簡易檢索 / 詳目顯示

研究生: 鄭群逸
Chun-Yi Cheng
論文名稱: I-III-VI 族異質結構材料之製備與生物應用
Synthesis and Bio-application of I-III-VI Group Nanoheterostructure
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
黃志清
Chih-Ching Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 149
中文關鍵詞: 量子點高分子包覆奈米晶體異質結構材料I-III-VI 族量子點
外文關鍵詞: quantum dot, polymer coating, nanocrystal, heterstructure, I-III-VI group
相關次數: 點閱:378下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以高溫熱裂解法與熱注射法合成I-III-VI族奈米異質結構材料,且藉由各種不同的實驗參數來控制其晶體尺寸與形狀,期待尺寸與形狀的不同來調控其光學性質,以便於日後應用於太陽能電池領域與醫學影像分析顯影科技。此研究以CuInS2-ZnS異質結構奈米晶體為主體,分為異質結構材料的製備與多重光學標靶顯影兩部分,並且搭配穿透式電子顯微鏡、X光繞射圖譜鑑定其晶體型態以及核磁共振顯影、共軛交顯微鏡進行影像測試。

    第一部分: 我們針對點或棒狀的奈米異質結構材料提出一個簡單且容易控制的製備方法,其反應體系以硫化銅當作晶種,經由一步反應而生成各種金屬硫族奈米異質結構材料,包含 Cu2S-ZnS(Cu2S-ZS)、Cu2S-CuInS(Cu2S-CIS) 以及 Cu2S -CuInZnS(Cu2S-CIZS),並且進行結構、型態與組成之分析。在參數調整方面,我們以改變前驅物比例、反應溫度、殼層前驅物注入之體積與時間來有效控制晶體之生長長度。目前本系統已經能夠成功的控制晶體尺寸於20~200 nm之間。期許未來能在太陽能電池領域有相當的應用。

    第二部分:以CuInS2/ZnS異質結構材料為基礎,藉由兩性高分子的包覆,賦予其表面具有大量的親水性羧基以達到水溶性量子點之目的,並且利用碳化二亞胺作為交聯劑對量子點進行表面官能化。在這邊我們利用EDC/NHS交聯系統作為基礎,將量子點同時與釓離子錯合物及葉酸進行結合;其釓離子錯合物為磁性物質,可應用於核磁共振造影,而葉酸為一種靶向性物質,對特定癌細胞具有特殊吸收能力,因此可作為細胞標靶之應用,最後再結合量子點本身優越之螢光性能,成功開發出同時具有癌細胞標靶、細胞螢光影像以及磁振造影三種生醫應用之多功能奈米材料,期許未來在醫學臨床上有更廣泛的應用。


    Part I
    This research claims a facile syntheses route for I-II-III-VI heterostructures Cu2S-ZnS, Cu2S-CuInS, and Cu2S-CuInZnS in a noncoordinating solvent. We exploit seed-mediated synthesis as a basis of crystal growth. The Cu2S seed and ZnS anisotropic nanorod are prepared by thermal decomposition and hot-injection respectively. By using 1-dodecanethiol as both the reactant for the sulfur source and the capping ligands, with copper acetate as the copper source, we synthesized Cu2S and Cu2S-CuInS seeds in the absence and presence of indium acetate, respectively. In the section of the parameter adjustment, we control the heterostructures aspect ratios by changing different reaction temperature, injection volume, and various annealing time, then successful control of the heterostructures length in a range of 20 nm to 200 nm. In summary, this one-pot two-step approach can be successfully, because both seeds and precursors can be grown controllably in the same reaction vessel, and without intermediate seed purification, yielding easy handling, large-scale production capability, and high synthetic reproducibility. In the future, we hope that these nanoheterostructures will be applied to optoelectronic and photovoltaic.
    Part II
    This research successfully proposed a reliable method for preparing multifunctional CuInS2 nanoparticle, which be able to applied in fluorescent imaging, magnetic resonance imaging, and tumor-specific targeting. This study is divided into three parts: (1) amphiphilic copolymer, PMAO, was wrapped on the surface of CuInS2 quantum dot to create a large number of carboxyl group, thus not only conferring the QDs water dispersible but also provides useful reactive groups for further functionalization; (2) to integrate the MRI capability of our quantum dot. paramagnetic gadolinium chelates (Gd-DTPA) was further conjugated with carboxy group on the surface of the CuInS2 quantum dots, which is denoted as Gd-CuInS2 quantum dots, by using straightforward EDC/NHS catalyzed coupling reaction. (3) to demonstrate the targeting capability of these newly synthesized quantum dots, we have used folate-receptor targeting by utilizing folic acid to conjugated with the Gd-CuInS2 quantum dots, which is denoted as FA-Gd-CuInS2. Folic acid, a high affinity ligand to floate receptors is efficiently internalized into the cell through the receptor mediated endocytosis even when conjugated with a wide variety of molecules. The results reveal that the FA-Gd-CuInS2 quantum dots show highly effective dual-modality imaging probes for specific cancer diagnosis.

    總目錄 第一章、緒論 1-1前言…………………………………………………………………………………1 1-2研究動機與內容……………………………………………………………………2 第二章、理論基礎與文獻回顧 2-1奈米晶體之基本特性…………………………………………….……………… ..3 2-1-1小尺寸效應...………………………………………………………….……...3 2-1-2表面效應……………………………………………………………….……..5 2-2異質結構奈米晶體..……………………………………………………….……….6 2-2-1 奈米晶體形狀....…………………………………………………….…….…6 2-2-2 異質結構奈米晶體的介紹………………………………………….…….....7 2-2-3異質結構奈米晶體的生長機制…………………………………….…….….9 2-2-4 I-III-V族異質結構奈米晶體的合成方法……………………………….…33 2-2-5 I-III-V族奈米晶體的結構介紹…………………………………….………39 2-3 量子點的表面改質及功能化……………………………………………….……46 2-3-1 表面改質必要性…………………………………………………….……...46 2-3-2配位體交換………………………………………………………….………46 2-3-3 兩性高分子包覆…………………………………………………….……...52 2-3-4 矽化處理…………………………………………………………….……...56 2-4 奈米材料之表面功能化…………………………………………………….……60 2-5 核磁共振影像(MRI)成像原理及顯影劑的作用…………………………….…..65 第三章、實驗 3-1 實驗藥品……………………………………………………………………….…67 3-2 實驗量測儀器……………………………………………………………….……68 3-3 實驗步驟…………………………………………………………………….……70 3-3-1 Cu2S奈米晶體與Cu2S-CIS奈米棒合成…………………………….…….70 3-3-2 Cu2S-ZnS奈米棒與Cu2S-CIZS奈米棒合成………………………………70 3-3-3 CuInS2/ZnS量子點合成……………………………………………….…….71 3-3-4兩性高分子PMAO表面修飾CuInS2/ZnS量子點………………………... 71 3-3-5水溶性CuInS2/ZnS量子點表面官能基胺基化……………………….……72 3-3-6製備CuInS2/ZnS量子點偶聯Gd-DTPA……………………………….…...72 3-3-7製備Gd-CuInS2/ZnS量子點偶聯Folic acid………………………………. 73 3-4樣品分析……………………………………………………………………….…...73 第四章、實驗結果與討論………………………………………………………….….78 4-1 銅硫-金屬硫化物異質結構材料的製備與合成……………………………….....78 4-1-1異質結構材料合成實驗介紹………………………………………………..78 4-1-2 Cu2S晶種之晶核成長機制……………………………………………….....80 4-1-3 Cu2S晶種的合成與參數之影響………………………………………….....82 4-1-4 Cu2S-ZnS(Cu2S-ZS) 異質結構材料之生長機制…………………………...84 4-1-5 Cu2S-ZnS(Cu2S-ZS) 異質結構材料的合成與各種參數之影響…………...87 4-1-6 Cu2S-CuInS(Cu2S-CIS) 異質結構材料之生長機制……………………..…94 4-1-7 Cu2S-CuInS(Cu2S-CIS) 異質結構材料的合成與各種參數之影響…….….97 4-1-8 Cu2S-CuInZnS(Cu2S-CIZS) 異質結構材料之生長機制…………….…....103 4-1-9 Cu2S-CuInZnS(Cu2S-CIZS) 異質結構材料之合成與各種參數之影響….104 4-2 CuInS2/ZnS量子點表面改質與功能化合成之鑑定分析…………………….....112 4-2-1 CuInS2/ZnS量子點表面改質與功能化合成實驗介紹…………………....112 4-2-2 I-III-VI族CuInS2/ZnS量子點表面改質介紹…………………………..…113 4-2-3 I-III-VI族CuInS2/ZnS量子點表面改質合成方法與機制……………..…114 4-2-4 I-III-VI族CuInS2/ZnS量子點表面改質之分析鑑定………………….….119 4-2-5 I-III-VI族CuInS2/ZnS水相量子點之Gd-DTPA顯影劑耦合介紹….…..122 4-2-6 I-III-VI族CuInS2/ZnS水相量子點之Gd-DTPA顯影劑耦合方法與機制 ……………………………………………………………………………….….…124 4-2-7 I-III-VI族CuInS2/ZnS水相量子點之Gd-DTPA顯影劑耦合之分析鑑定 ………………………………………………………………………………….…127 4-2-8 I-III-VI族CuInS2/ZnS水相量子點之葉酸耦合介紹………………….…132 4-2-9 I-III-VI族CuInS2/ZnS水相量子點之葉酸耦合細胞顯影…………….…135 第五章、結論………………………………………………………………….……...139 參考文獻………………………………………………………………………….…...142

    1.賴炤銘編撰 (2003),奈米材料的特殊效應與應用, The Chinese Chem. Soc., 61, 585.
    2. 張安華編撰(2005),實用奈米技術,新文京開發出版股份有限公司,台灣
    3.馬振基編撰 (2003),奈米材料科技原理與應用,全華科技圖書股份有限公司,臺灣。
    4. 羅吉宗等編撰 (2008),奈米科技導論(修訂版),全華圖書股份有限公司,臺灣。
    5. 蘇品書編撰(1999),超微粒子材料技術,復漢出版社,台灣。
    6. Y.-w. Jun, J.-H. Lee, J.-s. Choi and J. Cheon, J. Phys. Chem. B, 2005, 109, 14795.
    7. L. Carbone and P. D. Cozzoli, Nano Today, 2010, 5, 449.
    8. 陸慧,陰其俊,夏姣貞 .化學物理學報, 2005, 18(6), 1034.
    9. V. Schmidt, J. V. Wittemann and U. Gösele, Chem. Rev., 2010, 110, 361.
    10. L. E. Euliss, J. A. DuPont, S. Gratton and J. DeSimone, Chem. Soc. Rev., 2006, 35, 1095.
    11. X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019.
    12.Yu, S.-S. Chang, C.-L. Lee and C. R. C. Wang, J. Phys. Chem. B, 1997, 101, 6661.
    13. N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens and B. Chaudret, Nano Lett, 2001, 1, 565.
    14. V. F. Puntes, D. Zanchet, C. K. Erdonmez and A. P. Alivisatos, J. Am. Chem. Soc., 2002, 124, 12874.
    15. S. Chen, Z. Fan and D. L. Carroll, J. Phys. Chem. B, 2002, 106, 10777.
    16. H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, Wang and W. E. Buhro, J. Am. Chem. Soc., 2003, 125, 16168.
    17. J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel and M. Kuno, Chem Mater., 2004, 16, 5260.
    18. X. Zhong, R. Xie, L. Sun, I. Lieberwirth and W. Knoll, J. Phys. Chem. B, 2005, 110, 2.
    19. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang and A. Paul Alivisatos, Nature, 2004, 430, 190.
    20. S.-M. Lee, Y.-w. Jun, S.-N. Cho and J. Cheon, J. Am. Chem. Soc., 2002, 124, 11244.
    21. N. Zhao and L. M. Qi, Adv. Mater., 2006, 18, 359.
    22. L. Zheng, Y. Xu, Y. Song, C. Wu, M. Zhang and Y. Xie, Inorg. Chem., 2009, 48, 4003.
    23. P. D. Cozzoli, T. Pellegrino and L. Manna, Chem. Soc. Rev., 2006, 35, 1195.
    24. Y. Shi, Y. Wang, D. Wang, B. Liu, Y. Li and L. Wei, Cryst. Growth Des., 2012, 12, 1785.
    25. M. E. Norako and R. L. Brutchey, Chem. Mater., 2010, 22, 1613.
    26. B. Koo, R. N. Patel, and B. A. Korgel, Chem. Mater., 2009, 21, 1962.
    27. R. A. Laudise, Chemical & Engineering News Archive, 1987, 65, 30.
    28. J. C. Lin and M. Z. Yates, Langmuir, 2005, 21, 2117.
    29. J. D. Mackenzie and E. P. Bescher, Accounts Chem. Res., 2007, 40, 810.
    30. P. Zhu, J. Zhang, Z. Wu and Z. Zhang, Cryst. Growth Des., 2008, 8, 3148.
    31. J. Chun and J. Lee, Eur. J. Inorg. Chem., 2010, 2010, 4251.
    32. A. Huczko, Appl. Phys. A: Mater. Sci. Process. 2000, 70, 365.
    33. L. Shi and Q. Li, CrystEngComm, 2011, 13, 7262.
    34.Z. Wang, Z. Lai, G. Chen, Adv. Mater. Res., 415-417, 1755.
    35. S. Phok, S. Rajaputra and V. P. Singh, Nanotechnology, 2007, 18, 475601.
    36. L. Juan, M. X. Liang, S. D. Lin, C. Guorong, Acta Phys. Chim. Sin., 2009, 25, 2445
    37. R. S. Wagner, W. Ellis, Appl. Phys. Lett., 1964, 4, 89.
    38. H. J. Fan, P. Werner, M. Zacharias, Small, 2006, 2, 700.
    39. C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem., 2003, 31, 5.
    40. Y. Wu, P. Yang, J. Am. Chem. Soc., 2001, 123, 3165.
    41. G. Lee, Y. S. Woo, J. E. Yang, D. Lee, C. J. Kim, M. H. Jo, Angew. Chem. Int. Ed.,2009, 48, 7366.
    42. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science, 1995, 270, 1791.
    43. F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem., 2006, 45, 7511.
    44. M. Kuno, Phys. Chem. Chem. Phys., 2008, 10, 620.
    45. H. Yu, W. E. Buhro, Adv. Mater., 2003, 15, 416.
    46. D. D. Fanfair, B. A. Korgel, Cryst. Growth Des., 2005, 5, 1971.
    47. H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, L. W. Wang, W. E. Buhro, J. Am. Chem. Soc., 2003, 125, 16168.
    48. L. Ouyang, K. N. Maher, C. L. Yu, J. McCarty, H. Park, J. Am. Chem. Soc., 2007, 129, 133.
    49. Q. Zhang, S.-J. Liu and S.-H. Yu, J. Mater. Chem., 2009, 19, 191.
    50. T. Sugimoto, Adv. Colloid Interface Sci., 1987, 28, 65.
    51. L. Ratke, P. W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing. Springer, 2002, 117.
    52. Z. Y. Tang, N. A. Kotov and M. Giersig, Science, 2002, 297, 237.
    53. K. S. Cho, D. V. Talapin, W. Gaschler and C. B. Murray, J. Am. Chem. Soc., 2005, 127, 7140.
    54. H. L. Zhu and R. S. Averback, Philos. Mag. Lett., 1996, 73, 27.
    55. J. H. Yu, J. Joo, H. M. Park, S. I. Baik, Y. W. Kim, S. C. Kim and T. Hyeon, J. Am. Chem. Soc., 2005, 127, 5662.
    56. D. Zitoun, N. Pinna, N. Frolet and C. Belin, J. Am. Chem. Soc., 2005, 127, 15034
    57. M. Yeadon, M. Ghaly, J. C. Yang, R. S. Averback and J. M. Gibson, Appl. Phys. Lett., 1998, 73, 3208.
    58. Z. Tang, N. A. Kotov and M. Giersig, Science, 2002, 297, 237.
    59. Y. Yu, G. Chen, Q. Wang and Y. Li, Energ. Environ. Sci., 2011, 4, 3652.
    60. R. L. Penn and J. F. Banfield, Geochim., Cosmochim. Acta., 1999, 63, 1549.
    61. R. L. Penn, J. Phys. Chem. B, 2004, 108, 12707.
    62. C. Ribeiro, E. J. H. Lee, E. Longo and E. R. Leite, Chem. Phys. Chem., 2006, 7, 664.
    63. T. O. Drews, M. A. Katsoulakis and M. Tsapatsis, J. Phys. Chem. B, 2005, 109, 23879.
    64. T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda and S. Kitagawa, Angew. Chem. Int. Ed., 2009, 48, 4739.
    65. K. S. Cho, D. V. Talapin, W. Gaschler and C. B. Murray, J. Am. Chem. Soc., 2005, 127, 7140.
    66. E. J. H. Lee, C. Ribeiro, E. Longo and E. R. Leite, J. Phys. Chem. B, 2005, 109, 20842.
    67. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi and T. Li, J. Phys. Chem. B, 2005, 109, 13857.
    68. L. Manna, E. C. Scher and A. P. Alivisatos, J. Am. Chem. Soc., 2000, 122, 12700.
    69. P. D. Cozzoli, L. Manna, M. L. Curri, S. Kudera, C. Giannini, M. Striccoli and A. Agostiano, Chem. Mater., 2005, 17(6), 1296.
    70. T. Sugimoto, H. Itoh and T. Mochida, J. Colloid Interface Sci., 1998, 205(1), 42.
    71. P. D. Cozzoli, A. Kornowski and H. Weller, J. Am. Chem. Soc., 2003, 125, 14539.
    72. S. M. Lee, Y. W. Jun, S. N. Cho and J. Cheon, J. Am. Chem. Soc., 2002, 124, 11244.
    73. J. Wang and C. Zeng, J. Cryst. Growth, 2004, 270), 729.
    74. J. Wang, Q. W. Chen, C. Zeng and B. Y. Hou, Adv. Mater., 2004, 162), 137.
    75. C. Cheng, D. T. Haynie, J. Appl. Phys., 2005, 87, 263112.
    76. M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer, P. C. Searson, J. Appl. Phys., 2002, 91,8549
    77. S. E. Skrabalak and Y. Xia, ACS Nano, 2009, 3, 10-15.
    78. M. Faraday, Philosophical Transactions of the Royal Society of London, 1857, 147, 145.
    79. H. Yu, P. C. Gibbons, K. F. Kelton and W. E. Buhro, J. Am. Chem. Soc., 2001, 123, 9198.
    80. N. R. Jana, L. Gearheart and C. J. Murphy, Langmuir, 2001, 17, 6782.
    81. Y. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni and Y. Yin, J. Am. Chem. Soc., 2005, 127, 7332.
    82. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi and T. Li, J. Phys. Chem. B, 2005, 109, 13857.
    83. Y. Xiong, J. M. McLellan, Y. Yin and Y. Xia, Angew. Chem. Int. Ed., 2007, 46, 790.
    84. D. Wang and Y. Li, Adv. Mater., 2011, 23, 1044.
    85. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem. Int. Ed., 2009, 48, 60.
    86. S. E. Habas , H. Lee , V. Radmilovic , G. A. Somorjai , P. Yang , Nat. Mater., 2007, 6 , 692.
    87. J. H. Song , F. Kim , D. Kim , P. Yang , Chem. Eur. J., 2005 , 11 , 910.
    88. W. Han, L. Yi, N. Zhao, A. Tang, M. Gao and Z. Tang, J. Am. Chem. Soc., 2008, 130, 13152.
    89. M. Kruszynska, H. Borchert, J. r. Parisi and J. Kolny-Olesiak, J. Am. Chem. Soc., 2010, 132, 15976.
    90. S. M. Sze, Physics of Semiconductor Devices 2nd edition, 1981
    91. R. Rpssrtti, S. Nakahara, L. E. Brus, J. Chem. Phys., 1983, 79, 1086.
    92. Y.-C. Zhu, Y. Bando, D.-F. Xue and D. Golberg, J. Am. Chem. Soc., 2003, 125, 16196.
    93. F. Dawood and R. E. Schaak, J. Am. Chem. Soc., 2008, 131, 424.
    94. J. H. Yu, J. Joo, H. M. Park, S.-I. Baik, Y. W. Kim, S. C. Kim and T. Hyeon, J. Am. Chem. Soc., 2005, 127, 5662.
    95. D.-J. Kim and K.-K. Koo, Cryst. Growth. Des., 2008, 9, 1153.
    96. L. Zhang, H. Yang, J. Yu, F. Shao, L. Li, F. Zhang and H. Zhao, J. Phys. Chem. C, 2009, 113, 5434.
    97 . S. Xu, C. Wang, Q. Xu, H. Zhang, R. Li, H. Shao, W. Lei and Y. Cui, Chem. Mater., 2010, 22, 5838.
    98. J. Zhang, S. Jin, H. C. Fry, S. Peng, E. Shevchenko, G. P. Wiederrecht and T. Rajh, J. Am. Chem. Soc., 2011, 133, 15324.
    99. S. Chen, J. Zhu, Y. Shen, C. Hu and L. Chen, Langmuir, 2006, 23, 850.
    100. T. Zuo, Z. Sun, Y. Zhao, X. Jiang and X. Gao, J. Am. Chem. Soc., 2010, 132, 6618.
    101. M. Luo, Y. Liu, J. Hu, H. Liu and J. Li, ACS Appl. Mater. Inter., 2012.
    102. E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang and J. Shen, Chem. Mater., 1999, 11, 3096.
    103. D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler and A. P. Alivisatos, Nano Lett., 2007, 7, 2951.
    104. F. Gao, C. Lv, J. Han, X. Li, Q. Wang, J. Zhang, C. Chen, Q. Li, X. Sun, J. Zheng, L. Bao and X. Li, J. Phys. Chem. C, 2011, 115, 21574.
    105. X. Feng, Q. Shang, H. Liu, H. Wang, W. Wang and Z. Wang, J. Phys. Chem. C, 2009, 113, 6929.
    106. V. C. Sundar , J. Lee , J. R. Heine , M. G. Bawendi , K. F. Jensen , Adv. Mater., 2000 , 12 , 1102.
    107. W. U. Huynh , J. J. Dittmer , A. P. Alivisatos, Science, 2002, 295, 2425.
    108. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science, 1996, 272, 272.
    109. M. Bruchez Jr., M. Moronne, P. Gin , S. Weiss, A. P. Alivisatos, Science, 1998, 281, 2013.
    110. W. C. W. Chan, S. M. Nie, Science, 1998, 281, 2016.
    111. J. V. Williams, N. A. Kotov and P. E. Savage, Ind. Eng. Chem. Res., 2009, 48, 4316.
    112. R. Xie, D. Battaglia and X. Peng, J. Am. Chem. Soc., 2007, 129, 15432.
    113. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang and Y. Lu, J. Am. Chem. Soc., 2008, 130, 5620.
    114. X. Lu, Z. Zhuang, Q. Peng and Y. Li, Chem. Commun., 2011, 47, 3141.
    115. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang and Y. Lu, J. Am. Chem. Soc., 2008, 130, 5620.
    116. R. Xie, M. Rutherford and X. Peng, J. Am. Chem. Soc., 2009, 131, 5691.
    117. S.-H. Choi, E.-G. Kim and T. Hyeon, J. Am. Chem. Soc., 2006, 128, 2520.
    118. H. Zhong, S. S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li and G. D. Scholes, ACS Nano, 2010, 4, 5253.
    119. M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura and H. Maeda, J. Chem. Phys., 2008, 129, 134709.
    120. Hirpo, W.; Dhingra, S.; Sutorik, A. C.; Kanatzidis, M. G. J. Am. Chem. Soc., 1993, 115, 1597.
    121. S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, Chem. Mater., 2003, 15, 3142.
    122. S. K. Batabyal, L. Tian, N. Venkatram, W. Ji and J. J. Vittal, J. Phys. Chem. C, 2009, 113, 15037.
    123. W. Du, X. Qian, J. Yin and Q. Gong, Chem. Eur. J., 2007, 13, 8840.
    124. Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie and Y. Qian, Inorg. Chem., 2000, 39, 2964.
    125. J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, J. Mater. Chem., 2001, 11, 1417.
    126. L. Ren, F. Yang, Y.-R. Deng, N.-N. Yan, S. Huang, D. Lei, Q. Sun and Y. Yu, Int. J. Hydrogen. Energ., 2010, 35, 3297.
    127. S. Liu, H. Zhang, Y. Qiao and X. Su, RSC Advances, 2012, 2, 819.
    128. S. Peng, J. Liang, L. Zhang, Y. Shi and J. Chen, J. Cryst. Growth., 2007, 305, 99.
    129. Y. Qi, Q. Liu, K. Tang, Z. Liang, Z. Ren and X. Liu, J. Phys. Chem. C, 2009, 113, 3939.
    130. M. Baghbanzadeh, L. Carbone, P. D. Cozzoli and C. O. Kappe, Angew. Chem. Int. Ed., 2011, 50, 11312.
    131. Y. Li, L. Jing, R. Qiao and M. Gao, Chem. Commun., 2011, 47, 9293.
    132. J. Gardner, E. Shurdha, C. Wang, L. Lau, R. Rodriguez and J. Pak, J. Nanopart. Res., 2008, 10, 633.
    133. A. Pein, M. Baghbanzadeh, T. Rath, W. Haas, E. Maier, H. Amenitsch, F. Hofer, C. O. Kappe and G. Trimmel, Inorg. Chem., 2010, 50, 193.
    134. F. Bensebaa, C. Durand, A. Aouadou, L. Scoles, X. Du, D. Wang and Y. Le Page, J. Nanopart. Res., 2010, 12, 1897.
    135. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel, J. Am. Chem. Soc., 2008, 130, 16770.
    136. L. Zheng, Y. Xu, Y. Song, C. Wu, M. Zhang and Y. Xie, Inorg. Chem., 2009, 48, 4003.
    137. S. T. Connor, C.-M. Hsu, B. D. Weil, S. Aloni and Y. Cui, J. Am. Chem. Soc., 2009, 131, 4962.
    138. F. Zhang, E. Lees, F. Amin, P. Rivera_Gil, F. Yang, P. Mulvaney and W. J. Parak, Small, 2011, 7, 3113.
    139. W. C. W. Chan, S. Nie, Science, 1998, 281, 2016.
    140. D. M. Willard, L. L. Carillo, J. Jung, A. V. Orden, Nano Lett., 2001, 1,469.
    141. G. P. Mitchell, C. A. Mirkin, R. L. Letsinger, J. Am. Chem. Soc., 1999, 121, 8122.
    142. A. Hoshino, K. Fujioka, T. Oku, S. Nakamura, M. Suga, Y. Yamaguchi, K. Suzuki, M. Yasuhara, K. Yamamoto, Microbiol. Immunol., 2004 , 48 , 985.
    143. J. Aldana , Y. A. Wang , X. Peng , J. Am. Chem. Soc., 2001, 123, 8844.
    144. W. Jiang, S. Mardyani, H. Fischer, W. C. W. Chan, Chem. Mater., 2006, 18, 872.
    145. E. R. Goldman, E. D. Balighian, H. Mattoussi, M. K. Kuno, J. M. Mauro, P. T. Tran, G. P. Anderson, J. Am. Chem. Soc., 2002, 124, 6378.
    146. F. Dubois , B. Mahler, B. Dubertret, E. Doris, C. Mioskowski, J. Am. Chem. Soc., 2007, 129, 482.
    147. Y. C. Liu , M. Kim, Y. J. Wang, Y. A. Wang, X. G. Peng, Langmuir, 2006, 22, 6341.
    148. W. H. Guo , J. J. Li, Y. A. Wang, X. Peng, J. Am. Chem. Soc., 2003, 125, 3901.
    149. H. T. Uyeda , I. L. Medintz, J. K. Jaiswal, S. Simon, H. Mattoussi, J. Am. Chem. Soc., 2005, 127, 3870.
    150. K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, H. Mattoussi, J. Am. Chem. Soc., 2007, 129, 13987.
    151. F. Pinaud, D. King, H.-P. Moore, S. Weiss, J. Am. Chem. Soc., 2004, 126, 6115.
    152. S. Kim, M. G. Bawendi, J. Am. Chem. Soc., 2003, 125, 14652.
    153. R. Koole, M. M. van Schooneveld, J. Hilhorst, C. de Mello Donegá, D. C. Hart, A. van Blaaderen, D. Vanmaekelbergh and A. Meijerink, Chem. Mater., 2008, 20, 2503.
    154.H. Fan , E. W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M. C. Wilson, C. J. Brinker, Nano Lett., 2005, 5, 645.
    155. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, Science, 2002 , 298, 1759.
    156. M. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol., 2003, 21, 41.
    157. Petruska, M. A.; Bartko, A. P.; Klimov, J. Am. Chem. Soc., 2004, 126, 714.
    158. Chen, Y.; Thakar, R.; Snee, J. Am. Chem. Soc., 2008, 130, 3744.
    159. T. Pellegrino , L. Manna, S. Kudera, T. Liedl, T. Koktysh, A. L. Rogach, S. Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett., 2004, 4, 703.
    160. Lees E E, Nguyen T L, Clayton A H A, Mulvaney P., ACS Nano, 2009, 3(5), 1121.
    161.W. W. Yu, E. Chang, J. C. Falkner, J. Zhang, A. M. Al-Somali, C. M. Sayes, J. Johns, R. Drezek, V. L.Colvin, J. Am. Chem. Soc., 2007, 129, 2871.
    162. Z. D. Qi, D. W. Li, P. Jiang, F. L. Jiang, Y. S. Li, Y. Liu, W. K. Wong, K. W. Cheah, J. Mater. Chem., 2011, 21, 2455
    163. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, A. P. Alivisatos, J. Phys. Chem. B, 2001, 105, 8861.
    164. S. T. Selvan, P. K. Patra, C. Y. Ang, J. Y. Ying, Angew. Chem. Int. Ed., 2007, 46, 2448.
    165. T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, and U. Banin, Chem. Mater., 2005, 17, 258.
    166. T. Li, J. Moon, A. A. Morrone, J. J. Mecholsky, D. R. Talham, and J. H. Adair, Langmuir, 1999, 15, 4328.
    167. D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, J. Am. Chem. Soc., 2005, 127, 4990.
    168. T. Mokari, H. Sertchook, A. Aharoni, Y. Ebenstein, D. Avnir, and U. Banin, Chem. Mater., 2005, 17, 258.
    169. A. V. Blaaderen, and A. Vrij, Langmuir, 1992, 8, 2921.
    170. S. T. Selvan, Tan, T. T., Ying, and J. Y., Adv. Mater., 2005, 17, 1620.
    171. Y. H. Yang, L. H. Jing, X. L. Yu, D. D. Yan, and M. Y. Gao, Chem. Mater., 2007, 19, 4123.
    172. M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, E. Ruoslahti, Proc. Natl. Acad. Sci. USA, 2002 , 99, 12617.
    173. S. J. Rosenthal, I. Tomlinson, E. M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L. J. DeFelice, R. D. Blakely, J. Am. Chem. Soc., 2002 , 124, 4586.
    174. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, H. Mattoussi, J. Am. Chem. Soc., 2004 , 126, 301.
    175. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G. Bawendi, J. Am. Chem. Soc., 2000, 122, 12142.
    176. E. R. Goldman , G. P. Anderson, P. T. Tran, H. Mattoussi, P. T. Charles, J. M. Mauro, Analyt. Chem., 2002, 74 , 841.
    177. H. M. Powell and S. T. Boyce, Biomaterials, 2006, 27, 5821.
    178. W. H. C. Tiong, G. Damodaran, H. Naik, J. L. Kelly and A. Pandit, Langmuir, 2008, 24, 11752.
    179. M. Moros, B. Pelaz, P. Lopez-Larrubia, M. L. Garcia-Martin, V. Grazu and J. M. de la Fuente, Nanoscale, 2010, 2, 1746.
    180. E. Chang, J. S. Miller, J. T. Sun, W. W. Yu, V. L. Colvin, R. Drezek, J. L. West, Biochem. Biophys. Res. Commun., 2005, 334, 1317.
    181. A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett., 2004, 4, 11.
    182. Y. C. Liu, R. Brandon, M. Cate, X. G. Peng, R. Stony, M. Johnson, Analyt. Chem., 2007, 79, 8796.
    183. A. Agrawal, C. Y. Zhang, T. Byassee, R. A. Tripp, S. M. Nie, Analyt. Chem., 2006, 78, 1061.
    184. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, O. C. Farokhzad, Nano Lett., 2007, 7, 3065.
    185. Y. Gao and I. Kyratzis, Bioconjugate Chem., 2008, 19, 1945.
    186. I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nat. Mater., 2005, 4, 435.
    187. W. Cai, D.-W. Shin, K. Chen, O. Gheysens, Q. Cao, S. X. Wang, S. S. Gambhir, X. Chen, Nano Lett., 2006, 6, 669 .
    188. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, Science, 2002, 298, 1759.
    189. G. Hermanson, Bioconjugates Techniques, Academic Press, San Diego 1996.
    190. A. Fu, C. M. Micheel, J. Cha, H. Chang, H. Yang, A. P. Alivisatos, J. Am. Chem. Soc., 2004, 126, 10832.
    191. N. Charvet , P. Reiss, A. Roget, A. Depuis, D. Grunwald, S. Carayon, F. Chandezon, T. Livache, J. Mater. Chem., 2004, 14, 2638.
    192. J. Cheno, and J. Lee, Acc. Chem. Res., 2008, 41, 1630.
    193. X.-S. Du, Z.-Z. Yu, A. Dasari, J. Ma, Y.-Z. Meng and Y.-W. Mai, Chem. Mater., 2006, 18, 5156.
    194. T. Mokari, E. Rothenberg, I. Popov, R. Costi and U. Banin, Science, 2004, 304, 1787.
    195. A. E. Saunders, I. Popov and U. Banin, J. Phys. Chem. B, 2006, 110, 25421.
    196. T. Wetz, K. Soulantica, A. Talqui, M. Respaud, E. Snoeck and B. Chaudret, Angew. Chem., Int. Ed., 2007, 46, 7079.
    197. L. Carbone, S. Kudera, C. Giannini, G. Ciccarella, R. Cingolani, P. D. Cozzoli and L. Manna, J. Mater. Chem., 2006, 16, 3952.
    198. S. Kumar, M. Jones, S. S. Lo and G. D. Scholes, Small, 2007, 3, 1633.
    199. S. Kudera, L. Carbone, M. F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W. J. Parak and L. Manna, Nano Lett., 2005, 5, 445.
    200. F. Shieh, A. E. Saunders and B. A. Korgel, J. Phys. Chem. B, 2005, 109, 8538.
    201. L. Yi, A. Tang, M. Niu, W. Han, Y. Hou and M. Gao, CrystEngComm, 2010, 12, 4124.
    202. M. J. Buerger, Science, 1963, 141, 276.
    203. A. G. Dong, F. D. Wang, T. L. Daulton and W. E. Buhro, Nano Lett., 2007, 7, 1308.
    204. M. Casavola, V. Grillo, E. Carlino, C. Giannini, F. Gozzo, E. F. Pinel, M. A.Garcia, Manna, L.; R. Cingolani,; P. D. Cozzoli, Nano Lett., 2007, 7, 1386.
    205. B. Sadtler, Editon edn., 2009.
    206. Y.-W. Jun, J.-H. Lee, J.-S. Choi, J. Cheon, J. Phys. Chem. B, 2005, 109, 14795.
    207. Trindade, T. O’Brien, P.; Pickett, N. L. Chem. Mater., 2001, 13, 3843.
    208. T. Asikainen, M. Ritala and M. Leskelä, Appl. Surf. Sci., 1994, 82, 122.
    209. D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang, Y. F. Lu, J. Am. Chem. Soc., 2008, 130, 5620.
    210. X. Tang, W. Cheng, E. S. G. Choo, Xue, Chem. Commun., 2011, 47, 5217.
    211. C. Zou, L. Zhang, L. Zhai, D. Lin, J. Gao, Q. Li, Y. Yang, X. a. Chen and S. Huang, Chem. Commun., 2011, 47, 5256.
    212. D. Pan, D. Weng, X. Wang, Q. Xiao, W. Chen, C. Xu, Z. Yang, Y. Lu, Chem. Commun., 2009, 4221.
    213. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.
    214. M. Kuno, Phys. Chem. Chem. Phys., 2008, 10, 620.
    215. J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel, M. Kuno, Chem. Mater., 2004, 16, 5260.
    216. M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia,E. Ruoslahti, Proc. Natl. Acad. Sci. USA, 2002 , 99, 12617.
    217. R. Di Corato, A. Quarta, P. Piacenza, A. Ragusa, A. Figuerola, R. Buonsanti, R. Cingolani, L. Manna and T. Pellegrino, J. Mater. Chem., 2008, 18, 1991.
    218. M. Moros, B. Pelaz, P. Lopez-Larrubia, M. L. Garcia-Martin, V. Grazu and J. M. de la Fuente, Nanoscale, 2010, 2, 1746.
    219. M. Moros, B. Hernáez, E. Garet, J. T. Dias, B. Sáez, V. Grazú, Á. González- Fernández, C. Alonso and J. M. de la Fuente, ACS Nano, 2012, 6, 1565.
    220. J. Forsman, B. Jönsson and C. E. Woodward, J. Phys. Chem., 1996, 100, 15005.
    221. G. Hummer, J. Am. Chem. Soc., 1999, 121, 6299.
    222. X. Yu, Z. Zhao, W. Nie, R. Deng, S. Liu, R. Liang, J. Zhu and X. Ji, Langmuir, 2011, 27, 10265.
    223. X. Tang, W. Cheng, E. S. G. Choo and J. Xue, Chem. Commun., 2011, 47, 5217.
    224. C.-P. Tsai, Y. Hung, Y.-H. Chou, D.-M. Huang, J.-K. Hsiao, C. Chang, Y.-C. Chen and C.-Y. Mou, Small, 2008, 4, 186-191.
    225. P. Debouttiere, S. Roux, F. Vocanson, C. Billotey, O. Beuf, A. Faver-Reguillon, Y. Lin, S. Pellet-Rostaing, R. Lamartine, P. Perriat and O. Tillement, Adv. Funct. Mater., 2006, 16, 2330.
    226. C. P. Tsai, Y. Hung, Y. H. Chou, D. M. Huang, J. K. Hsiao, C. Chang, C. Y. Chen and C. Y. Mou, Small, 2008, 4, 186.
    227. Y. T. Lim, M. Y. Cho, B. S. Choi, J. M. Lee and B. H. Chung, Chem. Commun., 2008, 4930.
    228. P. Ionita, J. Wolowska, V. Chechik and A. Caragheorgheopol, J. Phys. Chem. C, 2007, 111, 16717.
    229. D. Sehgal and I. K. Vijay, Analytical Biochemistry, 1994, 218, 87.
    230. M. A. Gilles, A. Q. Hudson and C. L. Borders Jr, Anal. Biochem., 1990, 184, 244.
    231. Undenfriend, S. et al. Science, 1972, 178, 871.
    232. E. Sega and P. Low, Cancer Metast. Rev., 2008, 27, 655.
    233. C. M. Paulos, M. J. Turk, G. J. Breur and P. S. Low, Adv. Drug Deliver. Rev., 2004, 56, 1205.
    234. V. Morosini, T. Bastogne, C. Frochot, R. Schneider, A. Francois, F. Guillemin and M. Barberi-Heyob, Photoch. Photobio. Sci., 2011, 10, 842.

    無法下載圖示 全文公開日期 2017/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE