簡易檢索 / 詳目顯示

研究生: 彭順先
Shun-Xian Peng
論文名稱: 聚合物駐極體之側鏈共軛長度對隧穿增強型光誘導有機電晶體記憶體之影響
Influence of Pendant Conjugation Length of Polymer Electret on Tunneling-Boosted Transistor Photomemory
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 戴龑
Yian Tai
李文亞
Wen-Ya Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 108
中文關鍵詞: 有機電晶體記憶體非揮發性記憶體能階穿隧效應表面缺陷
外文關鍵詞: organic transistor memory, nonvolatile memory, energy level, tunneling effect, surface defects
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,有機非揮發性晶體管記憶裝置已經得到廣泛的發展。根據不同概念,學術界對電荷儲存層進行了各種結構設計。然而,在有機材料中,目前還沒有針對隧道層及其對電晶體記憶裝置穿隧效應的影響進行研究。在本論文中,我們介紹了一種基於隧道效應的新型光誘導非揮發性有機電晶體記憶體,SiO2 和並五苯之間的超薄有機聚合物駐極體被用作隧道層,以實現新型有機電晶體記憶體。本研究主要集中在利用不同能隙的材料,具體而言是具有不同共軛長度的共軛聚合物,如聚苯乙烯(PS)、聚(2-乙烯基萘)(P2VN)和聚(2-乙烯基蒽)(P2VAn),作為非揮發性晶體管記憶裝置的穿隧層。目的是通過改變側鏈共軛長度來控制具有相似化學性質的能帶隙,以觀察隧道效應對非易失性有機存儲器件的影響。在穿隧層於15奈米內時,可以通過隧穿增強的超薄聚合物駐極體實現寫入速度小於1秒和驅動電壓低於20伏。在讀取電壓=0V的條件下,電荷保持時間超過104秒,電流開關比超過106。再通過全面的研究之後,我們成功地探索了穿隧層能隙對這些電晶體記憶體中隧道效應的影響,低帶隙材料有利於更快的寫入速度和更低的驅動力,而高帶隙材料有利於保留捕獲的電荷。此外,通過在隧道層中混合具有高和低能隙的材料PS和P2VAn,我們能夠為非揮發性晶體管記憶裝置建立更有利的條件,例如在1秒的光輔助寫入下具有30伏以上的記憶窗口。為這一領域的進一步發展開闢了可能性。


    Recently, the organic non-volatile transistor memory device has been widely developed, varied structure designs for charge storage layer based on different concepts, however, there is no such research focus on the tunneling layer and its influence on the tunneling effect of transistor memory device in organic material. In this thesis, an ultra-thin tunneling layer between SiO2 and Pentacene was employed in a conventional OFET device. The study primarily focuses on the utilization of controlled bandgap materials, specifically conjugated polymers with varying conjugation lengths, such as Polystyrene (PS), Poly(2-vinyl naphthalene) (P2VN), and Poly(2-vinyl anthracene) (PVAn), as the tunneling layer in nonvolatile transistor memory devices. The objective is to control the energy bandgap with similar chemical properties by varied side chain conjugation lengths to observate the influence of .tunneling effect on non-volatile organic memory devices. Writing speeds less than 1 second and driving voltage below 20 volts can be achieved with tunneling-boosted ultra-thin polymer electret within 15 nm. Retention time is over 104 s with ON/OFF ratio 106 at Vg.read = 0V. Through comprehensive investigations, we successfully explored the influence of the tunneling layer's bandgap on the tunneling effect within these memory devices, low bandgap material is favored to faster writing speed and lower driving force, with high bandgap material is to preserve the trapped charges. Furthermore, by blending materials with high and low bandgaps in the tunneling layer, we were able to establish more advantageous conditions for nonvolatile transistor memory devices, for instance, having memory window over 30V with 1 s photo-assist writing. Opening up possibilities for further advancements in this field.

    摘要 I Abstract II Figure Caption V Chapter 1 Introduction 1 1.1 Development of Memory Devices 1 1.2 Comparison of Photoelectric Properties of Organic Semiconductors and Inorganic Semiconductors 4 1.2.1 Structural Differences 5 1.2.2 Exciton Differences 5 1.3 Future Prospects of Organic Memory Devices 7 Chapter 2 Basic Theory and Literature Review 8 2.1 Tunneling Effect in Non-volatile Organic Memory 8 2.1.1 Tunneling Mechanisms 8 2.2 Working Principle of OTFT Memory Devices and its Crucial Parameter 12 2.3 Floating Gate Organic Thin Film Transistor Memory 17 2.4 Polymer Electret Based Organic Transistor Memory 21 2.5 Organic Phototransistor Memory 29 2.5.1 Photomemory Based on Photo-writing 30 2.5.2 Photomemory Based on Photo-recovery 31 2.6 Photomemory Based on Photo-assisted programming 33 Chapter 3 Experiment Section 39 3.1 Device Fabrication 39 3.2 Characterizations 41 Chapter 4 Result and Discussion 42 4.1 Morphology and Polarity Characterization 42 4.1.1 Atomic Force Microscope (AFM) 42 4.1.2 Water Contact Angle 44 4.1.3 Dielectric Constant 45 4.2 Energy Level Determination 47 4.2.1 Ultraviolet–Visible Spectroscopy (UV-Vis) 47 4.2.2 Cyclic Voltammetry (CV) 49 4.3 Electrical Characteristic 52 4.4 Photo-Assist Programming Mechanism 57 4.5 Influence of Tunneling Effect in Photoinduced Organic Transistor Memory Devices 65 4.5.1 Influence of Thickness of Tunneling layer 65 4.5.2 Influence of Bandgap of Tunneling layer 66 4.6 Tunneling Layer with PS/P2VAn Blending. 77 Chapter 5 Conclusion & Future Work 86

    (1) Ghoneim, M. T.; Hussain, M. M. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics. Electron. 2015, 4 (3), 424-479.
    (2) Chu, C. W.; Ouyang, J.; Tseng, J. H.; Yang, Y. Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices. Adv. Mater. 2005, 17 (11), 1440-1443.
    (3) Möller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R. A Polymer/Semiconductor Write-Once Read-Many-Times Memory. Nature 2003, 426 (6963), 166-169.
    (4) Schroeder, R.; Majewski, L. A.; Grell, M. All‐Organic Permanent Memory Transistor Using an Amorphous, Spin‐Cast Ferroelectric‐Like Gate Insulator. Adv. Mater. 2004, 16 (7), 633-636.
    (5) Sirringhaus, H.; Kawase, T.; Friend, R. High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits. MRS Bull. 2001, 26 (7), 539-543.
    (6) Crone, B.; Dodabalapur, A.; Lin, Y.-Y.; Filas, R.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H.; Li, W. Large-Scale Complementary Integrated Circuits Based on Organic Transistors. Nature 2000, 403 (6769), 521-523.
    (7) Chiang, Y.-C.; Yang, W.-C.; Hung, C.-C.; Ercan, E.; Chiu, Y.-C.; Lin, Y.-C.; Chen, W.-C. Fully Photoswitchable Phototransistor Memory Comprising Perovskite Quantum Dot-Based Hybrid Nanocomposites as a Photoresponsive Floating Gate. ACS Appl. Mater. Interfaces 2022.
    (8) Shih, C. C.; Chiu, Y. C.; Lee, W. Y.; Chen, J. Y.; Chen, W. C. Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Adv. Funct. Mater. 2015, 25 (10), 1511-1519.
    (9) Baeg, K. J.; Noh, Y. Y.; Sirringhaus, H.; Kim, D. Y. Controllable Shifts in Threshold Voltage of Top‐Gate Polymer Field‐Effect Transistors for Applications in Organic Nano Floating Gate Memory. Adv. Funct. Mater. 2010, 20 (2), 224-230.
    (10) Naber, R. C.; Tanase, C.; Blom, P. W.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; De Leeuw, D. M. High-Performance Solution-Processed Polymer Ferroelectric Field-Effect Transistors. Nat. Mater. 2005, 4 (3), 243-248.
    (11) Chen, C. H.; Wang, Y.; Tatsumi, H.; Michinobu, T.; Chang, S. W.; Chiu, Y. C.; Liou, G. S. Novel Photoinduced Recovery of OFET Memories Based on Ambipolar Polymer Electret for Photorecorder Application. Adv. Funct. Mater. 2019, 29 (40), 1902991.
    (12) Ercan, E.; Chen, J.-Y.; Shih, C.-C.; Chueh, C.-C.; Chen, W.-C. Influence of Polymeric Electrets on the Performance of Derived Hybrid Perovskite-Based Photo-Memory Devices. Nanoscale 2018, 10 (39), 18869-18877.
    (13) Chou, Y.-H.; Chang, H.-C.; Liu, C.-L.; Chen, W.-C. Polymeric Charge Storage Electrets for Non-Volatile Organic Field Effect Transistor Memory Devices. Polym. Chem. 2015, 6 (3), 341-352.
    (14) Chiu, Y. C.; Otsuka, I.; Halila, S.; Borsali, R.; Chen, W. C. High‐Performance Nonvolatile Transistor Memories of Pentacence Using the Green Electrets of Sugar‐Based Block Copolymers and Their Supramolecules. Adv. Funct. Mater. 2014, 24 (27), 4240-4249.
    (15) Chiu, Y.-C.; Chen, T.-Y.; Chueh, C.-C.; Chang, H.-Y.; Sugiyama, K.; Sheng, Y.-J.; Hirao, A.; Chen, W.-C. High Performance Nonvolatile Transistor Memories of Pentacene Using the Electrets of Star-Branched P-Type Polymers and Their Donor–Acceptor Blends. J. Mater. Chem. C 2014, 2 (8), 1436-1446.
    (16) Hsu, J.-C.; Lee, W.-Y.; Wu, H.-C.; Sugiyama, K.; Hirao, A.; Chen, W.-C. Nonvolatile Memory Based on Pentacene Organic Field-Effect Transistors with Polystyrene Para-Substituted Oligofluorene Pendent Moieties as Polymer Electrets. J. Mater. Chem. 2012, 22 (12), 5820-5827.
    (17) Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Lim, B.; Kim, D. Y. Polarity Effects of Polymer Gate Electrets on Non‐Volatile Organic Field‐Effect Transistor Memory. Adv. Funct. Mater. 2008, 18 (22), 3678-3685.
    (18) Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Lee, H.; Kim, D. Y. Organic Non‐Volatile Memory Based on Pentacene Field‐Effect Transistors Using a Polymeric Gate Electret. Adv. Mater. 2006, 18 (23), 3179-3183.
    (19) Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 2013, 25 (42), 5997-6038.
    (20) Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors. J. Am. Chem. Soc. 2013, 135 (18), 6724-6746.
    (21) Kumar, B.; Kaushik, B. K.; Negi, Y. S. Organic Thin Film Transistors: Structures, Models, Materials, Fabrication, and Applications: A Review. Polym. Rev. 2014, 54 (1), 33-111.
    (22) Zhu, Z.; Guo, Y.; Liu, Y. Application of Organic Field-Effect Transistors in Memory. Mater. Chem. Front. 2020, 4 (10), 2845-2862.
    (23) Shi, J.; Jie, J.; Deng, W.; Luo, G.; Fang, X.; Xiao, Y.; Zhang, Y.; Zhang, X.; Zhang, X. A Fully Solution‐Printed Photosynaptic Transistor Array with Ultralow Energy Consumption for Artificial‐Vision Neural Networks. Adv. Mater. 2022, 34 (18), 2200380.
    (24) Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25 (31), 4267-4295.
    (25) Peumans, P.; Yakimov, A.; Forrest, S. R. Small Molecular Weight Organic Thin-Film Photodetectors and Solar Cells. J. Appl. Phys. 2003, 93 (7), 3693-3723.
    (26) Liu, Z.; Parvez, K.; Li, R.; Dong, R.; Feng, X.; Müllen, K. Transparent Conductive Electrodes from Graphene/PEDOT: PSS Hybrid Inks for Ultrathin Organic Photodetectors. Adv. Mater. 2015, 27 (4), 669-675.
    (27) Sednev, M. V.; Belov, V. N.; Hell, S. W. Fluorescent Dyes with Large Stokes Shifts for Super-Resolution Optical Microscopy of Biological Objects: A Review. Methods Appl. Fluoresc. 2015, 3 (4), 042004.
    (28) Gao, Z.; Hao, Y.; Zheng, M.; Chen, Y. A Fluorescent Dye with Large Stokes Shift and High Stability: Synthesis and Application to Live Cell Imaging. RSC Adv. 2017, 7 (13), 7604-7609.
    (29) Aswal, D.; Lenfant, S.; Guerin, D.; Yakhmi, J.; Vuillaume, D. Self Assembled Monolayers on Silicon for Molecular Electronics. Anal. Chim. Acta 2006, 568 (1-2), 84-108.
    (30) Lee, T.; Wang, W.; Reed, M. Mechanism of Electron Conduction in Self‐Assembled Alkanethiol Monolayer Devices. Ann. N. Y. Acad. Sci. 2003, 1006 (1), 21-35.
    (31) Wang, G.; Kim, T.-W.; Jo, G.; Lee, T. Enhancement of Field Emission Transport by Molecular Tilt Configuration in Metal− Molecule− Metal Junctions. J. Am. Chem. Soc. 2009, 131 (16), 5980-5985.
    (32) Zhou, C.; Deshpande, M.; Reed, M.; Jones, L.; Tour, J. Nanoscale Metal/Self-Assembled Monolayer/Metal Heterostructures. Appl. Phys. Lett. 1997, 71 (5), 611-613.
    (33) Tran, E.; Grave, C.; Whitesides, G. M.; Rampi, M. A. Controlling the Electron Transfer Mechanism in Metal–Molecules–Metal Junctions. Electrochim. Acta 2005, 50 (25-26), 4850-4856.
    (34) Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V. B.; Frisbie, C. D. Comparison of Electronic Transport Measurements on Organic Molecules. Adv. Mater. 2003, 15 (22), 1881-1890.
    (35) Prakoso, S. P.; Chen, M.-N.; Chiu, Y.-C. A Brief Review on Device Operations and Working Mechanisms of Organic Transistor Photomemories. J. Mater. Chem. C 2022.
    (36) Katz, H. E.; Hong, X. M.; Dodabalapur, A.; Sarpeshkar, R. Organic Field-Effect Transistors with Polarizable Gate Insulators. J. Appl. Phys. 2002, 91 (3), 1572-1576.
    (37) Liu, Z.; Xue, F.; Su, Y.; Lvov, Y. M.; Varahramyan, K. Memory Effect of a Polymer Thin-Film Transistor with Self-Assembled Gold Nanoparticles in the Gate Dielectric. IEEE Trans. Nanotechnol. 2006, 5 (4), 379-384.
    (38) Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C.-W.; Ho, P. K.-H.; Sirringhaus, H.; Friend, R. H. General Observation of N-Type Field-Effect Behaviour in Organic Semiconductors. Nature 2005, 434 (7030), 194-199.
    (39) Chiu, Y.-C.; Liu, C.-L.; Lee, W.-Y.; Chen, Y.; Kakuchi, T.; Chen, W.-C. Multilevel Nonvolatile Transistor Memories Using a Star-Shaped Poly ((4-Diphenylamino) Benzyl Methacrylate) Gate Electret. NPG Asia Mater. 2013, 5 (2), e35-e35.
    (40) Bredas, J.-L. Relationship between Band Gap and Bond Length Alternation in Organic Conjugated Polymers. J. Chem. Phys. 1985, 82 (8), 3808-3811.
    (41) Chou, Y.-H.; Yen, H.-J.; Tsai, C.-L.; Lee, W.-Y.; Liou, G.-S.; Chen, W.-C. Nonvolatile Transistor Memory Devices Using High Dielectric Constant Polyimide Electrets. J. Mater. Chem. C 2013, 1 (19), 3235-3243.
    (42) Otsuka, I.; Tallegas, S.; Sakai, Y.; Rochas, C.; Halila, S.; Fort, S.; Bsiesy, A.; Baron, T.; Borsali, R. Control of 10 nm Scale Cylinder Orientation in Self-Organized Sugar-Based Block Copolymer Thin Films. Nanoscale 2013, 5 (7), 2637-2641.
    (43) Chen, J. Y.; Chiu, Y. C.; Li, Y. T.; Chueh, C. C.; Chen, W. C. Nonvolatile Perovskite‐Based Photomemory with a Multilevel Memory Behavior. Adv. Mater. 2017, 29 (33), 1702217.
    (44) Tisdale, W. A.; Williams, K. J.; Timp, B. A.; Norris, D. J.; Aydil, E. S.; Zhu, X.-Y. Hot-Electron Transfer from Semiconductor Nanocrystals. Science 2010, 328 (5985), 1543-1547.
    (45) Chen, M.-N.; Chang, S.-W.; Prakoso, S. P.; Li, Y.-T.; Chen, K.-L.; Chiu, Y.-C. Unveiling the Photoinduced Recovery Mystery in Conjugated Polymer-Based Transistor Memory. ACS Appl. Mater. Interfaces 2021, 13 (37), 44656-44662.
    (46) Shao, Z.; Jiang, T.; Zhang, X.; Zhang, X.; Wu, X.; Xia, F.; Xiong, S.; Lee, S.-T.; Jie, J. Memory Phototransistors Based on Exponential-Association Photoelectric Conversion Law. Nat. Commun. 2019, 10 (1), 1294.
    (47) Yang, Y. F.; Chiang, Y. C.; Lin, Y. C.; Li, G. S.; Hung, C. C.; Chen, W. C. Highly Efficient Photo‐Induced Recovery Conferred Using Charge‐Transfer Supramolecular Electrets in Bistable Photonic Transistor Memory. Adv. Funct. Mater. 2021, 31 (40), 2102174.
    (48) DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J. Molecular Self‐Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin‐Film Transistor Applications. Adv. Mater. 2009, 21 (14‐15), 1407-1433.
    (49) Wei, Z. Y.; Prakoso, S. P.; Li, Y. T.; Chiu, Y. C. Tunneling‐Effect‐Boosted Interfacial Charge Trapping toward Photo‐Organic Transistor Memory. Adv. Electron. Mater. 2022, 8 (7), 2101349.
    (50) Tran, E.; Duati, M.; Ferri, V.; Muellen, K.; Zharnikov, M.; Whitesides, G. M.; Rampi, M. A. Experimental Approaches for Controlling Current Flowing through Metal–Molecule–Metal Junctions. Adv. Mater. 2006, 18 (10), 1323-1328.
    (51) Simmons, J. G. Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34 (9), 2581-2590.
    (52) Zhen, L.; Guan, W.; Shang, L.; Liu, M.; Liu, G. Organic Thin-Film Transistor Memory with Gold Nanocrystals Embedded in Polyimide Gate Dielectric. J. Phys. D 2008, 41 (13), 135111.
    (53) Guo, Y.; Di, C. a.; Ye, S.; Sun, X.; Zheng, J.; Wen, Y.; Wu, W.; Yu, G.; Liu, Y. Multibit Storage of Organic Thin‐Film Field‐Effect Transistors. Adv. Mater. 2009, 21 (19), 1954-1959.
    (54) Ton-That, C.; Shard, A.; Bradley, R. Thickness of Spin-Cast Polymer Thin Films Determined by Angle-Resolved XPS and AFM Tip-Scratch Methods. Langmuir 2000, 16 (5), 2281-2284.
    (55) Fritz, S. E.; Kelley, T. W.; Frisbie, C. D. Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer. The Journal of Physical Chemistry B 2005, 109 (21), 10574-10577.
    (56) Steudel, S.; De Vusser, S.; De Jonge, S.; Janssen, D.; Verlaak, S.; Genoe, J.; Heremans, P. Influence of the Dielectric Roughness on the Performance of Pentacene Transistors. Appl. Phys. Lett. 2004, 85 (19), 4400-4402.
    (57) Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. ACS Publications: 2018; Vol. 9, pp 6814-6817.
    (58) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem Educ. 2018, 95 (2), 197-206.
    (59) Yi, M.; Shu, J.; Wang, Y.; Ling, H.; Song, C.; Li, W.; Xie, L.; Huang, W. The Effect of Porous Structure of PMMA Tunneling Dielectric Layer on The Performance of Nonvolatile Floating-Gate Organic Field-Effect Transistor Memory Devices. Org. Electron. 2016, 33, 95-101.
    (60) Manhart, J.; Ayalur-Karunakaran, S.; Radl, S.; Oesterreicher, A.; Moser, A.; Ganser, C.; Teichert, C.; Pinter, G.; Kern, W.; Griesser, T. Design and Application of Photo-Reversible Elastomer Networks by Using the [4πs+ 4πs] cycloaddition Reaction of Pendant Anthracene Groups. Polymer 2016, 102, 10-20.
    (61) Rao, A.; Wilson, M. W.; Hodgkiss, J. M.; Albert-Seifried, S.; Bassler, H.; Friend, R. H. Exciton Fission and Charge Generation Via Triplet Excitons in Pentacene/C60 Bilayers. J. Am. Chem. Soc. 2010, 132 (36), 12698-12703.
    (62) Wilson, M. W.; Rao, A.; Clark, J.; Kumar, R. S. S.; Brida, D.; Cerullo, G.; Friend, R. H. Ultrafast Dynamics of Exciton Fission in Polycrystalline Pentacene. J. Am. Chem. Soc. 2011, 133 (31), 11830-11833.
    (63) Noh, Y.-Y.; Kim, D.-Y.; Yase, K. Highly Sensitive Thin-Film Organic Phototransistors: Effect of Wavelength of Light Source on Device Performance. J. Appl. Phys. 2005, 98 (7), 074505.
    (64) Wang, G.; Kim, T.-W.; Jang, Y. H.; Lee, T. Effects of Metal− Molecule Contact and Molecular Structure on Molecular Electronic Conduction in Nonresonant Tunneling Regime: Alkyl Versus Conjugated Molecules. J. Phys. Chem. C 2008, 112 (33), 13010-13016.
    (65) Cui, X.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O.; Moore, A.; Moore, T.; Gust, D.; Harris, G.; Lindsay, S. Reproducible Measurement of Single-Molecule Conductivity. Science 2001, 294 (5542), 571-574.
    (66) Likharev, K. K. Layered Tunnel Barriers for Nonvolatile Memory Devices. Appl. Phys. Lett. 1998, 73 (15), 2137-2139.
    (67) Wang, G.; Kim, T.-W.; Lee, H.; Lee, T. Influence of Metal-Molecule Contacts on Decay Coefficients and Specific Contact Resistances in Molecular Junctions. Phys. Rev. B 2007, 76 (20), 205320.

    無法下載圖示 全文公開日期 2028/08/25 (校內網路)
    全文公開日期 2033/08/25 (校外網路)
    全文公開日期 2033/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE