簡易檢索 / 詳目顯示

研究生: 林玠模
Jie-Mo Lin
論文名稱: 以多層結構建構高效率CuInS2量子點敏化太陽能電池
Enhanced Photovoltaic Performance of CuInS2 Quantum dot–sensitized Solar Cells Based on Multilayered Architecture
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江志強
Jyh-Chiang Jiang
何郡軒
Jinn-Hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 130
中文關鍵詞: 量子點敏化太陽能電池量子點CuInS2緩衝層共敏化鈍化層連續離子層吸附反應法
外文關鍵詞: Quantum dot-Sensitized Solar Cell (QDSSC), Quantum dot, CuInS2, Buffer layer, Co-sensitization, Passivation layer, SILAR
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用連續離子層吸附反應法(Successive Ionic Layer Adsorption and Reaction, SILAR)於TiO2表面沉積不同類型的量子點,探討量子點異質結構間的材料性質與光電特性對電荷傳輸的影響,以多層敏化結構來提升CuInS2量子點敏化太陽能電池(Quantum dot-Sensitized Solar Cell, QDSSC)的整體光電轉換效率。本實驗以網印法(Screen printing)將TiO2塗佈於導電玻璃作為吸附量子點的光電極(Photoelectrode),並在沉積CuInS2前,利用不同類型的量子點作為緩衝層來修飾TiO2,以減少TiO2表面缺陷。透過對元件的光電特性分析,得知In2Se3能有效地將CuInS2產生的激發電子注入TiO2,增加元件的光電流。接著我們結合與CuInS2吸光範圍不同的量子點CdS及CdSe作為共敏化劑(Hyper-sensitizer),來拓展元件的吸光範圍,提升對入射光的捕獲率,因量子點間的能隙差異產生的共敏化效應(Co-sensitization),使元件的光電流大幅成長。其中以CdSe為共化劑的元件,效率提升百分比超過130%。最後,為了減少漏電流對效率的影響,我們使用寬能隙量子點ZnS與ZnSe作為鈍化層,包覆於光電極表面,以防止內層量子點與polysulfide(S^(2-)/S_x^(2-))電解液直接接觸,減少激發電子與氧化還原對發生再結合,敏化結構為In2Se3/CuInS2/CdSe/ZnSe的元件,其開路電壓Voc為575 mV,FF為46.5%,電流密度Jsc可達17.0 mA cm-2,整體光電轉換效率高達4.55%。


    In this study, various types of quantum dots were deposited on the surfaces of TiO2 by using the successive ionic layer adsorption and reaction (SILAR) process. We investigated the effect of heterostructure interface on the charge transfer in order to fabricate efficient CuInS2 quantum dot-sensitized solar cells (QDSSC) based on multilayered architecture. Firstly, the photoelectrode was prepared by screen printing of a TiO2 paste on the FTO glass. We pretreated the surfaces of bare TiO2 film with different types of quantum dots as buffer layers to reduce the density of electron trap states. The Jsc of CuInS2-based QDSSC using In2Se3 as the buffer layer benefited from the effective injection of excited electrons at the interfacial region between TiO2 and CuInS2. Then, to further improve the light harvesting efficiency of CuInS2-based QDSSC coating In2Se3 as the buffer layer, we combined CdS or CdSe as the hyper-sensitizers. As a result, the co-sensitization of CuInS2 and CdSe significantly raised the Jsc and FF of the photovoltaic device, yielding a 130% increase in overall efficiency. Finally, the photoelectrode was passivated with the wide band gap semiconductor, ZnS or ZnSe, to prevent the electron leakage from QDs to the polysulfide electrolyte. The QDSSC consisting of In2Se3/CuInS2/CdSe/ZnSe multilayered structure exhibited the best performance with a conversion efficiency of 4.55%.

    摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VII 表目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 太陽能電池發展現況 3 1.2.1 矽晶型太陽能電池 3 1.2.2 薄膜太陽能電池 4 1.2.3 染料敏化太陽能電池 4 1.3 研究目的與動機 4 第2章 文獻回顧 6 2.1 染料敏化太陽能電池(Dye-Sensitized Solar Cell, DSSC) 6 2.1.1 DSSC起源及發展 6 2.1.2 DSSC之工作原理 7 2.1.3 DSSC組件簡介 10 2.2 量子點敏化太陽能電池(Quantum dot-Sensitized Solar Cell, QDSSC) 18 2.2.1 QDSSC起源 18 2.2.2 半導體奈米材料「量子點」 19 2.2.3 量子點特性介紹 22 2.2.4 QDSSC工作原理 26 2.3 QDSSC製程與發展 34 2.3.1 QDSSC製備 34 2.3.2 QDSSC近期文獻摘要 42 第3章 實驗製程 43 3.1 實驗藥品與器材 43 3.2 整體製程概觀 46 3.3 FTO與ITO玻璃基板清洗 47 3.4 光電極之二氧化鈦薄膜製備 47 3.5 敏化劑的合成與吸附 49 3.5.1 緩衝層(Buffer layer)合成 49 3.5.2 敏化劑(Sensitizer)CuInS2合成 51 3.5.3 共敏化劑(Hyper-sensitizer)合成 52 3.5.4 鈍化層(Passivation layer)合成 54 3.6 電解液製備 55 3.7 背電極製備 56 3.8 QDSSCs元件封裝 56 第4章 結構分析與元件檢測 57 4.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 57 4.2 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 60 4.3 X射線繞射分析儀(X-ray Diffraction, XRD) 62 4.4 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 64 4.5 紫外光-可見光吸收光譜儀(UV-vis Absorption Spectroscopy, UV-vis) 66 4.6 太陽電池光電轉換效率分析 68 4.6.1 光電轉換效率分析 68 4.6.2 入射光電轉換效率分析(Incident Photon to Current Conversion Efficiency, IPCE) 71 4.8 電化學阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 72 第5章 結果與討論 75 5.1 二氧化鈦薄膜分析 75 5.2 緩衝層光電轉換效率與化學組成分析 78 5.2.1 緩衝層光電轉換效率分析 78 5.2.2 In2Se3薄膜化學分析 81 5.3 異質結構的共敏化效應 83 5.3.1 異質結構敏化的光電轉換效率分析 83 5.3.2 CuInS2/CdS與CuInS2/CdSe共敏化效應分析 85 5.3.3 CuInS2/CdSe共敏化結構化學分析 92 5.3.4 CuInS2/CdS與CuInS2/CdSe共敏化結構的結構分析 95 5.4 鈍化層效應分析 97 5.4.1 鈍化層結構對光電轉換效率影響分析 97 5.4.2 CuInS2/CdSe/ZnSe結構的化學分析 101 5.4.3 元件電化學阻抗分析 104 第6章 結論與未來展望 110 第7章 參考文獻 111

    1. Annual Energy Review 2011, 2012.
    2. M. Grätzel, Nature, 2000, 403, 363-363.
    3. M. K. Han, P. Sung and W. A. Anderson, Electron Device Lett., IEEE, 1982, 3, 121-124.
    4. M. K. Han, W. A. Anderson, Y. Onuma, P. Sung, R. Lahri and J. Coleman, Electron Device Lett., IEEE, 1981, 2, 198-200.
    5. E. Centurioni and D. Iencinella, Electron Device Lett., IEEE, 2003, 24, 177-179.
    6. D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla and A. N. Tiwari, J. Appl. Phys., 2005, 97, 084908-084908.
    7. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402-403.
    8. B. O'Regan and M. Grätzel, Nature, 1991, 353, 737-740.
    9. W. Yue, S. Han, R. Peng, W. Shen, H. Geng, F. Wu, S. Tao and M. Wang, J. Mater. Chem., 2010, 20, 7570-7578.
    10. K.-T. Kuo, D.-M. Liu, S.-Y. Chen and C.-C. Lin, J. Mater. Chem., 2009, 19, 6780-6788.
    11. X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo and Q. Meng, J. Mater. Chem., 2011, 21, 15903-15905.
    12. T.-L. Li, Y.-L. Lee and H. Teng, Energy Environ. Sci., 2012, 5, 5315-5324.
    13. H. Yoshitake, T. Sugihara and T. Tatsumi, Chem. Mater., 2002, 14, 1023-1029.
    14. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, J. Am. Chem. Soc., 2005, 127, 16835-16847.
    15. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629-634.
    16. J. R. Durrant and M. Grätzel, In Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Imperial College Press: London, 2008.
    17. B. C. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling and J. R. Durrant, J. Phys. Chem. B, 2006, 110, 17155-17160.
    18. A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon and J. R. Durrant, J. Phys. Chem. B, 2005, 109, 12525-12533.
    19. R. G. Gordon, MRS Bull., 2000, 25, 52-57.
    20. J. Desilvestro, M. Grätzel, L. Kavan, J. Moser and J. Augustynski, J. Am. Chem. Soc., 1985, 107, 2988-2990.
    21. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss and G. Oskam, Nanotechnology, 2008, 19, 145605.
    22. Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno and M. Grätzel, ZPC, 2007, 221, 319-327.
    23. Y. Xu and M. A. A. Schoonen, AmMin, 2000, 85, 543-556.
    24. 張正華, 李陵嵐, 葉楚平, 楊平華 and 馬振基, in 有機與塑膠太陽能電池, ed. 龐君豪, 五南圖書出版股份有限公司, 台灣, Editon edn., 2007.
    25. S.-W. Rhee and W. Kwon, Korean J. Chem. Eng., 2011, 28, 1481-1494.
    26. S. S. Lo, T. Mirkovic, C.-H. Chuang, C. Burda and G. D. Scholes, Adv. Mater., 2011, 23, 180-197.
    27. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Sol. Energy Mater. Sol. Cells, 2001, 70, 85-101.
    28. S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo and D.-Y. Kim, Electrochim. Acta, 2006, 51, 3814-3819.
    29. G. Wang, R. Lin, Y. Lin, X. Li, X. Zhou and X. Xiao, Electrochim. Acta, 2005, 50, 5546-5552.
    30. N. Papageorgiou, W. F. Maier and M. Grätzel, JElS, 1997, 144, 876-884.
    31. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, J. Electroanal. Chem., 2004, 570, 257-263.
    32. A. M. K. Dagamseh, B. Vet, F. D. Tichelaar, P. Sutta and M. Zeman, Thin Solid Films, 2008, 516, 7844-7850.
    33. K. Okada, H. Matsui, T. Kawashima, T. Ezure and N. Tanabe, J. Photochem. Photobiol. A: Chem., 2004, 164, 193-198.
    34. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-i. Nakamura and K. Murata, Sol. Energy Mater. Sol. Cells, 2003, 79, 459-469.
    35. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Sol. Energy Mater. Sol. Cells, 2008, 92, 814-818.
    36. E. Ramasamy, W. J. Lee, D. Y. Lee and J. S. Song, Electrochem. Commun., 2008, 10, 1087-1089.
    37. G. Calogero, F. Bonaccorso, O. M. Marago, P. G. Gucciardi and G. Di Marco, Dalton Trans., 2010, 39, 2903-2909.
    38. G. Veerappan, K. Bojan and S.-W. Rhee, ACS Appl. Mater. Interfaces, 2011, 3, 857-862.
    39. K. S. Lee, Y. Lee, J. Y. Lee, J.-H. Ahn and J. H. Park, ChemSusChem, 2012, 5, 379-382.
    40. K.-M. Lee, P.-Y. Chen, C.-Y. Hsu, J.-H. Huang, W.-H. Ho, H.-C. Chen and K.-C. Ho, J. Power Sources, 2009, 188, 313-318.
    41. W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510-519.
    42. Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 084304-084305.
    43. X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland and E. H. Sargent, Nat Photon, 2011, 5, 480-484.
    44. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik and M. C. Beard, Science, 2011, 334, 1530-1533.
    45. M. C. Hanna and A. J. Nozik, J. Appl. Phys., 2006, 100, 074510-074518.
    46. Y. Wang and N. Herron, J. Phys. Chem., 1991, 95, 525-532.
    47. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, 130, 4007-4015.
    48. Y.-w. Jun, J.-s. Choi and J. Cheon, Angew. Chem. Int. Ed., 2006, 45, 3414-3439.
    49. A. J. Nozik, Physica E, 2002, 14, 115-120.
    50. A. J. Nozik, Inorg. Chem., 2005, 44, 6893-6899.
    51. A. J. Nozik, Nano Lett., 2010, 10, 2735-2741.
    52. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall series in solid state physical electronics), Prentice Hall, 1981.
    53. S.-Q. Fan, D. Kim, J.-J. Kim, D. W. Jung, S. O. Kang and J. Ko, Electrochem. Commun., 2009, 11, 1337-1339.
    54. Z. Yang, C.-Y. Chen, C.-W. Liu and H.-T. Chang, Chem. Commun., 2010, 46, 5485-5487.
    55. X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Chem. Commun., 2011, 47, 2664-2666.
    56. M. Deng, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, Chem. Lett., 2010, 39, 1168-1170.
    57. V. González-Pedro, X. Xu, I. Mora-Seró and J. Bisquert, ACS Nano, 2010, 4, 5783-5790.
    58. S.-Q. Fan, B. Fang, J. H. Kim, J.-J. Kim, J.-S. Yu and J. Ko, Appl. Phys. Lett., 2010, 96, 063501-063503.
    59. M. Grätzel, Nature, 2001, 414, 338-344.
    60. Y.-L. Lee and Y.-S. Lo, Adv. Funct. Mater., 2009, 19, 604-609.
    61. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen and G. Hodes, J. Photochem. Photobiol. A: Chem., 2006, 181, 306-313.
    62. A. Hagfeldt and M. Grätzel, Acc. Chem. Res., 2000, 33, 269-277.
    63. Y.-L. Lee and C.-H. Chang, J. Power Sources, 2008, 185, 584-588.
    64. M. Shalom, S. Dor, S. Rühle, L. Grinis and A. Zaban, J. Phys. Chem. C, 2009, 113, 3895-3898.
    65. Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto and S. Kuwabata, Chem. Lett., 2007, 36, 88-89.
    66. T. Yasuhiro, U. Kazuya, O. Yasuhide and K. Susumu, J. Phys. D: Appl. Phys., 2008, 41, 102002.
    67. H. J. Lee, J.-H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, J. Phys. Chem. C, 2008, 112, 11600-11608.
    68. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H. Weller, J. Phys. Chem. B, 1999, 103, 3065-3069.
    69. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, Nat Mater, 2003, 2, 382-385.
    70. G. Sixto, M.-S. Iván, M. Lorena, G. Nestor, L.-V. Teresa, G. Roberto, J. D. Lina, S. Qing, T. Taro and B. Juan, Nanotechnology, 2009, 20, 295204.
    71. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2006, 128, 2385-2393.
    72. J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang and R. S. Liu, Appl. Phys. Lett., 2009, 94, 153115-153113.
    73. M.-S. Iván, G. Sixto, M. Thomas, F.-S. Francisco, L.-V. Teresa, G. Roberto and B. Juan, Nanotechnology, 2008, 19, 424007.
