簡易檢索 / 詳目顯示

研究生: 黃偉庭
Wei-ting Huang
論文名稱: 過渡金屬摻雜於CuInS2/ZnS量子點的製備及其生物應用
Synthesis of Transition Metal doped CuInS2/ZnS Quantum dots and Their Bio-applications
指導教授: 張家耀
Jia-yaw Chang
口試委員: 麥富德
Fu-der Mai
蔡伸隆
Shen-long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: I-III-VI族量子點過渡金屬摻雜水相量子點細胞毒性
外文關鍵詞: Quantum dots, doping, transition metal, water phase quantum dots, cytotoxicity
相關次數: 點閱:390下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分:我們使用殼層成長摻雜法(shell growth doping)成功地將Mn、Co、Ni等三種過渡金屬分別摻雜於CuInS2/ZnS核殼結構量子點中,並以不同摻雜量作為主要的參數調整,接著利用TEM、XRD、UV、PL、EPR與SQUID來進行摻雜量子點的組成、結構、光學性質與磁性分析。從中可以發現Mn與Ni確實是以摻雜的方式與CuInS2/ZnS量子點結合並展現出順磁特性與新的發光機制;而Co則是與CuInS2/ZnS形成合金量子點,此量子點隨著Co含量的增加可將其發光顏色從橘黃光調控制綠光並於室溫下顯現出順磁特性。

    第二部分:以摻雜量子點作為基礎材料,並藉由兩性物質月桂酸的包覆,賦予其表面擁有大量的親水性羧酸基團而能形成溶解度佳且無毒性的水相量子點。接著再利用EDC/ NHS共價交聯系統對水相量子點進行葉酸功能化修飾,使其能與HeLa癌細胞表面的葉酸受之間有良好的親和力。此外,結合量子點優越的發光特性,能成功地製備出具有癌細胞螢光顯影與標靶的雙功能量子點材料。


    Part I:In this work, we have used shell growth doping strategy for the synthesis of transition metal ion doped CuInS2/ZnS quantum dots (QDs). CuInS2 QDs was utilized to be a host and followed by depositing thin ZnS shell for the attachment of transition metal ions (such as Mn2+, Ni2+, and Co2+). We report the effect of the different transition metal doped CuInS2/ZnS QDs on the optical properties (such as photoluminescence [PL] quantum yield, PL full width at half-maximum, and wavelength of maximum PL emission) of QDs. The presented materials were characterized by HRTEM, XRD, EPR, and SQUID instruments. Mn and Ni doped QDs can appear paramagnetism property and new luminescence mechanism. Co doped QDs becomed alloyed QDs which can be tuned from orange-yellow light to green light and showed room temperature paramagnetism property.

    Part II: We used dodecanoic acid (DDA) capping agent to interdigitate with hydrophobic and protective agents on the surface of different transition metal doped CuInS2/ZnS QDs, that allow phase transfer of hydrophobic QDs from the organic phase into the aqueous phase. To demonstrate their potential biomedical application, the resulting water-soluble QD were further conjugated with folate via EDS/NHS protocol for staining in HeLa cancer cells. Confocal imaging characterization revealed that folate-conjugated QDs could target specifically and effectively HeLa cells via folate receptor-mediated targeted delivery.

    中文摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VII 表目錄 XII 第一章、序論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章、理論基礎與文獻回顧 3 2.1 奈米晶體之基本特性 3 2.1.1 表面效應(surface effect) 3 2.1.2 小尺寸效應(small size effect) 5 2.1.3 奈米晶體之能隙與量子侷限效應 7 2.1.4 半導體奈米晶體的載子躍遷機制 11 2.2 稀磁半導體 14 2.2.1 稀磁半導體簡介 14 2.2.2 摻雜量子點(doped quantum dots)簡介 15 2.3 摻雜量子點的合成方法與機制 16 2.4 錳原子摻雜於量子點的介紹 21 2.4.1 錳摻雜於量子點的發光機制及發光範圍 21 2.4.2 電子順磁共振光譜儀(EPR)鑑定Mn摻雜的量子點 22 2.4.3 錳摻雜於CdSe/ZnS核殼結構量子點及其核磁共振顯影(MRI)應用 26 2.4.4 錳摻雜於I-III-VI族量子點 28 2.5 銅原子摻雜於量子點的介紹 30 2.5.1 銅摻雜於量子點簡介 30 2.5.2 銅摻雜於ZnS/ZnCdS合金結構量子點 32 2.5.3 銅摻雜於InP量子點 34 2.6 鎳原子摻雜於量子點的介紹 36 2.7 雙原子摻雜於量子點的介紹 38 第三章、實驗儀器與方法 42 3.1 實驗架構 42 3.2 實驗藥品 44 3.3 實驗儀器 46 3.4 實驗步驟 48 3.4.1 CuInS2量子點合成 48 3.4.2 硬脂酸錳 (硬脂酸鎳、硬脂酸鈷)合成 48 3.4.3 Mn摻雜於CuInS2 量子點合成 49 3.4.4 CuInS2/ZnS摻雜量子點合成 49 3.4.5 DDA表面修飾量子點 50 3.4.6 DDA包覆水相量子點與葉酸鍵結之合成 51 3.4.7 CuInS2/ZnMnS@DDA水相量子點的細胞毒性測試(Cell Toxicity) 51 3.4.8 DDA包覆與FA功能化修飾的水相量子點之癌細胞螢光顯影 52 3.5 樣品分析 53 第四章、結果與討論 57 4.1 I-III-VI族CuInS2量子點合成介紹 57 4.2 Mn摻雜於CuInS2量子點合成介紹 59 4.3 Mn摻雜於CuInS2/ZnS核殼結構量子點合成介紹 60 4.4 不同濃度的Mn原子摻雜於CuInS2/ZnS核殼結構量子點之性質探討 63 4.4.1 Mn原子摻雜量與EPR光譜鑑定 63 4.4.2 CuInS2/ZnMnS量子點的光學性質鑑定 65 4.4.3 CuInS2/ZnMnS量子點的結構分析 70 4.4.4 CuInS2/ZnMnS量子點的磁性分析 73 4.5 不同濃度的Ni原子摻雜於CuInS2/ZnS核殼結構量子點之性質探討 75 4.5.1 Ni原子的摻雜量 75 4.5.2 CuInS2/ZnNiS量子點的光學性質鑑定 76 4.5.3 CuInS2/ZnNiS量子點的結構分析 79 4.5.4 CuInS2/ZnNiS量子點的磁性分析 81 4.6 不同濃度的Co原子摻雜於CuInS2/ZnS核殼結構量子點之性質探討 82 4.6.1 Co原子摻雜量與EPR光譜鑑定 82 4.6.2 CuInS2/ZnCoS摻雜量子點的光學性質鑑定 84 4.6.3 CuInS2/ZnCoS量子點的結構分析 88 4.6.4 CuInS2/ZnCoS量子點的磁性分析 89 4.7 CuInS2/ZnMnS、CuInS2/ZnNiS與CuInS2/ZnCoS量子點表面改質與功能化修飾合成之螢光顯影應用介紹 91 4.7.1 CuInS2/ZnMnS、CuInS2/ZnNiS與CuInS2/ZnCoS量子點與月桂酸(DDA)之表面改質介紹 91 4.7.2 CuInS2/ZnMnS@DDA水相量子點對細胞之毒性測試介紹 93 4.7.3 月桂酸包覆的水相量子點與葉酸之表面功能化修飾介紹 95 4.7.4 月桂酸包覆的量子點與葉酸包覆的量子點於癌細胞生物影像顯影應用 98 第五章、結論與未來展望 101 參考文獻 102

    [1] 王崇人, “科學發展月刊",2002,345,48.
    [2] 蘇品書(1999),超微粒子材料技術,復漢出版社, 台灣.
    [3] 賴炤銘(2003),奈米材料的特殊效應與應用,The Chinese Chem Soc,61,585.
    [4] G. Sun,The Intersubband Approach to Si-based Lasers,Advances in Lasers and Electro Optics,Nelson Costa and Adolfo Cartaxo (Ed.),2010.
    [5] A. P. Alivisatos, Science, 1996, 271, 933-937.
    [6] 馬振基(2005),奈米材料科技原理應用,全華圖書圖書股份有限公司, 台灣.
    [7] J. M. Klostranec and W. C. W. Chan, Adv. Mater., 2006, 18, 1953-1964.
    [8] T. Omata, K. Nose and S. Otsuka-Yao-Matsuo, J. Appl. Phys., 2009, 105, 73106.
    [9] H. J. Simmons and S. P. Kelly,Optical Materials,San Diego,Academic Press,2000.
    [10] A. H. Kitai,Solid State Luminescence,New York,Chapman&Hall,1993.
    [11] K. D,Mielenz. Optical Radiation Measurements,New York, Academic Press,1982.
    [12] H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov and M. P. Lisitsa, Phys. Rev. B, 2000, 62, 7213-7218.
    [13] J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu and K. L. Wang, Appl. Phys. Lett., 2001, 78, 1763-1765.
    [14] 簡有廷(2010),I-III-VI族量子點製備與鑑定,台灣科技大學碩士論文, 台灣.
    [15] H. Ohno, Science, 1998, 281, 951-956.
    [16] P. Wu and X.-P. Yan, Chem. Soc. Rev., 2013, 42, 5489-5521.
    [17] J. A. Smyder and T. D. Krauss, Mater. Today, 2011, 14, 382-387.
    [18] R. Gill, M. Zayats and I. Willner, Angew. Chem. Int. Ed., 2008, 47, 7602-7625.
    [19] A. M. Smith, H. Duan, A. M. Mohs and S. Nie, Adv. Drug Delivery Rev., 2008, 60, 1226-1240.
    [20] I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nat Mater, 2005, 4, 435-446.
    [21] W. Zheng, K. Singh, Z. Wang, J. T. Wright, J. van Tol, N. S. Dalal, R. W. Meulenberg and G. F. Strouse, J. Am. Chem. Soc., 2012, 134, 5577-5585.
    [22] L. Deng, Y. Shan, J.-J. Xu and H.-Y. Chen, Nanoscale, 2012, 4, 831-836.
    [23] Y. Chen, L. Huang, S. Li and D. Pan, J. Mater. Chem. C, 2013, 1, 751-756.
    [24] S. Jana, B. B. Srivastava, S. Acharya, P. K. Santra, N. R. Jana, D. D. Sarma and N. Pradhan, Chem. Commun., 2010, 46, 2853-2855.
    [25] D. A. Schwartz, N. S. Norberg, Q. P. Nguyen, J. M. Parker and D. R. Gamelin, J. Am. Chem. Soc., 2003, 125, 13205-13218.
    [26] P. V. Radovanovic and D. R. Gamelin, J. Am. Chem. Soc., 2001, 123, 12207-12214.
    [27] S. Acharya, D. D. Sarma, N. R. Jana and N. Pradhan, J Phys Chem Lett, 2009, 1, 485-488.
    [28] P. Yang, M. Lü, G. Zhou, D. Yuan and D. Xu, Inorg. Chem. Commun., 2001, 4, 734-737.
    [29] S. Jana, B. B. Srivastava and N. Pradhan, J Phys Chem Lett, 2011, 2, 1747-1752.
    [30] R. Buonsanti and D. J. Milliron, Chem. Mater., 2013, 25, 1305-1317.
    [31] N. Pradhan and D. D. Sarma, J Phys Chem Lett, 2011, 2, 2818-2826.
    [32] G. M. Dalpian and J. R. Chelikowsky, Phys. Rev. Lett., 2006, 96, 226802.
    [33] A. Nag, S. Chakraborty and D. D. Sarma, J. Am. Chem. Soc., 2008, 130, 10605-10611.
    [34] D. J. Norris, N. Yao, F. T. Charnock and T. A. Kennedy, Nano Lett., 2000, 1, 3-7.
    [35] N. Pradhan, D. Goorskey, J. Thessing and X. Peng, J. Am. Chem. Soc., 2005, 127, 17586-17587.
    [36] Y. Yang, O. Chen, A. Angerhofer and Y. C. Cao, J. Am. Chem. Soc., 2006, 128, 12428-12429.
    [37] D. Chen, R. Viswanatha, G. L. Ong, R. Xie, M. Balasubramaninan and X. Peng, J. Am. Chem. Soc., 2009, 131, 9333-9339.
    [38] R. Beaulac, P. I. Archer, X. Liu, S. Lee, G. M. Salley, M. Dobrowolska, J. K. Furdyna and D. R. Gamelin, Nano Lett., 2008, 8, 1197-1201.
    [39] R. Beaulac, P. I. Archer and D. R. Gamelin, Journal of Solid State Chemistry, 2008, 181, 1582-1589.
    [40] W. Chen, R. Sammynaiken, Y. Huang, J.-O. Malm, R. Wallenberg, J.-O. Bovin, V. Zwiller and N. A. Kotov, J. Appl. Phys., 2001, 89, 1120-1129.
    [41] A. Nag, R. Cherian, P. Mahadevan, A. V. Gopal, A. Hazarika, A. Mohan, A. S. Vengurlekar and D. D. Sarma, J. Phys. Chem. C, 2010, 114, 18323-18329.
    [42] P. A. Gonzalez Beermann, B. R. McGarvey, S. Muralidharan and R. C. W. Sung, Chem. Mater., 2004, 16, 915-918.
    [43] W. B. Jian, J. Fang, T. Ji and J. He, Appl. Phys. Lett., 2003, 83, 3377-3379.
    [44] S. Wang, B. R. Jarrett, S. M. Kauzlarich and A. Y. Louie, J. Am. Chem. Soc., 2007, 129, 3848-3856.
    [45] G. Manna, S. Jana, R. Bose and N. Pradhan, J Phys Chem Lett, 2012, 3, 2528-2534.
    [46] N. S. Karan, D. D. Sarma, R. M. Kadam and N. Pradhan, J Phys Chem Lett, 2010, 1, 2863-2866.
    [47] S. Gul, J. K. Cooper, C. Corrado, B. Vollbrecht, F. Bridges, J. Guo and J. Z. Zhang, J. Phys. Chem. C, 2011, 115, 20864-20875.
    [48] P. Mandal, S. S. Talwar, S. S. Major and R. S. Srinivasa, The Journal of Chemical Physics, 2008, 128, 114703-114707.
    [49] R. Xie and X. Peng, J. Am. Chem. Soc., 2009, 131, 10645-10651.
    [50] B. B. Srivastava, S. Jana and N. Pradhan, J. Am. Chem. Soc., 2010, 133, 1007-1015.
    [51] J.-U. Kim, Y. K. Kim and H. Yang, Journal of Colloid and Interface Science, 2010, 341, 59-63.
    [52] C. Corrado, Y. Jiang, F. Oba, M. Kozina, F. Bridges and J. Z. Zhang, The Journal of Physical Chemistry A, 2009, 113, 3830-3839.
    [53] A. V. Isarov and J. Chrysochoos, Langmuir, 1997, 13, 3142-3149.
    [54] S. Jana, B. B. Srivastava, S. Jana, R. Bose and N. Pradhan, J Phys Chem Lett, 2012, 3, 2535-2540.
    [55] N. Pradhan and X. Peng, J. Am. Chem. Soc., 2007, 129, 3339-3347.
    [56] S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder and V. I. Klimov, J. Am. Chem. Soc., 2007, 129, 11708-11719.
    [57] 許哲豪(2006),單一硒化鎘/硫化鋅膠體量子點之螢光特性,國立交通大學碩士倫文, 台灣.
    [58] Y. Yang, O. Chen, A. Angerhofer and Y. C. Cao, J. Am. Chem. Soc., 2008, 130, 15649-15661.
    [59] S. Shen, Y. Zhang, Y. Liu, L. Peng, X. Chen and Q. Wang, Chem. Mater., 2012, 24, 2407-2413.
    [60] B. B. Srivastava, S. Jana, N. S. Karan, S. Paria, N. R. Jana, D. D. Sarma and N. Pradhan, J Phys Chem Lett, 2010, 1, 1454-1458.
    [61] S. Sadhu and A. Patra, J. Phys. Chem. C, 2012, 116, 15167-15173.
    [62] W.-D. Xiang, H.-L. Yang, X.-J. Liang, J.-S. Zhong, J. Wang, L. Luo and C.-P. Xie, J. Mater. Chem. C, 2013, 1, 2014-2020.
    [63] C. Bresson, R. Spezia, S. Esnouf, P. L. Solari, S. Coantic and C. Den Auwer, New Journal of Chemistry, 2007, 31, 1789-1797.
    [64] M. D. Regulacio and M.-Y. Han, Accounts of Chemical Research, 2010, 43, 621-630.
    [65] M. Z. Fahmi and J.-Y. Chang, Nanoscale, 2013, 5, 1517-1528.
    [66] J. M. Rosenholm, E. Peuhu, L. T. Bate-Eya, J. E. Eriksson, C. Sahlgren and M. Lindén, Small, 2010, 6, 1234-1241.
    [67] D. Sehgal and I. K. Vijay, Analytical Biochemistry, 1994, 218, 87-91.
    [68] A. Juzeniene, K. T. Stokke, P. Thune and J. Moan, Journal of Photochemistry and Photobiology B: Biology, 2010, 101, 111-116.

    無法下載圖示 全文公開日期 2018/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE