簡易檢索 / 詳目顯示

研究生: 楊皓東
Hao-Dong Yang
論文名稱: 大氣常壓微電漿輔助合成石墨烯量子點/金銀合金複合物並應用於表面增強拉曼散射之應用
Atmospheric Pressure Microplasma Assisted Synthesis of Graphene Quantum Dots Decorated with Ag/Au Alloy for Surface-Enhanced Raman Scattering Application
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 徐振哲
Cheng-Che Hsu
賴育英
Yu-Ying Lai
蕭偉文
Wei-Wen Hsiao
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 108
中文關鍵詞: 大氣常壓微電漿石墨烯量子點金銀合金材料表面增強拉曼散射
外文關鍵詞: Atmospheric-pressure microplasma, Graphene quantum dots, Silver/gold alloy, Surface-enhacned Raman scattering
相關次數: 點閱:447下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射是一種高靈敏性以及簡易的偵測技術,可用來提高帶測物的拉曼散射訊號。文獻中常使用貴重金屬如金銀奈米粒子以及奈米碳材,其能視為良好的表面增強拉曼散射的基材,主要增強機制可分為電磁增強以及化學增強。本研究將探討不同光學性質的石墨烯量子點與金銀合金複合物間的能量轉換,來進行表面增強拉曼散射的實驗,材料合成使用了新興的大氣常壓微電漿來進行合成,其能提供高能量的電子、非熱效應、以及不須添加還原劑的反應條件下,來合成出奈米材料。並利用了簡易的物理混和方式來合成出石墨烯量子點與金銀合金複合物,材料經過一系列光學儀器鑑定後,複合物能藉由物理方式來合成出異質結構,並且擁有光致發光的特性,因此複合物之間的能量轉換可以藉由雷射光的激發,來產生螢光共振能量轉移,所展現出良好的表面增強拉曼散射的效能,用於偵測不同的染劑分子與三聚氰胺。
    在材料合成與表面增強拉曼散射的研究中,探討了不同電解質對材料合成的影響,從結果可以發現鹼性環境能夠在電漿的輔助下,產生溶劑電子與自由基來合成石墨烯量子點,並且擁有了氮摻雜的效應,材料外圍的氨基,它能視為一種電子提供基團,來提升材料的吸附效能和電子遷移率,接著比較了不同發光性質的石墨烯量子點與金銀合金的複合物,可以發現藍光的石墨烯量子點與金銀合金能展現出最佳的表面增強拉曼散射的效能,可以歸因於最佳的螢光共振能量轉移、摻雜效應、π-π效應。在偵測羅丹明6G染劑與三聚氰胺的情況下,可以達到1fM和10pM偵測濃度極限。進一步研究可以發現,能藉由控制不同激發光的石墨烯量子點與雙金材料之間的能量轉移效率,以及控制石墨烯量子點的表面官能基種類,來達到控制表面增強拉曼散射的效能。


    A facile and state-of-the-art approach to synthesize of bimetallic nanoparticles (silver-gold alloy) incorporated with the graphene quantum dots (GQDs) for surface-enhanced Raman scattering. Tailoring of different localized surface plasmon resonance (LSPR) property of the AuAg alloy were synthesized by atmospheric-pressure microplasma using the sodium citrate as the capping agent and incorporated with the N-doped B-GQDs as the activated SERS substrate. Generally, there are two mechanisms, Electromagnetic enhancement (EM) and Chemical enhancement (CM), which influence the surface-enhanced Raman scattering (SERS). In order to achieve these enhancements simultaneously, a novel material of B-GQDs/AuAg alloy demonstrates the EM and CM, suggesting that the detection of the single-molecule probe and high selectivity. To control fluorescence resonance energy transfer (FRET) by adjusting charge transfer from GQDs to the AuAg alloy due to the different emission wavelength of GQDs as well as the nitrgon atoms as the electron donating group in the GQDs can improve the carrier mobility and the π-π interaction. The N-doped B-GQD/AuAg alloy can exhibit significant limit of detection for R6G and melamine that down to the 1fM and 1pM, respectivity, owing to the FRET mechanism by charge transfer of AuAg alloy, indicating in the electromagnetic and chemical enhancement. The microplasma which possesses high energy density and environment-friendly synthesizes N-doped B-GQDs/AuAg alloy is discussed.

    1. Introduction 1.1 Surface-Enhanced Raman Scattering (SERS) 1.2.1 Electromagnetic mechanism (EM) 1.2.2 Chemical mechanism (CM) 1.3 The noble metal nanoparticles 1.4 The graphene quantum dots 1.5 Introduction of GQDs/silver-gold alloy 1.6 Fluorescence resonance energy transfer (FRET) 1.7 Atmospheric pressure microplasma 1.8 Introduction of SERS-based melamine detection 2. Experimental Section 2.1 Materials and Chemicals 2.2 Synthesis of the silver/gold alloy 2.3 Synthesis of the graphene quantum dots 2.4 Synthesis of the GQDs/AuAg alloy 2.5 Preparation of the SERS substrate 2.6 Enhanced factor (EF) 2.7 Adsorption ability of material for R6G probe 2.8 Characterization 2.8.1 Ultraviolet-visible spectroscopy (UV-Vis) 2.8.2 Photoluminescence spectroscopy (PL) 2.8.3 Raman spectroscopy (Raman) 2.8.4 Transmission electron microscopy (TEM) 2.8.5 X-ray photoelectron spectroscopy (XPS) 2.8.6 Ultraviolet photoelectron spectroscopy (UPS) 3. Results and discussion 3.1.1 Synthesis of Au/Ag NPs, and AuAg alloy by microplasma 3.1.2 SERS technology for AuAg alloy to detect the R6G probe. 3.2.1 Synthesis of GQDs/AuAg_0.05 composite by microplasma 4. Conclusion 5. Reference

    1. Lohumi, Santosh, et al. "Raman imaging from microscopy to macroscopy: quality and safety control of biological materials." TrAC Trends in Analytical Chemistry 93 (2017): 183-198.
    2. Tang, Haibin, et al. "Surface-enhanced Raman scattering sensors for food safety and environmental monitoring." Journal of the Electrochemical Society 165.8 (2018): B3098.
    3. Mock, J. J., et al. "Shape effects in plasmon resonance of individual colloidal silver nanoparticles." The Journal of Chemical Physics 116.15 (2002): 6755-6759.
    4. Ji, Wei, et al. "Generation of pronounced resonance profile of charge-transfer contributions to surface-enhanced Raman scattering." The Journal of Physical Chemistry C 116.3 (2012): 2515-2520.
    5. Liu, Yu, et al. "Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review." Biosensors and Bioelectronics 94 (2017): 131-140.

    無法下載圖示 全文公開日期 2026/06/17 (校內網路)
    全文公開日期 2026/06/17 (校外網路)
    全文公開日期 2026/06/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE