), pp. 919-924 (1998).
    163.M. A. Janney, H. D. Kimrey, M. A. Schmidet and J. O. Kiggans, “Grain Growth in Microwave-Annealed Alumina,” Journal of the American Ceramic Society, Vol. 74, No. 4, pp. 1675-1681 (1991).
    164.M. A. Janney, C. L. Calhoun, and G. D. Kimery, “Microwave Sintering of Solid Oxide Fuel Cell Materials: I. Zirconia-8mol% Yttria,” Journal of the American Ceramic Society, Vol. 75, No. 2, pp.341-346 (1992).
    165.M. A. Janney, H. D. Kimrey, nd J. O. Kiggans, “Microwave Processing of Ceramics, Guidelines Used at the Oak Ridge National Laboratory,” in Microwave Processing of Material III, Materials Research Society Symposium Proceedings, Vol. 269, pp. 173-185 (1992).
    166.M. A. Janney, M. L. Jackson, and H. D. Kimery, “Microwave Sintering of ZrO2-12mol% CeO2,” in Microwaves: Theory and Application in Materials Processing II, Ceramic Transactions, Vol. 36, pp. 101-108 (1993).
    167.Y. V. Bykov, A. F. L. Goldenberg, and V. A. Flyagin, “The Possibilities of Material Processing by Intense Millimeter-wave Radiation,” in Microwave Processing of Materials II, Materials Research Society Symposium Proceedings, Vol. 189, pp. 41-42 (1990).
    168.T. N. Tiegs, J. O. Kiggans, Jr., and H. D. Kimrey. Jr., “Microwave Processing of Silicon Nitride,” in Microwave Processing of Miaterials II, Materials Research Society Symposium Proceedings, Vol. 189, pp. 267-272 (1990).
    169.Y. L. Tian and D. L Johnson, M. E. Brodwin, “Ultrafine Microstructure of Al2O3 Produced by Microwave Sintering,” in Ceramic Powder Science, II, Ceramic Transactions, Vol. 1(IIB), pp. 925-932 (1988).
    170.J. Samuels, J. R. Brandon, “Effect of Composition on the Enhanced Microwave Sintering of Alumina-based Ceramic Composites,” Journal of Materials Science, Vol. 27, pp. 3259-3265 (1992).
    171.J. Cheng, J. Qiu, J. Zhou and N. Ye, “Densification Kinetics of Alumina during Microwave Sintering,” in Microwave Processing of Materials III, Materials Research Society Symposium Proceedings, Vol. 269, pp. 323-328 (1992).
    172.J. D. Katz and R. D. Blake, V. M. Kenkre, “Microwave Enhanced Diffusion in Materials: Theory and Application in Materials Processing,” Ceramic Transactions, Vol. 21, pp. 95-105 (1991).
    173.J. H. Booske, R. F. Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solides,” Journal of Materials Research, Vol. 7, No. 2, pp. 495-501 (1992).
    174.J. H. Booske, R. F, Cooper and I. Dobson, “Mechanisms for Nonthermal Effects on Ionic Mobility during Microwave Processing of Crystalline Solides,” in Microwaves: Theory and Application Materials Processing, Ceramic Transactions, Vol. 32, pp. 192-285 (1991).
    175.K. I. Rybakov and V. E. Semenov, “Possibility of Plastic Performation of an Ionic Crystal due to the Nonthermal Influence of a High-Frequency Electric Field,” Physical Review B, Vol. 49, No. 1, pp. 64-68 (1994).
    176.K. I. Rybakov and V. E. Semenov, “A Non-thermal Vacancy-Drift Mechanism of Plastic Deformation of Grains in Ceramics during Microwave Sintering,” in Microwave Processing of Materials IV, Materials Research Society Symposium Proceedings, Vol. 347, pp. 661-66 (1994).
    177.R. E. Newham, S. J. Jang, M. Xu and F. Jones, “Fundamental Interaction Mechanizms between Microwave and Matterials,” Ceramic Transactions, Vol. 21, pp. 51-67 (1991).
    178.C. E. Holcombe and N. L. Dykes, "Importance of "casketing" for microwave sintering of materials," Journal of Materials Science Letters, Vol. 9, No. 4, pp. 425-428 (1990).
    179.C. E. Holcombe and N. L. Dykes, “Microwave Sintering of Titanium Diboride,” Journal of Materials Science, Vol. 26, pp. 3730-3738 (1991).
    180.D. M. Smyth, "Effects of dopants on the properties of metal oxides," Solid State Ionics, Vol. 129, No. 1, pp. 5-12.(2000).
    181.T. Goto, Y. Noguchi, M. Soga, and M. Miyayama, "Effects of Nd substitution on the polarization properties and electronic structures of bismuth titanate single crystals," Materials Research Bulletin, Vol. 40, No. 6, pp.1044-1051.(2005).
    182.P. Y. Chen, C. C. Chou, T. Y. Tseng and Haydn Chen, "Impedance Spectroscopic Study on Li-Doped BNKT Piezoelectric Ceramics," Ferroelectrics, Vol. 381, pp. 100-104 (2009).
    183.S. E. Park, S. J. Chung, and I. T. Kim, "Ferroic phase transitions in (Na1/2Bi1/2)TiO3 crystals," Journal of the American Ceramic Society, Vol. 79, No. 5, pp. 1290-1296 (1996).
    184.U. Robels, L. Schneider, and G. Arlt, "Domain wall trapping as a result of internal bias fields," Ferroelectrics, Vol. 133, pp. 223-228 (1992).
    185.S. Y. Chen, C. M. Wang, and S. Y. Cheng, "Role of perovskite PMN in phase formation and electrical properties of high dielectric Pb[(Mgx, Zn1-x)1/3Nb2/3]O3 ceramics," Materials Chemistry and Physics, Vol. 52, No. 3, pp. 207-213 (1998).
    186.A. Halliyal, U. Kumar, R. E. Newnham, and L. E. Cross, " Dielectric and ferroelectric properties of ceramics in the Pb(Zn1/3Nb2/3)O3 – BaTiO3 – PbTiO3 system," Journal of the American Ceramic Society, Vol. 70, No. 2, pp. 119-124 (1987).
    187.J. R. Belsick, A. Halliyal, U. Kumar, and R. E. Newnham, "Phase relations and dielectric properties of ceramics in the system Pb(Zn1/3Nb2/3)O3 – SrTiO3 – PbTiO3," American Ceramic Society Bulletin, Vol. 66, No. 4, pp. 664-667 (1987).
    188.T. Takenaka, and K. Sakata, "Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3 - based ceramics,". Ferroelectrics, Vol. 95, pp. 153-156 (1989).
    189.C. L. Li and C. C. Chou, "Preparation of PZN-based ceramics using a sequential mixing columbite method," Integrated Ferroelectrics, Vol. 55, pp. 955-963 (2003).
    190.C. L. Li and C. C. Chou, "Microstructures and electrical properties of lead zinc niobate-lead titanate-lead zirconate ceramics using microwave sintering," Journal of the European Ceramic Society, Vol. 26, No. 7, pp. 1237-1244 (2006).
    191.B.-M. Song, D.-Y. Kim, S.-i. Shirasaki, and H. Yamamura, "Effect of excess PbO on the densification of PLZT ceramics," Journal of the American Ceramic Society, Vol. 72, No. 5, pp. 833-836 (1989).
    192.H. M. Jang and K.-M. Lee, "Stabilization of Pb(Zn,Mg)1/3Nb2/3 O3 – 0.045PbTiO3 perovskite phase and dielectric properties of ceramics prepared by excess constituent oxides," Journal of Materials Research, Vol. 9, No. 10, pp. 2634-2644 (1994).
    193.M. Villegas, J. F. Fernandez, A. C. Caballero, Z. Samardija, G. Drazic, and M. Kosec, "Effects of PbO excess in Pb(Mg1/3Nb2/3)O3 – PbTiO3 ceramics: Part II. Microstructure development," Journal of Materials Research, Vol. 14, No. 3, pp. 898-905 (1999).
    194.J. E. Bauerle, "Study of solid electrolyte polarization by a complex admittance method," Journal of Physics and Chemistry of Solids, Vol. 30, No. 12, pp. 2657-2670 (1969).
    195.E. Schouler, G. Girond, and M. Kleitz, J. Chem. Phys., Vol. 70, pp. 1309 (1973).
    196.R. Gerhardt, "Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity," Journal of Physics and Chemistry of Solids, Vol. 55, No. 12, pp. 1491-1506 (1994).
    197.D. Y. Wang and A. S. Nowick, "The "grain-boundary effect" in doped ceria solid electrolytes," Journal of Solid State Chemistry, Vol. 35, No. 3, pp. 325-333 (1980).
    198.C. Tian and S. W. Chan, "Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3," Solid State Ionics, Vol. 134(1-2), pp. 89-102 (2000).
    199.R. Gerhardt, and A. S. Nowick, "Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements," Journal of the American Ceramic Society, Vol. 69, pp. 641-646 (1986).
    200.D. E. Clark and W. H. Sutton, "Microwave processing of materials," Annual Review of Materials Science, Vol. 26, No. 1, PP. 299-331 (1996).
    201.D. E. Clark, "Microwave processing: present status and future promise," Proceedings of the Ceramic Engineering and Science Proceedings. Cocoa Beach, FL, USA, pp. 3-21 (1993).
    202.R. K. Singh, J. Viatella, Z. Fathi, and D. E. Clark, "Thermal Analysis of Microwave Processing of Ceramics," Ceramic transaction, Vol. 36, pp. 247-255 (1993).
    203.M. A. Janney, and H. D. Kimeey, Diffusion-controlled processes in microwave fired oxide ceramics. In Microwave Processing of Materials II, Materials Research Society Symposium Proceedings, Vol. 189, pp. 215-227 (1991).
    204.D. S. Paik, S. E. Park, S. Wada, S. F. Liu, and T. R. Shrout, "E-field induced phase transition in <001> oriented rhombohedral 0.92 Pb(Zn1/3Nb2/3)O3 - 0.08PbTiO3 crystals," Journal of Applied Physics, Vol. 85, No. 2, pp. 1080-1083 (1999).
    205.S. F. Liu, S. E. Park, T. R. Shrout, and L. E. Cross, "Electric field dependence of piezoelectric properties for rhombohedral 0.955 Pb(Zn1/3Nb2/3)O3- 0.045PbTiO3 single crystals," Journal of Applied Physics, Vol. 85, No. 5, pp. 2810-2814 (1999).
    206.G. Arlt, "Review Twinning in ferroelectric and ferroelastic ceramics: stress relief," Journal of Materials Science, Vol. 25, pp. 2655-2666 (1990).
    207.M. Marvan, J. Erhart, and J. Fousek, "Role of soft dielectric energy in poling crystals or ceramics and in domain average engineering," Applied Physics Letters, Vol. 84, No. 5, pp. 768-770 (2004).
    208.K. Fujimoto and Y. Cho, "High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3," Applied Physics Letters, Vol. 83, No. 25, pp. 5265-5267 (2003).
    209.M. H. Lente, A. Picinin, J. P. Rino, andJ. A. Eiras, "90˚ domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process," Journal of Applied Physics, Vol. 95, No. 5, pp. 2646-2653.2004.

    QR CODE