    74. S. Yu-Jen and L. Yuh-Lang, Nanotechnology, 2008, 19, 045602.
    75. S. Gorer and G. Hodes, J. Phys. Chem., 1994, 98, 5338-5346.
    76. H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 2004, 27, 85-111.
    77. P. K. Santra and P. V. Kamat, J. Am. Chem. Soc., 2012, 134, 2508-2511.
    78. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 2013, 7, 5215-5222.
    79. J. H. Wittke, Planetary Materials Microanalysis Facility, http://www4.nau.edu/microanalysis/Microprobe-SEM/Instrumentation.html.
    80. Atomic World - Transmission Electron Microscope(TEM), http://www.hk-phy.org/atomic_world/tem/tem02_e.html.
    81. Green Rhino Energy - Solar Power, http://www.greenrhinoenergy.com/solar/radiation/spectra.php.
    82. K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Prog. Photovoltaics, 2003, 11, 225-230.
    83. B. T. Ahn, L. Larina, K. H. Kim and S. J. Ahn, Pure Appl. Chem., 2008, 80, 2091-2102.
    84. C. Julien, E. Hatzikraniotis and K. Kambas, Phys. Stat. Sol. A, 1986, 97, 579-585.
    85. T. Zhai, Y. Ma, L. Li, X. Fang, M. Liao, Y. Koide, J. Yao, Y. Bando and D. Golberg, J. Mater. Chem., 2010, 20, 6630-6637.
    86. M. I. Alonso, K. Wakita, J. Pascual, M. Garriga and N. Yamamoto, Phys. Rev. B, 2001, 63, 075203.
    87. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Nano Lett., 2009, 9, 4221-4227.
    88. V. Chakrapani, D. Baker and P. V. Kamat, J. Am. Chem. Soc., 2011, 133, 9607-9615.
    89. H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang and Y. Li, Chem. Mater., 2008, 20, 6434-6443.
    90. M.-Y. Chiang, S.-H. Chang, C.-Y. Chen, F.-W. Yuan and H.-Y. Tuan, J. Phys. Chem. C, 2011, 115, 1592-1599.
    91. M. B. Ortuño-López, M. Sotelo-Lerma, A. Mendoza-Galván and R. Ramírez-Bon, Vacuum, 2004, 76, 181-184.
    92. J. J. Zhu, S. Xu, H. Wang, J. M. Zhu and H. Y. Chen, Adv. Mater., 2003, 15, 156-159.
    93. Z. Yang, C.-Y. Chen, C.-W. Liu, C.-L. Li and H.-T. Chang, Adv. Energy Mater., 2011, 1, 259-264.
    94. S.-Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J.-S. Yu and J. Ko, Langmuir, 2010, 26, 13644-13649.
    95. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463-9475.
    96. P. Reiss, J. Bleuse and A. Pron, Nano Lett., 2002, 2, 781-784.
    97. J.-Y. Chang, L.-F. Su, C.-H. Li, C.-C. Chang and J.-M. Lin, Chem. Commun., 2012, 48, 4848-4850.
    98. K.-L. Ou, J.-C. Fan, J.-K. Chen, C.-C. Huang, L.-Y. Chen, J.-H. Ho and J.-Y. Chang, J. Mater. Chem., 2012, 22, 14667-14673.
    99. R. Kern, R. Sastrawan, J. Ferber, R. Stangl and J. Luther, Electrochim. Acta, 2002, 47, 4213-4225.
    100. F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte and J. Bisquert, J. Phys. Chem. B, 2002, 107, 758-768.
    101. R. Agosta, R. Giannuzzi, L. De Marco, M. Manca, M. R. Belviso, P. D. Cozzoli and G. Gigli, J. Phys. Chem. C, 2013, 117, 2574-2583.
    102. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero and J. Bisquert, Phys. Chem. Chem. Phys., 2011, 13, 9083-9118.
    103. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, Sol. Energy Mater. Sol. Cells, 2005, 87, 117-131.

    無法下載圖示 全文公開日期 2018/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE