簡易檢索 / 詳目顯示

研究生: 江俊緯
Chun-Wei Chiang
論文名稱: 苯基苯酚前驅物製備未摻雜及摻雜活性碳及其電雙層電容儲電
Undoped and doped activated carbons derived from phenylphenol precursors and their electric storages via double layer capacitance
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江偉宏
Wei-Hung Chiang
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 215
中文關鍵詞: 苯基苯酚未摻雜活性碳摻硼活性碳摻氮活性碳電雙層電容
外文關鍵詞: phenylphenol, undoped activated carbon, B-doped carbon, N-doped carbon, double layer capacitance
相關次數: 點閱:250下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究以成本低廉的工業殺菌、防腐用化學品-苯基苯酚合成多孔活性碳,並藉由B和N的摻雜改變活性碳的孔洞結構來提升比電容值。未摻雜活性碳中,可藉由提升熱裂解溫度及增加含鉀造孔劑的量來提高活性碳的比表面積,並使孔洞變大且變多。對苯基苯酚作為前驅物且熱裂解溫度為900C時,苯基苯酚與鉀之莫耳數比從1:1.5增加到1:20,比表面積從948 m2 g-1增加到2528 m2 g-1;鄰苯基苯酚則從1323 m2 g-1增加到1740 m2 g-1。使用高比表面積之未摻雜活性碳在0.5 M H2SO4(aq)中掃描速率為0.5 mV s-1下測得的比電容值皆可大於200 F g-1,在1 M TEABF4 in ACN中掃描速率為1mV s-1下測得的比電容值也都可大於400 F g-1,且具有良好的循環穩定性。
      當摻入5%硼酸後得到的摻硼活性碳,不管苯基苯酚與鉀之莫耳數比為1:12還是1:20,都可獲得比未摻雜活性碳大的比表面積,比表面積最大可達2609 m2 g-1,且孔洞也有變大的趨勢。最大比表面積之摻硼活性碳在0.5 M H2SO4(aq)中掃描速率為0.5 mV s-1下測得的比電容值為316.6 F g-1,在1 M TEABF4 in ACN中掃描速率為1mV s-1下測得的比電容值為509.7 F g-1。當硼酸摻雜量提升至10%後,比表面積及孔洞又比5%硼之活性碳提升更多,比表面積最大為2659 m2 g-1。而此摻硼活性碳在0.5 M H2SO4(aq)中掃描速率為0.5 mV s-1下測得的比電容值為344.7 F g-1,在1 M TEABF4 in ACN中掃描速率為1mV s-1下測得的比電容值為521.3 F g-1。不管硼的摻雜量為5%還是10%,都有良好的循環穩定性。
      摻入N之後,熱裂解溫度為900C所得的摻氮活性碳,比表面積更是高達3000 m2 g-1以上,2 nm以上之中孔含量也明顯提高。而摻氮活性碳在0.5 M H2SO4(aq)中掃描速率為0.5 mV s-1下可得到高達500 F g-1以上的比電容值,在1 M TEABF4 in ACN中掃描速率為1mV s-1下也可獲得550 F g-1以上的比電容值,且循環穩定性也極佳,但產率卻不到20%。
      最後利用2種不同電解質(TEABF4和TBABF4)及5種不同孔徑分佈之活性碳驗證不同孔洞大小對不同離子大小造成之影響,從不同電解液測得的循環伏安曲線之差異比對孔徑分佈圖,可發現TBA+幾乎不能進入1.5 nm以下之孔洞中。


    In this study, a low-cost chemical phenylphenol has been implemented as the precursor of activated carbon for electrochemical capacitor applications. The energy storage capability of this activated carbon is further enhanced by doping of B and N.
    In undoped activated carbon, the specific surface area of the activated carbon can be increased by raising the pyrolysis temperature and the amount of the pore-forming potassium agents, and the pore size also become larger and more. The molar ratio of phenylphenol to potassium increased from 1:1.5 to 1:20, specific surface area increased from 948 m2 g-1 to 2528 m2 g-1, when para-phenylphenol is used as a precursor at 900C; specific surface area increased from 1323 m2 g-1 to 1740 m2 g-1, when ortho-phenylphenol is used as a precursor. The specific capacitance can be greater than 200 F g-1, using a high specific surface area undoped activated carbon at scan rate of 0.5 mV s-1 in 0.5 M H2SO4(aq). The specific capacitance exceeds 400 F g-1 at scan rate of 1 mV s-1 in 1 M TEABF4 in ACN. Also it displays good cycle stability.
    Boron-doped activated carbon obtained after incorporation of 5% boric acid, regardless of the molar ratio of phenylphenol to potassium is 1:12 or 1:20, both achieve a larger specific surface area than undoped activated carbon, the specific surface area can be up to 2609 m2 g-1, and the pore also tends to increase in size. The specific capacitance of the boron-doped activated carbon is 316.6 F g-1 at scan rate of 0.5 mV s-1 in 0.5 M H2SO4(aq). The specific capacitance is 509.7 F g-1 at a scan rate of 1 mV s-1 in 1 M TEABF4 in ACN. The specific surface area is up to 2659 m2 g-1, when the amount of boric acid is increased to 10%, the specific surface area and pores are more enhanced than 5% boron. The specific capacitance of the boron-doped activated carbon is 344.7 F g-1 at scan rate of 0.5 mV s-1 in 0.5 M H2SO4(aq). The specific capacitance is 521.3 F g-1 at a scan rate of 1 mV s-1 in 1 M TEABF4 in CAN, regardless of whether the doping amount of boron is 5% or 10%, and it shows good cycle stability.
    After doping with nitrogen, the activated carbon obtained through pyrolysis at 900C, the specific surface area reaches 3000 m2 g-1 or more, and the amount of mesoporous pores is raised as well. Nitrogen-doped activated carbon is measured with specific capacitance more than 500 F g-1 at scan rate of 0.5 mV s-1 in 0.5 M H2SO4(aq). Specific capacitance more than 550 F g-1 can be obtained at a scan rate of 1 mV s-1 in 1 M TEABF4 in ACN, and the cycle stability is also excellent, but the yield is less than 20%.
    Finally, two different electrolytes (TEABF4 and TBABF4) and five different pore size distributions of activated carbon were used to study the connections between different pore sizes on different ion sizes. We also find TBA+ hardly enter pores which the size is smaller than 1.5 nm, when comparing the difference in cyclic voltammetry curves measured from different electrolytes and the pore size distribution pattern.

    摘要 I ABSTRACT III 目錄 V 圖目錄 X 表目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 5 2.1 苯基苯酚 5 2.1.1 苯基苯酚之性質 5 2.1.2 苯基苯酚之應用 5 2.2 能量儲存裝置 6 2.2.1 超級電容器之概述 7 2.2.2 超級電容器之應用 9 2.3 多孔碳材在超級電容器上之應用 10 2.4 雜原子摻雜石墨烯 11 2.4.1 化學氣相沉積法 15 2.4.2 球磨法 15 2.4.3 熱退火法 16 2.4.4 濕式化學法 17 2.5 電解液 18 2.5.1 水性電解液 20 2.5.2 有機電解液 21 2.5.3 離子液體 24 第三章 實驗方法與步驟 25 3.1 實驗藥品耗材與設備 25 3.1.1 碳材製備 25 3.1.2 電極製備 25 3.1.3 電解液配製 26 3.1.4 電化學測試儀器及設備 27 3.1.5 其它設備 27 3.2 實驗分析儀器 28 3.3 實驗流程圖 29 3.3.1 未摻雜活性碳製備 29 3.3.2 摻硼活性碳製備 30 3.3.3 摻氮活性碳製備 31 3.3.4 電極漿料製備 32 3.3.5 工作電極製備 33 3.4 實驗方法 34 3.4.1 碳材合成 34 3.4.2 電極製備 42 3.5 電極材料鑑定與分析 43 3.5.1 表面積及孔徑分析 43 3.5.2 表面結構分析 46 3.5.3 X光繞射分析 46 3.5.4 元素分析 47 3.5.5 拉曼光譜分析 48 3.6 電化學特性分析 49 3.6.1 循環伏安法 50 3.6.2 恆電流充放電量測及穩定性測試 51 第四章 結果與討論 53 4.1 未摻雜活性碳(Undoped Activated Carbon) 53 4.1.1 未摻雜活性碳之表面積及孔徑分析 54 4.1.2 未摻雜活性碳之表面結構分析 72 4.1.3 未摻雜活性碳之X光繞射分析 73 4.1.4 未摻雜活性碳之元素分析 75 4.1.5 未摻雜活性碳之拉曼光譜分析 76 4.1.6 未摻雜活性碳電極之循環伏安分析 80 4.1.7 未摻雜活性碳電極之循環穩定性測試 92 4.2 摻硼活性碳(B-doped Carbon) 97 4.2.1 摻硼活性碳之表面積及孔徑分析 98 4.2.2 摻硼活性碳之表面結構分析 116 4.2.3 摻硼活性碳之X光繞射分析 118 4.2.4 摻硼活性碳之元素分析 121 4.2.5 摻硼活性碳之拉曼光譜分析 122 4.2.6 摻硼活性碳電極之循環伏安分析 125 4.2.7 摻硼活性碳電極之循環穩定性測試 140 4.3 摻氮活性碳(N-doped Carbon) 145 4.3.1 摻氮活性碳之表面積及孔徑分析 146 4.3.2 摻氮活性碳之表面結構分析 152 4.3.3 摻氮活性碳之X光繞射分析 152 4.3.4 摻氮活性碳之元素分析 154 4.3.5 摻氮活性碳之拉曼光譜分析 154 4.3.6 摻氮活性碳電極之循環伏安分析 156 4.3.7 摻氮活性碳電極之循環穩定性測試 163 4.4 不同電解質離子大小對多孔碳造成之影響 166 4.4.1 孔徑分佈之差異 167 4.4.2 在1 M TBABF4 in ACN之循環伏安分析 168 第五章 結論 176 參考文獻 181

    1. 胡啟章, 電化學原理和方法. 五南圖書出版公司.
    2. Battery Performance Characteristics. Available from: https://www.mpoweruk.com/performance.htm.
    3. JIAO Chen, et al., Research progress on electrode materials and electrolytes for supercapacitors. 2017. 32(2).
    4. Company, T.D.C., Product Safety Assessment. 2015.
    5. US Defense Logistics Agency. Available from: http://www.mpoweruk.com/performance.htm.
    6. NUINTEK CO., LTD.
    7. Zhao, X., et al., The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011. 3(3): p. 839-55.
    8. Mozota, J. and B.E. Conway, Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochimica Acta, 1983. 28(1): p. 1-8.
    9. Hadz¯i‐Jordanov, S., et al., Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes. Electrochemical Society, 1978. 125(9): p. 1471-1480.
    10. Patrice, S. and G. Yury, Materials for electrochemical capacitors. Nature Materials, 2008. 7: p. 845–854.
    11. 高雄市政府捷運工程局. Available from: http://mtbu.kcg.gov.tw/cht.
    12. Sheng Han, et al., Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices. Advanced Materials, 2014. 26(6): p. 849-864.
    13. Hong-Fei Ju, Wei-Li Song, and L.-Z. Fan, Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2014. 2(28): p. 10895-10903.
    14. Kunfeng Chen, et al., Structural design of graphene for use in electrochemical energy storage devices. Chemical Society Reviews, 2015. 44(17): p. 6230-6257.
    15. Kai Yuan, et al., Engineering the Morphology of Carbon Materials: 2D Porous Carbon Nanosheets for High‐Performance Supercapacitors. ChemElectroChem, 2016. 3(5): p. 822-828.
    16. Zhibin Lei, et al., Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy & Environmental Science, 2016. 9(6): p. 1891-1930.
    17. Maher F. El-Kady and R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013. 4: p. 1475.
    18. Wei Chen, et al., High-Performance Nanostructured Supercapacitors on a Sponge. Nano Lett., 2011. 11(12): p. 5165–5172.
    19. Yuxi Xu, et al., Functionalized Graphene Hydrogel‐Based High‐Performance Supercapacitors. Advanced Materials, 2013. 25(40): p. 5779-5784.
    20. Zhiqiang Niu, et al., A Universal Strategy to Prepare Functional Porous Graphene Hybrid Architectures. Advanced Materials, 2014. 26(22): p. 3681-3687.
    21. Chun Li and G. Shi, Functional Gels Based on Chemically Modified Graphenes. Advanced Materials, 2014. 26(24): p. 3992-4012.
    22. Peiyu Zang, et al., Green synthesis of holey graphene sheets and their assembly into aerogel with improved ion transport property. Electrochimica Acta, 2016. 212: p. 171-178.
    23. Xiuxia Sun, et al., Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon, 2015. 92: p. 1-10.
    24. Da Zhan, et al., Engineering the Electronic Structure of Graphene. Advanced Materials, 2012. 24(30): p. 4055-4069.
    25. Weili Wei and X. Qu, Extraordinary Physical Properties of Functionalized Graphene. 2012. 8(14): p. 2138-2151.
    26. Yanwu Zhu, et al., Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010. 22(35): p. 3906-3924.
    27. 石墨烯. Available from: https://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF.
    28. Jianhua Shen, et al., Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012(31): p. 3686–3699.
    29. Lingling Li, et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013(10): p. 4015–4039.
    30. Xin Ting Zheng, et al., Graphene Quantum Dots as Universal Fluorophores and Their Use in Revealing Regulated Trafficking of Insulin Receptors in Adipocytes. ACS Nano, 2013. 7(7): p. 6278–6286.
    31. Arundithi Ananthanarayanan, et al., Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe3+ Sensing. Advanced Functional Materials, 2014. 24(20): p. 3021-3026.
    32. Sudipta Dutta and S.K. Pati, Novel properties of graphene nanoribbons: a review. Journal of Materials Chemistry, 2010(38): p. 8207–8223.
    33. Xiaochen Dong, et al., A graphene nanoribbon network and its biosensing application. Nanoscale, 2011(12): p. 5156–5160.
    34. Li, C. and G. Shi, Three-dimensional graphene architectures. Nanoscale, 2012(18): p. 5549–5563.
    35. Xiao-Chen Dong, et al., 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano, 2012. 6(4): p. 3206–3213.
    36. Yang-Chun Yong, et al., Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano, 2012. 6(3): p. 2394–2400.
    37. Taeri Kwon, et al., Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels. Langmuir, 2009. 25(19): p. 11961–11968.
    38. Wang, H., et al., Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small, 2013. 9(8): p. 1316-20.
    39. Wu, T., et al., Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New Journal of Chemistry, 2012. 36(6).
    40. Wang, X., et al., Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev, 2014. 43(20): p. 7067-98.
    41. Tianru Wu, et al., Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New Journal of Chemistry, 2012(6): p. 1385–1391.
    42. Huan Wang, et al., Synthesis of Boron‐Doped Graphene Monolayers Using the Sole Solid Feedstock by Chemical Vapor Deposition. Small, 2013. 9(8): p. 1316-1320.
    43. Lijie Ci, et al., Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 2010: p. 430–435.
    44. Dacheng Wei, et al., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 2009. 9(5): p. 1752–1758.
    45. Dr. Jiaoxing Xu, et al., Sulfur and Nitrogen Co‐Doped, Few‐Layered Graphene Oxide as a Highly Efficient Electrocatalyst for the Oxygen‐Reduction Reaction. ChemSusChem, 2013. 6(3): p. 493-499.
    46. In-Yup Jeon, et al., Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013. 3: p. 2260.
    47. Zhong-Shuai Wu, et al., Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011. 5(7): p. 5463–5471.
    48. Gwang Hoon Jun, et al., Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy & Environmental Science, 2013. 6: p. 3000–3006.
    49. Linfei Lai, et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012. 5: p. 7936–7942.
    50. Zhen-Huan Sheng, et al., Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 2011. 5(6): p. 4350–4358.
    51. Jen-Yu Liu, et al., Synthesis of nitrogen-doped graphene by pyrolysis of ionic-liquid-functionalized graphene. Journal of Materials Chemistry C, 2013. 1: p. 1713–1716.
    52. Rong Li, et al., Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Advances, 2013. 3: p. 9978–9984.
    53. Ping Wu, et al., Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells. Chemical Communications, 2011. 47(40): p. 11327–11329.
    54. Yuezeng Su, et al., Low-temperature synthesis of nitrogen/sulfur co-doped three-dimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon, 2013. 62: p. 296-301.
    55. Nan Li, et al., Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon, 2010. 48(1): p. 255-259.
    56. L. S. Panchakarla, et al., Synthesis, Structure, and Properties of Boron‐ and Nitrogen‐Doped Graphene. Advanced Materials, 2009. 21(46): p. 4726-4730.
    57. In-Yup Jeon, et al., Edge-carboxylated graphene nanosheets via ball milling. PNAS, 2012. 109(15): p. 5588-5593.
    58. Lu Yan, et al., Electroactive and biocompatible hydroxyl- functionalized graphene by ball milling. Journal of Materials Chemistry, 2012. 22: p. 8367–8371.
    59. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51(26): p. 5567-5580.
    60. Jiménez-Cordero, D., et al., Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes. Carbon, 2014. 71: p. 127-138.
    61. Torchała, K., K. Kierzek, and J. Machnikowski, Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes. Electrochimica Acta, 2012. 86: p. 260-267.
    62. Demarconnay, L., E. Raymundo-Piñero, and F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution. Electrochemistry Communications, 2010. 12(10): p. 1275-1278.
    63. Lewandowski, A., et al., Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power Sources, 2010. 195(17): p. 5814-5819.
    64. 布拉格定律. Available from: https://zh.wikipedia.org/wiki/%E5%B8%83%E6%8B%89%E6%A0%BC%E5%AE%9A%E5%BE%8B.
    65. Yang, W., et al., Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon, 2017. 111: p. 419-427.
    66. 翁靖雅, 氮摻雜還原石墨烯氧化物的電化學電容器應用. 2014.
    67. Shigeru Umino and J. Newman, Diffusion of Sulfuric Acid in Concentrated Solutions.
    68. Cyclic Voltammetry of [Ru(bpy)3]2+.
    69. Mykhailiv, O., et al., Boron-Doped Polygonal Carbon Nano-Onions: Synthesis and Applications in Electrochemical Energy Storage. Chemistry, 2017. 23(29): p. 7132-7141.
    70. Roman Mysyk, et al., Confinement of Symmetric Tetraalkylammonium Ions in Nanoporous Carbon Electrodes of Electric Double-Layer Capacitors. J. Phys. Chem. C, 2009. 113(30): p. 13443–13449.

    QR CODE