簡易檢索 / 詳目顯示

研究生: NGUYEN TRUNG THANH
NGUYEN - TRUNG THANH
論文名稱: Functional Morphology of Metal Core and Ti1-XMoXOy Nanosupports for Pt Nanocrystals toward Oxygen Reduction Reaction
Functional Morphology of Metal Core and Ti1-XMoXOy Nanosupports for Pt Nanocrystals toward Oxygen Reduction Reaction
指導教授: 黃炳照
BING-JOE HWANG
口試委員: 劉炯權
劉炯權
周澤川
周澤川
杜景順
杜景順
蘇威年
蘇威年
楊明長
楊明長
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 246
中文關鍵詞: Pt nanocrystalsfunctional metal and oxide supportsoxygen reduction reactionPEMFC.
外文關鍵詞: Pt nanocrystals, functional metal and oxide supports, oxygen reduction reaction, PEMFC.
相關次數: 點閱:393下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Fuel cell technology is a promising solution for the energy issues over the world. Among the wide variety of fuel cells, Proton Electrolyte Membrane Fuel Cells (PEMFCs) are highly regarded by scientists as a non-polluting power source with good commercial viability. The main objective in fuel cell technologies is to develop low-cost, high-performance and durable materials. However, current fuel cell systems have high intrinsic costs and fairly poor durability. For PEMFCs, the improvements both of catalytic activity and stability of Pt nanocrystals for oxygen reduction reaction (ORR) are the prerequisite issues before PEMFCs can be commercialized for automotive applications. Previous reports showed that the ORR is kinetically limited at the cathode and the
    instability of Pt on the cathode is marked by the loss of Pt electrochemical surface area (ECSA)over time, due to Pt dissolution/aggregation/Oswald ripening - these being the major contributors to the degradation of fuel cell performance. Additionally, the predominance of weak interactions between the carbon support and the catalytic metal nanoparticles leads to the sintering of the catalytic metal nanoparticles and a consequent decrease in the active surface area with long-term operation. More importantly, the high potentials that accelerate both electrochemical carbon corrosion and the dissolution of the active elements under normal operating conditions, are issues impacting on fuel cell durability that remain unresolved. Therefore, this dissertation is focused on the "Functional morphology of metal core and Ti1-XMoXOy nanosupports for Pt nanocrystals toward oxygen reduction reaction". This is a collection of new selected approaches for enhancing ORR performance of Pt nano-electrocatalysts.
    1) The first approach is entitled: "Functional Pd tetrapod core of heterogeneous Pd-Pt nanodendrites for enhancing oxygen reduction reaction". Herein, the Pd tetrapod core is demonstrated to effectively enhance the catalytic activity and durability of Pd@Pt nanodendites for the ORR. Special attention is given to the positively coupled effect of oxalate ion-formaldehyde during the hydrothermal synthesis of various Pd morphologies at different temperatures. To be able to synthesize tetrapodal morphology in an aqueous solution, the (110) and (111) planes on truncated tetrahedral Pd seeds are passivated at 150 oC by the adsorption of oxalate ions and CO, a product from the decomposition of formaldehyde on crystalline Pd surfaces. However, Pd nanotetrahedra can be obtained at 200 oC, due to the weakened effect of CO and oxalate ions. Thus,
    Pd tetrapod synthesis can be achieved by selective deposition of fresh Pd atoms onto (100) planes of truncated tetrahedral Pd seeds without directly using hazardous CO gas. Pt (30 wt%) on tetrapodal and truncated octahedral Pd cores and Pt (50 wt%) on tetrapodal Pd cores were compared against commercial Pt/C (E-Tek) for ORR. The Pdtetrapod@30 wt% Pt catalyst exhibited the highest ORR catalytic activity. Overall, the Pd tetrapod core has a functional morphology
    which offers high-index facets for the subsequent deposition of Pt(110)nanodendrites and the bimetallic interaction between two materials allows good electron transfer from Pd core into Pt surfaces. Both effects contribute to increased catalytic activity of Pdtetrapod @30 wt% Pt, even under a lower loading of Pt. Pdtetrapod @30 wt% Pt has rather large particle size (~39.5 nm) which exhibits excellent durability and resistance to the agglomeration or sintering of Pt.
    2) The second approach is entitled: "Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction". This part shows that the integrated material of robust non-carbon Ti0.7Mo0.3O2 nanosupports and Pt dendritic layer was demonstrated to effectively enhance the activity and stability of Pt nano-electrocatalysts for the ORR. Hetero-nanostructural clusters (HNC) of Ptd/Ti0.7Mo0.3O2 were synthesized by a simple aqueous-phase route, in which the deposition and growth of Pt nanoparticles were controlled to obtain high-index facets of Pt. In the synthesis, Pt4+ ions were reduced and formed nuclei in the presence of L-ascorbic acid and Cetyltrimethylammonium bromide (CTAB). With adequate control of dosage intervals and temperature, the following addition of Pt precursor solution was carried out by injecting the precursor into the suspension solution containing Ti0.7Mo0.3O2. The clustering of Pt particles could be driven by their high surface energy due to a large surface area to-volume ratio. 20 wt% Ptd/Ti0.7Mo0.3O2-HNC and support-free Pt nanodendrite catalysts were prepared and compared against commercial 20 wt% Pt/C (E-TEK) for ORR. TEM, XRD, X-ray Absorption Near Edge Structure (XANES), and electrochemical techniques were applied to characterize these catalysts. Effects of high index facets on dendritic Pt surface contribute to the enhanced catalytic activity and stability of Ptd/Ti0.7Mo0.3O2-HNC towards the ORR. In addition,electron transfer originating from strong metal-support interactions (SMSI) and corrosion-resistant Ti0.7Mo0.3O2 nanosupport also play important roles.
    3) The final approach is entitled: "Defect-Structural Ti0.9Mo0.1Oy Supported-Pt nanocrystals Used as High-Performance Catalyst for Oxygen Reduction Reaction". The search for catalysts with high activity and longer-term stability for ORR in PEMFC is ongoing. In this research, we investigated the idea that advanced defect structural Ti0.9Mo0.1Oy nanosupports significantly enhanced the ORR activity and stability of supported-Pt catalysts. Here the approach of synthesis
    involves anchoring of Pt(111) nanoparticles on the defect structural Ti0.9Mo0.1Oy nanosupports (d-Ti0.9Mo0.1Oy). While the structural defects of Ti0.9Mo0.1Oy are made by doping Molybdenum into anatase-TiO2 structure and Hydrogen-treatment at a high temperature (300 oC). The structural defects of this material were studied by Kroger-Vink defect theory, density functional theory (DFT)calculations, and examined by the experimental Raman, electronic conductivity measurements.Rotating disk electrode (RDE) measurements showed that 20 wt% Pt/d-Ti0.9Mo0.1Oy catalyst had 1.5 times and ∼ 9.1 times higher Pt mass activity for ORR than those of 10 wt% Pt/d-Ti0.9Mo0.1Oy and commercial Pt/C catalysts, respectively. The observed high activity of metal oxide supported-
    Pt catalyst is attributed to the role of the advanced oxide support with electron donation from support to Pt catalyst surface, oxygen vacancies on nanosupport surface and high conductivity. Pt nano-electrocatalysts on the advanced robust non-carbon d-Ti0.9Mo0.1Oy nanosupports also exhibits improved stability against Pt sintering under a potential cycling regime (3000 cycles from 0.4 V to 1.0 V vs. RHE) due to SMSI. Moreover, the role of oxygen vacancies on oxide surface was also investigated as a means to enhance ORR activity by DFT theory.
    This collection of new approaches not only provides feasible paths for enhacing the efficiency of PEMFCs but also extends different catalysis reactions such as CO oxidation, hydrogenation,methanol oxidation reaction in DEMFCs etc., or in different applications including biosensors,optical materials (on tetrapod morphology of Pd-based materials) etc.

    Abstract ........................ I Acknowledgement .................. V Table of Contents ................ VI List of Schemes ...................XIII List of Figures .................... XIV List of Abbreviations ............... XXIX Chapter 1. Introduction and current challenges for Proton exchange membrane fuel cells .... 1 1.1 Overview about fuel cell technology ................ 1 1.2 Proton exchange membrane fuel cells (PEMFC) ......... 4 1.2.1 Overview about PEMFC .............................. 4 1.2.2 The operating principle of PEMFCs ................ 6 1.3 Current challenges for PEMFCs ....................... 9 1.3.1 Degradation and durability issues in catalyst layers ......... 9 1.3.1.1 Platinum degradation .............................. 9 1.3.1.2 Carbon support degradation ........................ 14 1.3.1.3 Ionomer degradation and interfacial degradation ............ 18 1.3.2 Cost of Pt metal catalyst .............................. 19 1.3.3 ORR activity issues ......................................... 20 1.3.4 Carbon-support oxidation ............................ 22 Chapter 2. Morphologies-controlled Pt based nanocrystals and Bimetallic Pd-Pt nanodendrite for Oxygen Reduction Reaction .................... 24 2.1 Introduction ........................ 24 2.2 Morphologies and Fuel cell applications of metal nanocrystal ......... 24 2.3 Synthesis methods and effects to quality of size- and shape-nanoparticles ................... 27 2.3.1 Synthesis methods for metal nanocrystals ................. 27 2.3.1.1 Reduction methods....... 27 2.3.1.2 Thermal decomposition methods ...................... 29 2.3.2 Effects to quality of size and shape particle for metal nanocrystals ............................... 30 2.3.2.1 Nucleation and growth-size control of noble metal nanoparticles ........................... 30 2.3.2.2 Shape control and Effects to quality of shape-nanoparticles ...... 34 2.4 The examples of shape control and mechanism for preparation of Pd and Pt based nanocrystals ........................... 53 2.4.1 Formation of polyhedrons ............................. 54 2.4.2 Concave metal nanocrystals ........................... 56 2.4.2.1 Amine-Assisted Synthesis of Pt Nanocrystals with High-Index Facets .................. 56 2.4.2.2 Concave Pd Polyhedra with Controllable Concavity.......... 60 2.4.3 Nanorods and nanowires.............................. 63 2.4.4 Preparation of Ultrathin Pd Nanosheets Aided by Carbon Monoxide .... 66 2.4.5 Multi-branches and nanodendrite materials ........... 71 2.4.5.1 Multipods from Nanocrystal Overgrowth ............. 71 2.4.5.2 Dendrite and branch Pt-based nanocrystals .......... 75 2.5 Bimetallic Pt-based nanodendrite for fuel cells ....... 84 Chapter 3. Non-Carbon Support materials of Pt nano-electrocatalyst for fuel cells .............. 88 3.1 Support materials of Pt nano-electrocatalyst for fuel cells ........ 88 3.2 Non-carbonaceous and inorganic oxide/carbide supports ............... 92 3.2.1 Ti-based compounds ................... 93 3.2.1.1 Titanium oxides (TiO2-x or TinO2n-1) ................. 93 3.2.1.2 Titanium nitride (TiN) ............................ 98 3.2.1.3 Titanium diboride (TiB2) .................. 99 3.3 Other dopants for Titania ................ 100 Chapter 4. Material and methods ............... 103 4.1 Materials ............. 103 4.2 Methods ................. 103 4.2.1 X-ray diffraction (XRD) measurements ................ 103 4.2.2 Transmission electron microscopy (TEM) measurements ............. 103 4.2.3 Determining of metal(s) loading ................ 103 4.2.4 Surface area measurement .................... 104 4.2.5 Electronic conductivity measurement ............ 104 4.2.6 X-ray absorption spectra (XAS) measurement ................. 104 4.2.7 Raman measurements .................... 104 4.2.8 Oxygen-vacancy concentration calculation .............. 105 4.2.9 DFT simulation to model Ti1-xMoxOy, Pt/d-Ti1-xMoxOy structures and oxygen adsorption on Pt and oxygen vacancy sites ....... 105 4.2.10 Electrode preparation and electrochemical measurements ......... 106 Chapter 5. Functional Pd tetrapod core of heterogeneous Pd-Pt nanodendrites for enhancing oxygen reduction reaction ........... 108 5.1 Introduction .................... 108 5.2 Experimental section.............. 110 5.2.1 Synthesis of Pd cores ............ 110 5.2.1.1 Synthesis of Pd nanocubes ............... 110 5.2.1.2 Synthesis of Pd truncated octahedrons .............. 111 5.2.1.3 Synthesis of Pd tetrapods ....................... 111 5.2.2 Synthesis of Pd-Pt bimetallic nanocrystals with the dendritic shell ............................. 112 5.3 Results and discussion ................... 112 5.3.1 Structure of Pd nanotetrapods ......................... 112 5.3.3. Formation mechanism of Pd nanotruncated octahedra, tetrahedra, and tetrapods ...... 115 5.3.4 Pt nanodendrites on various Pd core morphologies ............... 117 5.3.5 Electrocatalytic activity and stability toward the ORR ......... 120 5.3.6. The functional morphology of Pd cores for the ORR performance enhancements ..... 122 5.4 Conclusions .................... 125 Chapter 6. Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction ........ 126 6.1 Introduction ............................ 126 6.2 Experimental section...... 128 6.2.1. Synthesis of Ti0.7Mo0.3O2 nanoparticles ...... 128 6.2.2. Synthesis of Ptd/Ti0.7Mo0.3O2 nanodendrite clusters .......... 128 6.3. Results and discussion .......... 129 6.3.1. Characterization of Ti0.7Mo0.3O2 support material ........... 129 6.3.2. Characterization of Ptd/Ti0.7Mo0.3O2 catalysts and the formation mechanism of dendritic Pt layer on Ti0.7Mo0.3O2 nanosupports............. 130 6.3.3 Electrochemical performances of Pt catalysts .......... 134 Chapter 7. Defect-Structural Ti0.9Mo0.1Oy Supported-Pt nanocrystals Used as High-Performance Catalyst for Oxygen Reduction Reaction ........... 140 7.1 Introduction ............................... 140 7.2 Experimental section.................. 142 7.2.1 Synthesis of Ti1-xMoxOy nanoparticles .................. 142 7.2.2 Synthesis of the defect structural Ti0.9Mo0.1Oy (d-Ti0.9Mo0.1Oy) nanosupport ............. 142 7.2.3 Deposition of Pt nanoparticles onto the d-Ti0.9Mo0.1Oy nanosupports .......................... 142 7.3 Results and discussion .................. 143 7.3.1 Characterization of Ti0.9Mo0.1Oy ......................... 143 7.3.1.1 XRD measurements .................................. 143 7.3.1.2 Raman and X-ray adsorption spectroscopy (XAS) measurements .... 144 7.3.1.3 TEM and TEM mapping images of Ti0.9Mo0.1Oy materials ........ 146 7.3.1.4 Defect structure Ti1-xMoxOy materials ............... 147 7.3.1.5 Characterization and oxygen-vacancy concentration of d-Ti0.9Mo0.1Oy materials.... 149 7.3.2 Characterizations of Pt/d-Ti0.9Mo0.1Oy and Pt/C (E-TEK) samples ............................. 152 7.3.2.1 TEM measurements ............................. 152 7.3.2.2 X-ray absorption fine structure studies ............. 153 7.3.3 Electrochemical behavior of d-Ti0.9Mo0.1Oy nanosupports and Pt/d-Ti0.9Mo0.1Oy nanocrystals............. 154 7.3.4 Oxygen vacancies promote the ORR activity enhancement of Pt/d-Ti0.9Mo0.1Oy catalysts.Computation results .... 158 7.4 Conclusions ................................. 159 Chapter 8. Summary and conclusions ......................... 161 Supporting information .................................. 163 References ........... 177 CURRICULUM VITAE .......... 215 List of publications ............................ 216 List of conferences.................. 217

    1. Hoogers, G., Fuel Cell Technology Handbook. Boca Raton London-New York
    Washington, D.C. 2003.
    2. Larminie, J., Dicks, A., Fuel Cell Systems Explaine. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, England 2003.
    3. Carrette, L.; Friedrich, K. A.; Stimming, U., Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem 2000, 1, (4), 162.
    4. Barbir, F., PEM Fuel Cells Theory and Practice. Elsevier 2005.
    5. Zhang, S.; Yuan, X.-Z.; Hin, J. N. C.; Wang, H.; Friedrich, K. A.; Schulze, M., A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells.Journal of Power Sources 2009, 194, (2), 588.
    6. Pourbaix, M., Altas of Electrochemical Equilibriumin Aqueous Solutions
    Pergamon Press, New York 1996.
    7. Dingreville, R.; Qu, J.; Mohammed, C., Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids 2005, 53, (8), 1827.
    8. Jian Xie; David L. Wood III, D. M. W., Thomas A. Zawodzinski, Plamen Atanassov and Rodney L. Borup, Durability of PEFCs at High Humidity Conditions J. Electrochemical Society 2005, 152, (1), A104.
    9. Guilminot, E., Corcella, A. , Charlot, F.,Maillard, F. , and Chatenet, M., Detection of Ptz + Ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC. J.Electrochemical Society 2007, 154, (1), B96.178
    10. More, K. L., Borup, R., Reeves, K.S., Identifying Contributing Degradation
    Phenomena in PEM Fuel Cell Membrane Electride Assemblies Via Electron Microscopy. ECS Trans. 2006, 3, 717.
    11. Zhou, A. V. V. a. Y.; , Mechanism of Catalyst Degradation in Proton Exchange
    Membrane Fuel Cells J. Electrochemical Society 2007, 154, (6), B540.
    12. Mayrhofer, K. J. J.; Meier, J. C.; Ashton, S. J.; Wiberg, G. K. H.; Kraus, F.; Hanzlik,M.; Arenz, M., Fuel cell catalyst degradation on the nanoscale. Electrochemistry Communications 2008, 10, (8), 1144.
    13. Kawahara, S., Mitsushima, S., Ota, K.-I., Kamiya, N., Deterioration of Pt Catalyst Under Potential Cycling. ECS Trans. 2006, 3, 625.
    14. Guilminot, E., Corcella, A. , Chatenet, M.,Maillard, F. , Charlot, F., Berthome, G.,Iojoiu, C. , Sanchez, J.-Y., Rossinot, E., and Claude, E., Membrane and Active Layer Degradation upon PEMFC Steady-State Operation: I. Platinum Dissolution and Redistribution within the MEA J. Electrochemical Society 2007, 154, (11), B1106.
    15. Ferreira, P. J., la O’, G. J., Shao-Horn, Y. , Morgan, D. , Makharia, R. , Kocha, S., and Gasteiger, H. A. , Instability of Pt ⁄ C Electrocatalysts in Proton Exchange Membrane Fuel Cells: A Mechanistic Investigation J. Electrochemical Society 2005, 152, (11), A2256.
    16. Jian Xie, D. L. W. I., Karren L. More, Plamen Atanassov, and Rodney L. Borup;,Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions J. Electrochemical Society 2005, 152, (5), A1011.
    17. Akita, T.; Taniguchi, A.; Maekawa, J.; Siroma, Z.; Tanaka, K.; Kohyama, M.; Yasuda,K., Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly. Journal of Power Sources 2006, 159, (1), 461.179
    18. Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.;Shen, J., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources 2007, 165, (2), 739.
    19. Yamazaki, O., Oomori, Y., Dhintaku, H., Tabata, T. , Study on Degradation of the Pt-Ru Anode of PEFC for Residential Application (2): Analyses of the MEAs Degraded in the Anode Performance. ECS Trans. 2007, 11, 287.
    20. Mohtadi, R.; Lee, W. k.; Van Zee, J. W., Assessing durability of cathodes exposed to common air impurities. Journal of Power Sources 2004, 138, (1–2), 216.
    21. Sato, Y., Wang, Z., Takagi, Y., Effect of Anode Catalyst Support on MEA Degradation Caused by Hydrogen-Starved Operation of a PEFC. ECS Trans. 2006, 3, 827.
    22. Jang, S.-E.; Kim, H., Effect of Water Electrolysis Catalysts on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells. Journal of the American Chemical Society 2010,132, (42), 14700.
    23. Kinoshita, K., Carbon, Electrochemical and Physicochemical Properties. John Wiley & Sons, New York 1988.
    24. Kangasniemi, K. H., Condit, D. A., and Jarvi, T. D. , Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions. J. Electrochemical Society 2004, 151, (4), E125.
    25. Fairweather, J., Li, B., Mukundan, R., Fenton, J., Borup, R. L. , In Situ and Ex Situ Characterization of Carbon Corrosion in PEMFCs. ECS Trans. 2010, 33, 433.
    26. Antolini, E.; Gonzalez, E. R., Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 2009, 180, (9–10), 746.
    27. Ralph, T. R., Hudson, S., Wilkinson, D.P., Electrocatalyst Stability In PEMFCs And The Role Of Fuel Starvation And Cell Reversal Tolerant Anodes. ECS Trans. 2006, 1, 67.180
    28. Taniguchi, A.; Akita, T.; Yasuda, K.; Miyazaki, Y., Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. Journal of Power Sources 2004, 130, (1–2), 42.
    29. Tang, H.; Qi, Z.; Ramani, M.; Elter, J. F., PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. Journal of Power Sources 2006, 158, (2),1306.
    30. Passalacqua, E.; Lufrano, F.; Squadrito, G.; Patti, A.; Giorgi, L., Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta 2001, 46, (6), 799.
    31. Zhang, F.-Y.; Advani, S. G.; Prasad, A. K.; Boggs, M. E.; Sullivan, S. P.; Beebe Jr, T.P., Quantitative characterization of catalyst layer degradation in PEM fuel cells by X-ray photoelectron spectroscopy. Electrochimica Acta 2009, 54, (16), 4025.
    32. Carrette, L.; Friedrich, K. A.; Stimming, U., Fuel Cells – Fundamentals and
    Applications. Fuel Cells 2001, 1, (1), 5.
    33. Trasatti, S., J. Elecfroanai. Chem. 1971, 33, 51.
    34. Adina Morozan, B. J. a. S. P., Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 4, 1238.
    35. Liang, C. C. a. J., A.L., The overpotential of oxygen reduction at platinum electrodes. J.Electroanal. Chem. 1965, 9, 390.
    36. Kinoshita, K., Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes. J. Electrochem. Soc. 1990, 137, 845.
    37. Gamez, A., Richard, D. , and Gallezot, P., Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer. Electrochim. Acta 1996, 41, 307.
    181
    38. Tamizhmani, G., Dodelet, J.P., and Guay, D. , Crystallite Size Effects of Carbon-Supported Platinum on Oxygen Reduction in Liquid Acids. J. Electrochem. Soc. 1996, 143, 18.
    39. Min, M., Cho, J., Cho, K., and Kim, H. , Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 2000, 45, 4211.
    40. Gouerec, P., Savy, M., and Riga, J., Oxygen reduction in acidic media catalyzed by pyrolyzed cobalt macrocycles dispersed on an active carbon: The importance of the content of oxygen surface groups on the evolution of the chelate structure during the heat treatment.Electrochim. Acta 1998, 43, 743.
    41. Gupta. S., T., D., Zecevic, S.K., Aldred, W., Guo, D., and Savinell, R.F. , Methanoltolerant electrocatalysts for oxygen reduction in a polymer electrolyte membrane fuel cell. J.Appl. Electrochem. 1998, 28, 673.
    42. Schmidt, T. J., U.A. Paulaus, H.A. Gasteiger, and R.J. Behm The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J. Electroanal.Chem. 2001, 508, 41.
    43. Sidik, R. A., and Anderson, A.B. , Density functional theory study of O2
    electroreduction when bonded to a Pt dual site. J. Electroanal. Chem. 2002, 528, 69.
    44. Norskov, J. K., Rossmeisl, J., Logadottir, A. , Lindqvist, L. , Kitchin, J.R., Bligaard, T.,and Jonsson, H. , Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J.Phys. Chem. B 2004, 108, 17886.
    45. Reiser, C. A., Bregoli, L. , Patterson, T.W. , Yi, J.S. , Yang, J.D. , Perry, M.L., and Jarvi, T.D., A Reverse-Current Decay Mechanism for Fuel Cells. Electrochem. Solid State Lett.2005, 8, A273.
    46. Bagotsky, V. S., Fuel Cells: Problems and Solutions. Wiley: New York 2009.
    182
    47. Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller,H., Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures. Advanced Functional Materials 2002, 12, (10), 653.
    48. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angewandte Chemie International Edition 2009, 48, (1), 60.
    49. Kim, C.; Oh, J.-G.; Kim, Y.-T.; Kim, H.; Lee, H., Platinum dendrites with controlled sizes for oxygen reduction reaction. Electrochemistry Communications 2010, 12, (11), 1596.
    50. Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng,N., Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nano 2011,6, (1), 28.
    51. Lim, B.; Xia, Y., Metal Nanocrystals with Highly Branched Morphologies.
    Angewandte Chemie International Edition 2011, 50, (1), 76.
    52. Huang, X.; Tang, S.; Zhang, H.; Zhou, Z.; Zheng, N., Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals. Journal of the American Chemical Society 2009, 131, (39), 13916.
    53. Shi, A. C.; Masel, R. I., The effects of gas adsorption on particle shapes in supported platinum catalysts. Journal of Catalysis 1989, 120, (2), 421.
    54. Yang, H.; Zhang, J.; Sun, K.; Zou, S.; Fang, J., Enhancing by Weakening:
    Electrooxidation of Methanol on Pt3Co and Pt Nanocubes. Angewandte Chemie International Edition 2010, 49, (38), 6848.
    55. Wu, J.; Gross, A.; Yang, H., Shape and Composition-Controlled Platinum Alloy
    Nanocrystals Using Carbon Monoxide as Reducing Agent. Nano Letters 2011, 11, (2), 798.183
    56. Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H. C.; Kim, M. J.; Yang, D.; Xie, Z.;Xia, Y., Synthesis of Pd−Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. Journal of the American Chemical Society 2011, 133, (15), 6078.
    57. Huang, C.-J.; Chiu, P.-H.; Wang, Y.-H.; Chen, W. R.; Meen, T. H., Synthesis of the Gold Nanocubes by Electrochemical Technique. Journal of The Electrochemical Society 2006,153, (8), D129.
    58. Cao, C.; Park, S.; Sim, S. J., Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase. Journal of Colloid and Interface Science 2008, 322, (1), 152.
    59. Lim, S. I.; Ojea-Jimenez, I.; Varon, M.; Casals, E.; Arbiol, J.; Puntes, V., Synthesis of Platinum Cubes, Polypods, Cuboctahedrons, and Raspberries Assisted by Cobalt Nanocrystals.Nano Letters 2010, 10, (3), 964.
    60. Hu, B.; Ding, K.; Wu, T.; Zhou, X.; Fan, H.; Jiang, T.; Wang, Q.; Han, B., Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and alkylammonium alkylcarbamate and their catalytic activity. Chemical Communications 2010,46, (45), 8552.
    61. Yin, A.-X.; Min, X.-Q.; Zhang, Y.-W.; Yan, C.-H., Shape-Selective Synthesis and Facet-Dependent Enhanced Electrocatalytic Activity and Durability of Monodisperse Sub-10nm Pt−Pd Tetrahedrons and Cubes. Journal of the American Chemical Society 2011, 133, (11),3816.
    62. Sun, S.; Jaouen, F.; Dodelet, J.-P., Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells.Advanced Materials 2008, 20, (20), 3900.
    63. Kang, Y.; Ye, X.; Murray, C. B., Size- and Shape-Selective Synthesis of Metal Nanocrystals and Nanowires Using CO as a Reducing Agent. Angewandte Chemie
    International Edition 2010, 49, (35), 6156.184
    64. Zhang, L.; Zhang, J.; Kuang, Q.; Xie, S.; Jiang, Z.; Xie, Z.; Zheng, L., Cu2+-Assisted Synthesis of Hexoctahedral Au–Pd Alloy Nanocrystals with High-Index Facets. Journal of the American Chemical Society 2011, 133, (43), 17114.
    65. Wang, Y.; Fang, J., Selective Epitaxial Growth of Silver Nanoplates. Angewandte Chemie International Edition 2011, 50, (5), 992.
    66. Shahjamali, M. M.; Bosman, M.; Cao, S.; Huang, X.; Saadat, S.; Martinsson, E.; Aili,D.; Tay, Y. Y.; Liedberg, B.; Loo, S. C. J.; Zhang, H.; Boey, F.; Xue, C., Gold Coating of Silver Nanoprisms. Advanced Functional Materials 2012, 22, (4), 849.
    67. Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S.; Mirkin, C. A., Concave Cubic Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society 2010, 132, (40), 14012.
    68. Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y., Platinum Concave Nanocubes with High-Index Facets and Their Enhanced Activity for Oxygen Reduction Reaction. Angewandte Chemie International Edition 2011, 50, (12), 2773.
    69. Zhang, H.; Li, W.; Jin, M.; Zeng, J.; Yu, T.; Yang, D.; Xia, Y., Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. Nano Letters 2010, 11, (2), 898.
    70. Huang, X.; Zhao, Z.; Fan, J.; Tan, Y.; Zheng, N., Amine-Assisted Synthesis of Concave Polyhedral Platinum Nanocrystals Having {411} High-Index Facets. Journal of the American Chemical Society 2011, 133, (13), 4718.
    71. DeSantis, C. J.; Peverly, A. A.; Peters, D. G.; Skrabalak, S. E., Octopods versus Concave Nanocrystals: Control of Morphology by Manipulating the Kinetics of Seeded Growth via Co-Reduction. Nano Letters 2011, 11, (5), 2164.185
    72. Huan, T. N.; Ganesh, T.; Kim, K. S.; Kim, S.; Han, S.-H.; Chung, H., A threedimensional gold nanodendrite network porous structure and its application for an electrochemical sensing. Biosensors and Bioelectronics 2011, 27, (1), 183.
    73. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324,(5932), 1302.
    74. Kobayashi, H.; Lim, B.; Wang, J.; Camargo, P. H. C.; Yu, T.; Kim, M. J.; Xia, Y.,Seed-mediated synthesis of Pd–Rh bimetallic nanodendrites. Chemical Physics Letters 2010,494, (4–6), 249.
    75. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie International Edition 2007, 46, (25), 4630.
    76. Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P.,
    Morphological Control of Catalytically Active Platinum Nanocrystals. Angewandte Chemie 2006, 118, (46), 7988.
    77. Schmidt, E.; Vargas, A.; Mallat, T.; Baiker, A., Shape-Selective Enantioselective Hydrogenation on Pt Nanoparticles. Journal of the American Chemical Society 2009, 131, (34),12358.
    78. Ingert, D.; Pileni, M. P., Limitations in Producing Nanocrystals Using Reverse Micelles as Nanoreactors. Advanced Functional Materials 2001, 11, (2), 136.
    79. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4, (3), 310.
    80. Xiong, Y.; Xia, Y., Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium. Advanced Materials 2007, 19, (20), 3385.186
    81. Zhang, J.-M.; Ma, F.; Xu, K.-W., Calculation of the surface energy of FCC metals with modified embedded-atom method. Applied Surface Science 2004, 229, (1–4), 34.
    82. Xiong, Y.; Siekkinen, A. R.; Wang, J.; Yin, Y.; Kim, M. J.; Xia, Y., Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry 2007, 17, (25), 2600.
    83. SMITH, D. J.; PETFORD-LONG, A. K.; WALLENBERG, L. R.; BOVIN, J.-O.,
    Dynamic Atomic-Level Rearrangements in Small Gold Particles. Science 1986, 233, (4766),872.
    84. Gai, P. L.; Harmer, M. A., Surface Atomic Defect Structures and Growth of Gold Nanorods. Nano Letters 2002, 2, (7), 771.
    85. Lofton, C.; Sigmund, W., Mechanisms Controlling Crystal Habits of Gold and Silver Colloids. Advanced Functional Materials 2005, 15, (7), 1197.
    86. Baletto, F.; Ferrando, R., Structural properties of nanoclusters: Energetic,
    thermodynamic, and kinetic effects. Reviews of Modern Physics 2005, 77, (1), 371.
    87. Baletto, F., Ferrando, R.,Fortunelli, A. , Montalenti, F. , and Mottet, C., Crossover among structural motifs in transition and noble-metal clusters J. Chem. Phys. 2001, 116, 3856.
    88. Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P., Stacking Faults in Formation of Silver Nanodisks. The Journal of Physical Chemistry B 2003, 107, (34), 8717.
    89. Chi, P.-F. H. a. K.-M., Size-controlled synthesis of Pd nanoparticles from β-diketonato complexes of palladium Nanotechnology 2004, 15, (8), 1059.
    90. Washio, I.; Xiong, Y.; Yin, Y.; Xia, Y., Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates. Advanced Materials 2006, 18, (13), 1745.
    187
    91. Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z.-Y.; Xia, Y., Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions. Langmuir 2006, 22, (20), 8563.
    92. Lim, B.; Camargo, P. H. C.; Xia, Y., Mechanistic Study of the Synthesis of Au Nanotadpoles, Nanokites, and Microplates by Reducing Aqueous HAuCl4 with Poly(vinyl pyrrolidone). Langmuir 2008, 24, (18), 10437.
    93. Xiong, Y.; McLellan, J. M.; Chen, J.; Yin, Y.; Li, Z.-Y.; Xia, Y., Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. Journal of the American Chemical Society 2005, 127, (48), 17118.
    94. Sun, Y.; Mayers, B.; Xia, Y., Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process. Nano Letters 2003, 3, (5), 675.
    95. Sun, Y.; Xia, Y., Triangular Nanoplates of Silver: Synthesis, Characterization, and Use as Sacrificial Templates For Generating Triangular Nanorings of Gold. Advanced Materials 2003, 15, (9), 695.
    96. Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y., Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Letters 2004, 4, (9), 1733.
    97. Wiley, B. J.; Xiong, Y.; Li, Z.-Y.; Yin, Y.; Xia, Y., Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds. Nano Letters 2006, 6, (4), 765.
    98. Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z.-Y.; Ginger, D.; Xia, Y.,Synthesis and Optical Properties of Silver Nanobars and Nanorice. Nano Letters 2007, 7, (4),1032.
    99. Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Aloni, S.; Yin, Y., Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size.Journal of the American Chemical Society 2005, 127, (20), 7332.188
    100. Wiley, B.; Sun, Y.; Xia, Y., Polyol Synthesis of Silver Nanostructures: Control of Product Morphology with Fe(II) or Fe(III) Species. Langmuir 2005, 21, (18), 8077.
    101. Xiong, Y.; McLellan, J. M.; Yin, Y.; Xia, Y., Synthesis of Palladium Icosahedra with Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ions. Angewandte Chemie 2007, 119, (5), 804.
    102. Tao, A.; Sinsermsuksakul, P.; Yang, P., Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angewandte Chemie 2006, 118, (28), 4713.
    103. Korte, K. E.; Skrabalak, S. E.; Xia, Y., Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. Journal of Materials Chemistry 2008, 18, (4), 437.
    104. Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y., Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chemistry – A European Journal 2005, 11, (2), 454.
    105. Murphy, C. J.; Jana, N. R., Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials 2002, 14, (1), 80.
    106. Xiong, Y.; Cai, H.; Yin, Y.; Xia, Y., Synthesis and characterization of fivefold twinned nanorods and right bipyramids of palladium. Chemical Physics Letters 2007, 440, (4–6), 273.
    107. Wiley, B. J.; Wang, Z.; Wei, J.; Yin, Y.; Cobden, D. H.; Xia, Y., Synthesis and Electrical Characterization of Silver Nanobeams. Nano Letters 2006, 6, (10), 2273.
    108. Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y., Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters 2003, 3, (7), 955.
    109. Campbell, C. T., Ultrathin metal films and particles on oxide surfaces: structural,electronic and chemisorptive properties. Surface Science Reports 1997, 27, (1–3), 1.189
    110. Harris, P. J. F., Sulphur-induced faceting of platinum catalyst particles. Nature 1986,323, 792.
    111. Spendelow, J. S.; Wieckowski, A., Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Physical Chemistry Chemical Physics 2004, 6, (22), 5094.
    112. Baranova, E. A.; Bock, C.; Ilin, D.; Wang, D.; MacDougall, B., Infrared spectroscopy on size-controlled synthesized Pt-based nano-catalysts. Surface Science 2006, 600, (17), 3502.
    113. Potapenko, S. Y., Moving of step through impurity fence. Journal of Crystal Growth 1993, 133, (1–2), 147.
    114. Narayanan, R.; El-Sayed, M. A., Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano Letters 2004, 4, (7), 1343.
    115. Hu, B. M. a. P., A density functional theory study of sulfur poisoning Journal of Chemical Physics 2005, 122, (8), 084709.
    116. Sexton, B. A.; Madex, R. J., Vibrational spectra of molecular and atomic oxygen on
    Ag(11O). Chemical Physics Letters 1980, 76, (2), 294.
    117. Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Yin, Y.; Li, Z.-Y., Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process.Nano Letters 2005, 5, (7), 1237.
    118. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B 2001, 105, (19), 4065.
    119. Lim, B.; Xiong, Y.; Xia, Y., A Water-Based Synthesis of Octahedral, Decahedral, and Icosahedral Pd Nanocrystals. Angewandte Chemie International Edition 2007, 46, (48), 9279.190
    120. Schimpf, J. A.; Abreu, J. B.; Soriaga, M. P., Electrochemical regeneration of clean and ordered Pd(100) surfaces by iodine adsorption-desorption: evidence from low-energy electron diffraction. Journal of Electroanalytical Chemistry 1994, 364, (1–2), 247.
    121. Gao, Y.; Jiang, P.; Liu, D. F.; Yuan, H. J.; Yan, X. Q.; Zhou, Z. P.; Wang, J. X.; Song,L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Wang, C. Y.; Xie, S. S.; Zhang, J. M.; Shen, D. Y.,Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires. The Journal of Physical Chemistry B 2004, 108, (34), 12877.
    122. Rupprechter, G., Sum Frequency Generation and Polarization–Modulation Infrared Reflection Absorption Spectroscopy of Functioning Model Catalysts from Ultrahigh Vacuum to Ambient Pressure. In Advances in Catalysis, Bruce, C. G.; Helmut, K., Eds. Academic Press:2007; Vol. Volume 51, pp 133.
    123. Kilin, D. S.; Prezhdo, O. V.; Xia, Y., Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters 2008, 458, (1–3), 113.
    124. Mammen, M.; Choi, S.-K.; Whitesides, G. M., Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angewandte Chemie International Edition 1998, 37, (20), 2754.
    125. Gao, J.; Bender, C. M.; Murphy, C. J., Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir 2003, 19, (21), 9065.
    126. Bogels, G.; Meekes, H.; Bennema, P.; Bollen, D., Growth Mechanism of Vapor-Grown Silver Crystals: Relation between Twin Formation and Morphology. The Journal of Physical Chemistry B 1999, 103, (36), 7577.
    127. Lee, J.-W.; Chung, U.-J.; Hwang, N. M.; Kim, D.-Y., Growth process of the ridgetrough faces of a twinned crystal. Acta Crystallographica Section A 2005, 61, (4), 405.191
    128. Hulliger, J., Chemistry and Crystal Growth. Angewandte Chemie International Edition in English 1994, 33, (2), 143.
    129. Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P., Platonic Gold Nanocrystals. Angewandte Chemie International Edition 2004, 43, (28), 3673.
    130. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 2007, 6, (9), 692.
    131. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials 2001, 13, (18), 1389.
    132. Chambers, S. A., Epitaxial film crystallography by high-energy Auger and X-ray photoelectron diffraction. Advances in Physics 1991, 40, (4), 357.
    133. Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q.,Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. Journal of the American Chemical Society 2008, 130, (22),6949.
    134. Lim, B.; Wang, J.; Camargo, P. H. C.; Jiang, M.; Kim, M. J.; Xia, Y., Facile Synthesis of Bimetallic Nanoplates Consisting of Pd Cores and Pt Shells through Seeded Epitaxial Growth. Nano Letters 2008, 8, (8), 2535.
    135. Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y., Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. Journal of the American Chemical Society 2007, 129, (12), 3665.
    136. Huang, X.; Zhang, H.; Guo, C.; Zhou, Z.; Zheng, N., Simplifying the Creation of Hollow Metallic Nanostructures: One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes. Angewandte Chemie International Edition 2009, 48, (26), 4808.192
    137. Carrasquillo Jr, A.; Jeng, J.-J.; Barriga, R. J.; Temesghen, W. F.; Soriaga, M. P.,Electrode-surface coordination chemistry: ligand substitution and competitive coordination of halides at well-defined Pd(100) and Pd(111) single crystals. Inorganica Chimica Acta 1997,255, (2), 249.
    138. Soriaga, M. P.; Schimpf, J. A.; Carrasquillo Jr, A.; Abreu, J. B.; Temesghen, W.;Barriga, R. J.; Jeng, J. J.; Sashikata, K.; Itaya, K., Electrochemistry of the I-on-Pd singlecrystal interface: studies by UHV-EC and in situ STM. Surface Science 1995, 335, (0), 273.
    139. Yuan, Q.; Zhuang, J.; Wang, X., Single-phase aqueous approach toward Pd sub-10 nm nanocubes and Pd-Pt heterostructured ultrathin nanowires. Chemical Communications 2009,(43), 6613.
    140. Zhang, Y.; Grass, M. E.; Kuhn, J. N.; Tao, F.; Habas, S. E.; Huang, W.; Yang, P.;Somorjai, G. A., Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes. Journal of the American Chemical Society 2008, 130, (18), 5868.
    141. Yuan, Q.; Zhou, Z.; Zhuang, J.; Wang, X., Tunable Aqueous Phase Synthesis and Shape-Dependent Electrochemical Properties of Rhodium Nanostructures. Inorganic Chemistry 2010, 49, (12), 5515.
    142. Peng, Z.; Yang, H., Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, (2), 143.
    143. Zhou, Z.-Y.; Tian, N.; Li, J.-T.; Broadwell, I.; Sun, S.-G., Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chemical Society Reviews 2011, 40, (7), 4167.
    144. Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G., Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation. Journal of the American Chemical Society 2010, 132, (22), 7580.193
    145. Zhou, Z.-Y.; Huang, Z.-Z.; Chen, D.-J.; Wang, Q.; Tian, N.; Sun, S.-G., High-Index Faceted Platinum Nanocrystals Supported on Carbon Black as Highly Efficient Catalysts for Ethanol Electrooxidation. Angewandte Chemie International Edition 2010, 49, (2), 411.
    146. Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L., Synthesis of
    Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angewandte Chemie International Edition 2008, 47, (46), 8901.
    147. Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L.; Wang, J.; Yan, C., Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society 2009, 131, (45), 16350.
    148. Lu, C.-L.; Prasad, K. S.; Wu, H.-L.; Ho, J.-a. A.; Huang, M. H., Au Nanocube-Directed Fabrication of Au−Pd Core−Shell Nanocrystals with Tetrahexahedral, Concave Octahedral,and Octahedral Structures and Their Electrocatalytic Activity. Journal of the American Chemical Society 2010, 132, (41), 14546.
    149. Jin, M.; Zhang, H.; Xie, Z.; Xia, Y., Palladium Concave Nanocubes with High-Index Facets and Their Enhanced Catalytic Properties. Angewandte Chemie International Edition 2011, 50, (34), 7850.
    150. Ertl, G., Tornau, J. , The catalytic decomposition of formaldehyde on Palladium. z.Phys. Chem. 1977, (104), 301.
    151. Niu, Z.; Peng, Q.; Gong, M.; Rong, H.; Li, Y., Oleylamine-Mediated Shape Evolution of Palladium Nanocrystals. Angewandte Chemie International Edition 2011, 50, (28), 6315.
    152. Chen, J.; Herricks, T.; Geissler, M.; Xia, Y., Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process. Journal of the American Chemical Society 2004, 126, (35), 10854.194
    153. Chen, J.; Xiong, Y.; Yin, Y.; Xia, Y., Pt Nanoparticles Surfactant-Directed Assembled into Colloidal Spheres and used as Substrates in Forming Pt Nanorods and Nanowires. Small 2006, 2, (11), 1340.
    154. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H.,One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 2003, 15, (5), 353.
    155. Kijima, T.; Yoshimura, T.; Uota, M.; Ikeda, T.; Fujikawa, D.; Mouri, S.; Uoyama, S.,Noble-Metal Nanotubes (Pt, Pd, Ag) from Lyotropic Mixed-Surfactant Liquid-Crystal Templates. Angewandte Chemie International Edition 2004, 43, (2), 228.
    156. Colombi Ciacchi, L.; Pompe, W.; De Vita, A., Initial Nucleation of Platinum Clusters after Reduction of K2PtCl4 in Aqueous Solution: A First Principles Study. Journal of the American Chemical Society 2001, 123, (30), 7371.
    157. Mertig, M.; Colombi Ciacchi, L.; Seidel, R.; Pompe, W.; De Vita, A., DNA as a Selective Metallization Template. Nano Letters 2002, 2, (8), 841.
    158. Krishnaswamy , R.; Remita, H.; Imperor-Clerc, M.; Even, C.; Davidson, P.; Pansu, B.,Synthesis of Single-Crystalline Platinum Nanorods within a Soft Crystalline Surfactant–PtII Complex. ChemPhysChem 2006, 7, (7), 1510.
    159. Sun, S. H.; Yang, D. Q.; Villers, D.; Zhang, G. X.; Sacher, E.; Dodelet, J. P., Templateand Surfactant-free Room Temperature Synthesis of Self-Assembled 3D Pt Nanoflowers from Single-Crystal Nanowires. Advanced Materials 2008, 20, (3), 571.
    160. Ramirez, E.; Erades, L.; Philippot, K.; Lecante, P.; Chaudret, B., Shape Control of Platinum Nanoparticles. Advanced Functional Materials 2007, 17, (13), 2219.
    161. Song, Y.; Garcia, R. M.; Dorin, R. M.; Wang, H.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A., Synthesis of Platinum Nanowire Networks Using a Soft Template.Nano Letters 2007, 7, (12), 3650.195
    162. Shen, Z.; Yamada, M.; Miyake, M., Preparation of single-crystalline platinum nanowires with small diameters under mild conditions. Chemical Communications 2007, (3),245.
    163. Lee, E. P.; Chen, J.; Yin, Y.; Campbell, C. T.; Xia, Y., Pd-Catalyzed Growth of Pt Nanoparticles or Nanowires as Dense Coatings on Polymeric and Ceramic Particulate Supports.Advanced Materials 2006, 18, (24), 3271.
    164. Formo, E.; Lee, E.; Campbell, D.; Xia, Y., Functionalization of Electrospun TiO2 Nanofibers with Pt Nanoparticles and Nanowires for Catalytic Applications. Nano Letters 2008,8, (2), 668.
    165. Lee, E.; Xia, Y., Growth and patterning of pt nanowires on silicon substrates. Nano Research 2008, 1, (2), 129.
    166. Lee, E. P.; Peng, Z.; Cate, D. M.; Yang, H.; Campbell, C. T.; Xia, Y., Growing Pt Nanowires as a Densely Packed Array on Metal Gauze. Journal of the American Chemical Society 2007, 129, (35), 10634.
    167. Anderson, A. B.; Awad, M. K., Factors determining carbon monoxide adsorption sites on palladium and platinum (100) and (111) surfaces: theoretical study. Journal of the American Chemical Society 1985, 107, (26), 7854.
    168. Kuhn, W. K.; Szanyi, J.; Goodman, D. W., CO adsorption on Pd(111): the effects of temperature and pressure. Surface Science 1992, 274, (3), L611.
    169. Langhammer, C.; Yuan, Z.; Zorić, I.; Kasemo, B., Plasmonic Properties of Supported Pt and Pd Nanostructures. Nano Letters 2006, 6, (4), 833.
    170. Hara, M.; Linke, U.; Wandlowski, T., Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4: Part I. Low-index phases. Electrochimica Acta 2007, 52, (18), 5733.196
    171. Huang, X.; Tang, S.; Liu, B.; Ren, B.; Zheng, N., Enhancing the photothermal Stability of Plasmonic Metal Nanoplates by a Core-Shell Architecture. Advanced Materials 2011, 23,(30), 3420.
    172. Tang, S.; Huang, X.; Zheng, N., Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser. Chemical Communications 2011, 47, (13), 3948.
    173. Siril, P. F.; Ramos, L.; Beaunier, P.; Archirel, P.; Etcheberry, A.; Remita, H., Synthesis of Ultrathin Hexagonal Palladium Nanosheets. Chemistry of Materials 2009, 21, (21), 5170.
    174. Schlotterbeck, U.; Aymonier, C.; Thomann, R.; Hofmeister, H.; Tromp, M.; Richtering,W.; Mecking, S., Shape-Selective Synthesis of Palladium Nanoparticles Stabilized by Highly Branched Amphiphilic Polymers. Advanced Functional Materials 2004, 14, (10), 999.
    175. Redjala, T.; Apostolecu, G.; Beaunier, P.; Mostafavi, M.; Etcheberry, A.; Uzio, D.;Thomazeau, C.; Remita, H., Palladium nanostructures synthesized by radiolysis or by photoreduction. New Journal of Chemistry 2008, 32, (8), 1403.
    176. Zhang, Z.; Niu, Q.; Shih, C.-K., “Electronic Growth” of Metallic Overlayers on Semiconductor Substrates. Physical Review Letters 1998, 80, (24), 5381.
    177. Maksimuk, S.; Teng, X.; Yang, H., Roles of Twin Defects in the Formation of Platinum Multipod Nanocrystals. The Journal of Physical Chemistry C 2007, 111, (39), 14312.
    178. Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D., In Situ and Ex Situ Studies of Platinum Nanocrystals: Growth and Evolution in Solution. Journal of the American Chemical Society 2009, 131, (40), 14590.
    179. Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P., Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. Journal of the American Chemical Society 2009, 132, (1), 268.197
    180. Chen, J.; Herricks, T.; Xia, Y., Polyol Synthesis of Platinum Nanostructures: Control of Morphology through the Manipulation of Reduction Kinetics. Angewandte Chemie International Edition 2005, 44, (17), 2589.
    181. Watt, J.; Cheong, S.; Toney, M. F.; Ingham, B.; Cookson, J.; Bishop, P. T.; Tilley, R.D., Ultrafast Growth of Highly Branched Palladium Nanostructures for Catalysis. ACS Nano 2009, 4, (1), 396.
    182. Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L., Monopod, Bipod,Tripod, and Tetrapod Gold Nanocrystals. Journal of the American Chemical Society 2003, 125,(52), 16186.
    183. Zheng, H.; Smith, R. K.; Jun, Y.-w.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P.,Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science 2009, 324,(5932), 1309.
    184. Lim, B.; Kobayashi, H.; Camargo, P.; Allard, L.; Liu, J.; Xia, Y., New insights into the growth mechanism and surface structure of palladium nanocrystals. Nano Research 2010, 3,(3), 180.
    185. Yin, Y.; Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, (7059), 664.
    186. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K., Evolution of nanoporosity in dealloying. Nature 2001, 410, (6827), 450.
    187. Li, R.; Sieradzki, K., Ductile-brittle transition in random porous Au. Physical Review Letters 1992, 68, (8), 1168.
    188. Hao, E.; Bailey, R. C.; Schatz, G. C.; Hupp, J. T.; Li, S., Synthesis and Optical Properties of “Branched” Gold Nanocrystals. Nano Letters 2004, 4, (2), 327.198
    189. Sau, T. K.; Murphy, C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. Journal of the American Chemical Society 2004, 126, (28), 8648.
    190. Witten, T. A., Jr.; Sander, L. M., Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Physical Review Letters 1981, 47, (19), 1400.
    191. Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L., Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products. Science 2000, 289, (5480), 751.
    192. Alivisatos, A. P., Naturally Aligned Nanocrystals. Science 2000, 289, (5480), 736.
    193. Vicsek, T., Fractal Growth Phenomena, 2nd ed. World Scientific, Singapore 1992.
    194. Song, Y.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H.; Jiang, Y.;Brinker, C. J.; van Swol, F.; Shelnutt, J. A., Controlled Synthesis of 2-D and 3-D Dendritic Platinum Nanostructures. Journal of the American Chemical Society 2003, 126, (2), 635.
    195. Wang, L.; Yamauchi, Y., Block Copolymer Mediated Synthesis of Dendritic Platinum Nanoparticles. Journal of the American Chemical Society 2009, 131, (26), 9152.
    196. Colombi Ciacchi, L.; Pompe, W.; De Vita, A., Growth of Platinum Clusters via Addition of Pt(II) Complexes: A First Principles Investigation. The Journal of Physical Chemistry B 2003, 107, (8), 1755.
    197. Lim, B.; Jiang, M.; Yu, T.; Camargo, P.; Xia, Y., Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Research 2010, 3,(2), 69.
    198. Penn, R. L.; Banfield, J. F., Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals. Science 1998, 281, (5379), 969.199
    199. Wang, L.; Yamauchi, Y., Facile Synthesis of Three-Dimensional Dendritic Platinum Nanoelectrocatalyst. Chemistry of Materials 2009, 21, (15), 3562.
    200. Vidoni, O.; Philippot, K.; Amiens, C.; Chaudret, B.; Balmes, O.; Malm, J.-O.; Bovin,J.-O.; Senocq, F.; Casanove, M.-J., Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents. Angewandte Chemie International Edition 1999, 38,(24), 3736.
    201. Pelzer, K.; Vidoni, O.; Philippot, K.; Chaudret, B.; Colliere, V., Organometallic Synthesis of Size-Controlled Polycrystalline Ruthenium Nanoparticles in the Presence of Alcohols. Advanced Functional Materials 2003, 13, (2), 118.
    202. Zhou, S.; McIlwrath, K.; Jackson, G.; Eichhorn, B., Enhanced CO Tolerance for Hydrogen Activation in Au−Pt Dendritic Heteroaggregate Nanostructures. Journal of the American Chemical Society 2006, 128, (6), 1780.
    203. Peng, Z.; Yang, H., PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Research 2009, 2, (5), 406.
    204. Peng, Z.; Yang, H., Synthesis and Oxygen Reduction Electrocatalytic Property of Pt on-Pd Bimetallic Heteronanostructures. Journal of the American Chemical Society 2009, 131,
    (22), 7542.
    205. Bradford, S. A., Corrosion Control, 2nd ed. CASTI, Edmonton 2001, 1
    206. Xiong, Y.; Wiley, B.; Chen, J.; Li, Z.-Y.; Yin, Y.; Xia, Y., Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties.Angewandte Chemie International Edition 2005, 44, (48), 7913.
    207. Cobley, C. M.; Rycenga, M.; Zhou, F.; Li, Z.-Y.; Xia, Y., Controlled Etching as a Route to High Quality Silver Nanospheres for Optical Studies. The Journal of Physical Chemistry C 2009, 113, (39), 16975.200
    208. Nigg, H. L., Ford, L. P. , and Masel, R. I., Surface-mediated reaction pathways of 2,4-pentanedione on clean and oxygen covered Cu (210) Journal of Vacuum Science & Technology A 1998, 16, (5), 3064.
    209. Li, Z.; Li, W.; Camargo, P. H. C.; Xia, Y., Facile Synthesis of Branched Au
    Nanostructures by Templating Against a Self-Destructive Lattice of Magnetic Fe Nanoparticles. Angewandte Chemie International Edition 2008, 47, (50), 9653.
    210. Hulteen, C., John Martin, Charles R., A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry 1997, 7, (7), 1075.
    211. Lewis, L. N., Chemical catalysis by colloids and clusters. Chemical Reviews 1993, 93,(8), 2693.
    212. Ertl, G., Handbook of Heterogeneous Catalysis. Wiley-VCH, Weinheim 2008.
    213. Mahmoud; Tabor, C. E.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L., A New Catalytically Active Colloidal Platinum Nanocatalyst: The Multiarmed Nanostar Single Crystal. Journal of the American Chemical Society 2008, 130, (14), 4590.
    214. Lim, B.; Lu, X.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y., Facile Synthesis of Highly Faceted Multioctahedral Pt Nanocrystals through Controlled Overgrowth.Nano Letters 2008, 8, (11), 4043.
    215. Liao, H.-G.; Jiang, Y.-X.; Zhou, Z.-Y.; Chen, S.-P.; Sun, S.-G., Shape-Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure–Functionality Relationships in Electrocatalysis. Angewandte Chemie International Edition 2008, 47, (47), 9100.
    216. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.;Marković, N. M., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 2007, 315, (5811), 493.201
    217. Guo, S.; Dong, S.; Wang, E., Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano 2009, 4, (1), 547.
    218. Rajalakshmi, N.; Lakshmi, N.; Dhathathreyan, K. S., Nano titanium oxide catalyst support for proton exchange membrane fuel cells. International Journal of Hydrogen Energy 2008, 33, (24), 7521.
    219. Wender, P. A.; White, A. W., Organobis(cuprates): a new class of reagents and method for spiroannelation. Journal of the American Chemical Society 1988, 110, (7), 2218.
    220. Howe, K. S.; Kendall, K., Transient Performance of Micro-Tubular Solid Oxide Fuel Cells. Journal of Fuel Cell Science and Technology 2011, 8, (3), 034502.
    221. Sammes, N., Fuel Cell Technology: Reaching Towards Commercialization. Springer,London 2006.
    222. Blomen, L. J. M. J., Mugerwa, M.N. , Fuel Cell Systems. Plenum Press, New York 1993.
    223. Mench, M. M., Fuel Cell Engines. John Wiley and Sons Ltd., London 2008.
    224. Srinivasan, S., Fuel Cells: From Fundamentals to Applications, Springer Verlag 2006.
    225. Wasmus, S.; Kuver, A., Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry 1999, 461, (1–2), 14.
    226. Curnick, O. J.; Mendes, P. M.; Pollet, B. G., Enhanced durability of a Pt/C
    electrocatalyst derived from Nafion-stabilised colloidal platinum nanoparticles.
    Electrochemistry Communications 2010, 12, (8), 1017.
    227. Du, S., A Facile Route for Polymer Electrolyte Membrane Fuel Cell Electrodes with in situ Grown Pt Nanowires. Journal of Power Sources 2010, 195, (1), 289.202
    228. Andujar, J. M.; Segura, F., Fuel cells: History and updating. A walk along two centuries.Renewable and Sustainable Energy Reviews 2009, 13, (9), 2309.
    229. Halder, A.; Sharma, S.; Hegde, M. S.; Ravishankar, N., Controlled Attachment of Ultrafine Platinum Nanoparticles on Functionalized Carbon Nanotubes with High Electrocatalytic Activity for Methanol Oxidation. The Journal of Physical Chemistry C 2009,113, (4), 1466.
    230. Kua, J.; Goddard, W. A., Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells.Journal of the American Chemical Society 1999, 121, (47), 10928.
    231. Jha, N., Leela Mohana Reddy, A. , Shaijumon, M.M., Rajalakshmi, N., Ramaprabhu,S., Int. , Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell.J. Hydrogen Energy 2008, 33, 427.
    232. Yang, C.-J., An impending platinum crisis and its implications for the future of the automobile. Energy Policy 2009, 37, (5), 1805.
    233. Liu, Z.; Lin, X.; Lee, J. Y.; Zhang, W.; Han, M.; Gan, L. M., Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells. Langmuir 2002, 18, (10), 4054.
    234. Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. Nano Letters 2003, 4, (2), 345.
    235. Honda, K.; Yoshimura, M.; Rao, T. N.; Tryk, D. A.; Fujishima, A.; Yasui, K.;Sakamoto, Y.; Nishio, K.; Masuda, H., Electrochemical properties of Pt-modified nanohoneycomb diamond electrodes. Journal of Electroanalytical Chemistry 2001, 514, (1–2), 35.
    236. Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources 2006, 155, (2), 95.203
    237. Sharma, S.; Pollet, B. G., Support materials for PEMFC and DMFC electrocatalysts—A review. Journal of Power Sources 2012, 208, (0), 96.
    238. Yuichi Suzuki, A. I., Shigenori Mitsushima, Nobuyuki Kamiya and Ken-ichiro Ota,Sulfated-Zirconia as a Support of Pt Catalyst for Polymer Electrolyte Fuel Cells. Electrochem.Solid-State Lett 2007, 10, (7), B105.
    239. Guo, D.-J.; Qiu, X.-P.; Zhu, W.-T.; Chen, L.-Q., Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application. Applied Catalysis B: Environmental 2009, 89, (3–4), 597.
    240. Maass, S.; Finsterwalder, F.; Frank, G.; Hartmann, R.; Merten, C., Carbon support oxidation in PEM fuel cell cathodes. Journal of Power Sources 2008, 176, (2), 444.
    241. Chhina, H.; Campbell, S.; Kesler, O., Ex situ Evaluation of Tungsten Oxide as a Catalyst Support for PEMFCs. Journal of The Electrochemical Society 2007, 154, (6), B533.
    242. Lewera, A.; Timperman, L.; Roguska, A.; Alonso-Vante, N., Metal–Support
    Interactions between Nanosized Pt and Metal Oxides (WO3 and TiO2) Studied Using X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2011, 115, (41), 20153.
    243. Leroux, F.; Dewar, P. J.; Intissar, M.; Ouvrard, G.; Nazar, L. F., Study of the formation of mesoporous titania via a template approach and of subsequent Li insertion. Journal of Materials Chemistry 2002, 12, (11), 3245.
    244. Hayden, B. E.; Malevich, D. V.; Pletcher, D., Electrode coatings from sprayed titanium dioxide nanoparticles – behaviour in NaOH solutions. Electrochemistry Communications 2001,3, (8), 390.
    245. Kim, D.-S.; Zeid, E. F. A.; Kim, Y.-T., Additive treatment effect of TiO2 as supports for Pt-based electrocatalysts on oxygen reduction reaction activity. Electrochimica Acta 2010,55, (11), 3628.204
    246. Huang, S.-Y.; Ganesan, P.; Popov, B. N., Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental 2011, 102, (1–2), 71.
    247. Wang, M.; Guo, D.-j.; Li, H.-l., High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry 2005, 178, (6), 1996.
    248. Wu, G.; Nelson, M. A.; Mack, N. H.; Ma, S.; Sekhar, P.; Garzon, F. H.; Zelenay, P.,Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chemical Communications 2010, 46, (40), 7489.
    249. Milošv, I.; Strehblow, H. H.; Navinšek, B.; Metikoš-Huković, M., Electrochemical and thermal oxidation of TiN coatings studied by XPS. Surface and Interface Analysis 1995, 23,(7-8), 529.
    250. Oyama, S. T., The Chemistry of Transition Metal Carbides and Nitrides. Academic Publishers 1996.
    251. Musthafa, O. T. M.; Sampath, S., High performance platinized titanium nitride catalyst for methanol oxidation. Chemical Communications 2008, (1), 67.
    252. Avasarala, B.; Haldar, P., On the stability of TiN-based electrocatalysts for fuel cell applications. International Journal of Hydrogen Energy 2011, 36, (6), 3965.
    253. Basu, B., Raju, G.B., Suri, A.K., Int. , Processing and properties of monolithic TiB2 based materials Mater. Rev. 2006, 51 352.
    254. Yin, S., Mu, S., Lv, H., Cheng, N., Pan, M., Fu, Z., A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Appl. Catal. B: Environ. 2010, 93 233.205
    255. Morris, D., Dou, Y.,Rebane, J. , Mitchell, C.E.J. , Egdell, R.G., Law, D.S.L., et al.,Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys.Rev. B 2000,61, 13445.
    256. Chhina, H.; Campbell, S.; Kesler, O., Ex Situ and In Situ Stability of Platinum Supported on Niobium-Doped Titania for PEMFCs. Journal of The Electrochemical Society 2009, 156, (10), B1232.
    257. Huang, S.-Y.; Ganesan, P.; Popov, B. N., Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Applied Catalysis B: Environmental 2010, 96, (1–2), 224.
    258. Haas, O. E., Briskeby, S.T. , Kongstein, O.E., Tsypkin, M., Tunold, R. , Borresen, B.T., Synthesis and Characterisation of RuxTix-1O2 as a Catalyst Support for Polymer Electrolyte Fuel Cell. J. New Mater. Electrochem. Syst. 2008, 11 21
    259. Wang, A.; Xu, H.; Lu, Y.; Hu, J.; Kong, X.; Tian, B.; Dong, H., Synthesis and Characterization of Ruthenium-Titanium Composite Oxide and a Platinum Catalyst Supported on It. Chinese Journal of Catalysis 2009, 30, (3), 179.
    260. Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J., Nanostructured
    Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High-Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society 2011, 1137.
    261. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental 2005, 56, (1-2), 9.
    262. GreeleyJ; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.;Jaramillo, T. F.; RossmeislJ; ChorkendorffI; Norskov, J. K., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 2009, 1, (7), 552.206
    263. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S., Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction. Journal of the American Chemical Society 2007, 129, (22), 6974.
    264. Sanchez-Sanchez, C. M.; Solla-Gullon, J.; Vidal-Iglesias, F. J.; Aldaz, A.; Montiel, V.;Herrero, E., Imaging Structure Sensitive Catalysis on Different Shape-Controlled Platinum Nanoparticles. Journal of the American Chemical Society 2010, 132, (16), 5622.
    265. Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S., A General Approach to the Size- and Shape-Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen. Angewandte Chemie International Edition 2008, 47, (19), 3588.
    266. Yamamoto, K.; Imaoka, T.; Chun, W.-J.; Enoki, O.; Katoh, H.; Takenaga, M.; Sonoi,A., Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions.Nat Chem 2009, 1, (5), 397.
    267. Kim, Y.; Hong, J. W.; Lee, Y. W.; Kim, M.; Kim, D.; Yun, W. S.; Han, S. W.,
    Synthesis of AuPt Heteronanostructures with Enhanced Electrocatalytic Activity toward Oxygen Reduction. Angewandte Chemie International Edition 2010, 49, (52), 10197.
    268. Chang, S.-H.; Su, W.-N.; Yeh, M.-H.; Pan, C.-J.; Yu, K.-L.; Liu, D.-G.; Lee, J.-F.;Hwang, B.-J., Structural and Electronic Effects of Carbon-Supported PtxPd1−x Nanoparticles on the Electrocatalytic Activity of the Oxygen-Reduction Reaction and on Methanol Tolerance.Chemistry – A European Journal 2010, 16, (36), 11064.
    269. Lai, F.-J.; Sarma, L. S.; Chou, H.-L.; Liu, D.-G.; Hsieh, C.-A.; Lee, J.-F.; Hwang, B.-J.,Architecture of Bimetallic PtxCo1−x Electrocatalysts for Oxygen Reduction Reaction As Investigated by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2009,113, (29), 12674.
    270. Macia, M. D.; Campina, J. M.; Herrero, E.; Feliu, J. M., On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. Journal of Electroanalytical Chemistry 2004, 564, (0), 141.207
    271. Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.;Adzic, R. R., Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes. Angewandte Chemie International Edition 2010, 49, (46), 8602.
    272. Lee, S. W.; Chen, S.; Suntivich, J.; Sasaki, K.; Adzic, R. R.; Shao-Horn, Y., Role of Surface Steps of Pt Nanoparticles on the Electrochemical Activity for Oxygen Reduction. The Journal of Physical Chemistry Letters 2010, 1, (9), 1316.
    273. Taufany, F.; Pan, C.-J.; Rick, J.; Chou, H.-L.; Tsai, M.-C.; Hwang, B.-J.; Liu, D.-G.;Lee, J.-F.; Tang, M.-T.; Lee, Y.-C.; Chen, C.-I., Kinetically Controlled Autocatalytic Chemical Process for Bulk Production of Bimetallic Core–Shell Structured Nanoparticles. ACS Nano 2011, 5, (12), 9370.
    274. Lai, F.-J.; Su, W.-N.; Sarma, L. S.; Liu, D.-G.; Hsieh, C.-A.; Lee, J.-F.; Hwang, B.-J.,Chemical Dealloying Mechanism of Bimetallic Pt–Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction. Chemistry – A European Journal 2010, 16, (15),4602.
    275. Zhang, H.; Yin, Y.; Hu, Y.; Li, C.; Wu, P.; Wei, S.; Cai, C., Pd@Pt Core−Shell Nanostructures with Controllable Composition Synthesized by a Microwave Method and Their Enhanced Electrocatalytic Activity toward Oxygen Reduction and Methanol Oxidation. The Journal of Physical Chemistry C 2010, 114, (27), 11861.
    276. Seo, D.; Yoo, C. I.; Jung, J.; Song, H., Ag−Au−Ag Heterometallic Nanorods Formed through Directed Anisotropic Growth. Journal of the American Chemical Society 2008, 130,(10), 2940.
    277. Jin, M.; Zhang, H.; Xie, Z.; Xia, Y., Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation.Energy & Environmental Science 2012, 5, (4), 6352.
    278. Sugunan, A.; Jafri, S. H. M.; Qin, J.; Blom, T.; Toprak, M. S.; Leifer, K.; Muhammed,M., Low-temperature synthesis of photoconducting CdTe nanotetrapods. Journal of Materials Chemistry 2010, 20, (6), 1208.
    279. Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P., Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid. Journal of the American Chemical Society 2008, 130, (16), 5406.
    280. Crespo-Quesada, M.; Andanson, J.-M.; Yarulin, A.; Lim, B.; Xia, Y.; Kiwi-Minsker, L.,UV–Ozone Cleaning of Supported Poly(vinylpyrrolidone)-Stabilized Palladium Nanocubes: Effect of Stabilizer Removal on Morphology and Catalytic Behavior. Langmuir 2011, 27, (12),7909.
    281. Niu, W.; Zhang, L.; Xu, G., Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano 2010, 4, (4), 1987.
    282. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of Soluble and Processable Rod-,Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. Journal of the American Chemical Society 2000, 122, (51), 12700.
    283. Sun, K.; Qi, J.; Zhang, Q.; Yang, Y.; Zhang, Y., A novel logic switch based on individual ZnO nanotetrapods. Nanoscale 2011, 3, (5), 2166.
    284. Chen, M.; Wu, B.; Yang, J.; Zheng, N., Small Adsorbate-Assisted Shape Control of Pd and Pt Nanocrystals. Advanced Materials 2012, 24, (7), 862.
    285. Kulhn, W. K., Szanyi, J. S., and Goodman, D. W., CO adsorption on Pd(111): the effects of temperature and pressure. surface Science letters 1992, (274), L611.
    286. Szanyi, J., Kuhn, W. K., and Goodman, D. W., CO adsorption on Pd(111) and Pd(100):low and high presure correlations J. Vac. Sci. Technol. A 1993, 4, (11), 1969.209
    287. Jens Weckesser, J. V. B., and Klaus Kern, Direct observation of surface diffusion of large organic molecules at metal surfaces: PVBA on Pd(110). J. Chem. Phys. 1999, 110, (11),4.
    288. Li, Z.; Peng, X., Size/Shape-Controlled Synthesis of Colloidal CdSe Quantum Disks: Ligand and Temperature Effects. Journal of the American Chemical Society 2011, 133, (17),6578.
    289. Wang, L.; Nemoto, Y.; Yamauchi, Y., Direct Synthesis of Spatially-Controlled Pt-on-Pd Bimetallic Nanodendrites with Superior Electrocatalytic Activity. Journal of the American Chemical Society 2011, 133, (25), 9674.
    290. Gomez, R.; Orts, J. M.; Alvarez-Ruiz, B.; Feliu, J. M., Effect of Temperature on Hydrogen Adsorption on Pt(111), Pt(110), and Pt(100) Electrodes in 0.1 M HClO4. The Journal of Physical Chemistry B 2003, 108, (1), 228.
    291. Ghosh, T.; Vukmirovic, M. B.; DiSalvo, F. J.; Adzic, R. R., Intermetallics as Novel Supports for Pt Monolayer O2 Reduction Electrocatalysts: Potential for Significantly Improving Properties. Journal of the American Chemical Society 2009, 132, (3), 906.
    292. Bard, A. J., Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications.Wiley, New York 2000.
    293. Kuzume, A.; Herrero, E.; Feliu, J. M., Oxygen reduction on stepped platinum surfaces in acidic media. Journal of Electroanalytical Chemistry 2007, 599, (2), 333.
    294. Solla-Gullon, J.; Vidal-Iglesias, F. J.; Lopez-Cudero, A.; Garnier, E.; Feliu, J. M.;Aldaz, A., Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Physical Chemistry Chemical Physics 2008, 10, (25),3689.
    295. Zhou, W.-P.; Yang, X.; Vukmirovic, M. B.; Koel, B. E.; Jiao, J.; Peng, G.; Mavrikakis,M.; Adzic, R. R., Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt−Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy. Journal of the American Chemical Society 2009, 131, (35), 12755.
    296. Wang, C.; Daimon, H.; Sun, S., Dumbbell-like Pt−Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Nano Letters 2009, 9, (4), 1493.
    297. Hwang, B. J.; Kumar, S. M. S.; Chen, C.-H.; Monalisa; Cheng, M.-Y.; Liu, D.-G.; Lee,J.-F., An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2007, 111, (42), 15267.
    298. Venkateswara Rao, C.; Viswanathan, B., ORR Activity and Direct Ethanol Fuel Cell Performance of Carbon-Supported Pt−M (M = Fe, Co, and Cr) Alloys Prepared by Polyol Reduction Method. The Journal of Physical Chemistry C 2009, 113, (43), 18907.
    299. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental 2005, 56, (1-2 SPEC. ISS.), 9.
    300. Tian, N.; Zhou, Z.-Y.; Sun, S.-G., Platinum Metal Catalysts of High-Index Surfaces:From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. The Journal of Physical Chemistry C 2008, 112, (50), 19801.
    301. Chen, Z.; Waje, M.; Li, W.; Yan, Y., Supportless Pt and PtPd Nanotubes as
    Electrocatalysts for Oxygen-Reduction Reactions. Angewandte Chemie International Edition 2007, 46, (22), 4060.
    302. Alia, S. M.; Zhang, G.; Kisailus, D.; Li, D.; Gu, S.; Jensen, K.; Yan, Y., Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions. Advanced Functional Materials 2010, 20, (21), 3742.
    303. Yujiang Song, Y.-B. J., Haorong Wang, Donovan A Pena, Yan Qiu, James E Miller and John A Shelnutt, Platinum nanodendrites. Nanotechnology 2006, 17, 1300.
    304. Adzic, R.; Zhang, J.; Sasaki, K.; Vukmirovic, M.; Shao, M.; Wang, J.; Nilekar, A.;Mavrikakis, M.; Valerio, J.; Uribe, F., Platinum Monolayer Fuel Cell Electrocatalysts. Topics in Catalysis 2007, 46, (3), 249.
    305. Wilson, M. S.; Valerio, J. A.; Gottesfeld, S., Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochimica Acta 1995, 40, (3), 355.
    306. Kumar, G. S.; Raja, M.; Parthasarathy, S., High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochimica Acta 1995, 40, (3), 285.
    307. Wang, D.; Subban, C. V.; Wang, H.; Rus, E.; DiSalvo, F. J.; Abruna, H. D., Highly Stable and CO-Tolerant Pt/Ti0.7W0.3O2 Electrocatalyst for Proton-Exchange Membrane Fuel Cells. Journal of the American Chemical Society 2010, 132, (30), 10218.
    308. Park, K.-W.; Seol, K.-S., Nb-TiO2 supported Pt cathode catalyst for polymer
    electrolyte membrane fuel cells. Electrochemistry Communications 2007, 9, (9), 2256.
    309. Ioroi, T.; Siroma, Z.; Fujiwara, N.; Yamazaki, S.-i.; Yasuda, K., Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells.Electrochemistry Communications 2005, 7, (2), 183.
    310. Thanh Ho, V. T.; Pillai, K. C.; Chou, H.-L.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J.; Lee, J.-F.; Sheu, H.-S.; Chuang, W.-T., Robust non-carbon Ti0.7Ru0.3O2 support with cocatalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science 2011, 4, (10), 4194.
    311. Wang, L.; Hu, C.; Nemoto, Y.; Tateyama, Y.; Yamauchi, Y., On the Role of Ascorbic Acid in the Synthesis of Single-Crystal Hyperbranched Platinum Nanostructures. Crystal Growth & Design 2010, 10, (8), 3454.
    312. Gong, X.; Yang, Y.; Huang, S., Mn3O4 catalyzed growth of polycrystalline Pt
    nanoparticles and single crystalline Pt nanorods with high index facets. Chemical Communications 2011, 47, (3), 1009.
    313. Shen YL, C. S., Song JM, Chin TK, Lin CH, Chen IG., Direct growth of ultra-long platinum nanolawns on a semiconductor photocatalyst. Nanoscale Res Lett. 2011, 6(1):380.
    314. Tiwari, J. N.; Tiwari, R. N.; Lin, K.-L., Synthesis of Pt Nanopetals on Highly Ordered Silicon Nanocones for Enhanced Methanol Electrooxidation Activity. ACS Applied Materials & Interfaces 2010, 2, (8), 2231.
    315. Long, N. V.; Duy Hien, T.; Asaka, T.; Ohtaki, M.; Nogami, M., Synthesis and
    characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologiesand nanostructures. International Journal of Hydrogen Energy 2011, 36, (14), 8478.
    316. Vellacheri, R.; Unni, S. M.; Nahire, S.; Kharul, U. K.; Kurungot, S., Pt–MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature Polymer Electrolyte Membrane Fuel Cell applications.Electrochimica Acta 2010, 55, (8), 2878.
    317. Blakely, D. W.; Somorjai, G. A., The stability and structure of high miller index platinum crystal surfaces in vacuum and in the presence of adsorbed carbon and oxygen.Surface Science 1977, 65, (2), 419.
    318. Marković, N. M.; Adžić, R. R.; Cahan, B. D.; Yeager, E. B., Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. Journal of Electroanalytical Chemistry 1994, 377, (1–2), 249.
    319. Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; StamenkovicVojislav, R.; Cuesta, A.; Marković, N. M., Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat Chem 2010, 2, (10), 880.
    320. Antolini, E., Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. Journal of Materials Science 2003,38, (14), 2995.
    321. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6, (3), 183.
    322. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat Nano 2009, 4, (4), 217.
    323. Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.;Parpia, J. M.; Craighead, H. G.; McEuen, P. L., Electromechanical Resonators from Graphene Sheets. Science 2007, 315, (5811), 490.
    324. Ruiz, A. M.; Dezanneau, G.; Arbiol, J.; Cornet, A.; Morante, J. R., Insights into the Structural and Chemical Modifications of Nb Additive on TiO2 Nanoparticles. Chemistry of Materials 2004, 16, (5), 862.
    325. Tsilomelekis, G.; Boghosian, S., In Situ Raman and FTIR Spectroscopy of
    Molybdenum(VI) Oxide Supported on Titania Combined with 18O/16O Exchange: Molecular Structure, Vibrational Properties, and Vibrational Isotope Effects. The Journal of Physical Chemistry C 2010, 115, (5), 2146.
    326. Hu, H.; Wachs, I. E.; Bare, S. R., Surface Structures of Supported Molybdenum Oxide Catalysts: Characterization by Raman and Mo L3-Edge XANES. The Journal of Physical Chemistry 1995, 99, (27), 10897.
    327. Liu, Z.; Chen, Y., Spectroscopic studies on tetragonal ZrO2-supported MoO3 and NiO−MoO3 systems. Journal of Catalysis 1998, 177, (2), 314.
    328. Jong Rack Sohn, E. W. C., and Young Il Pae, Spectroscopic Studies on ZrO2 Modified with MoO3 and Activity for Acid Catalysis. Bull. Korean Chem. Soc. 2003, 24, (12), 1785.
    329. Antonio, M. R.; Song, I.; Yamada, H., Coordination and valence of niobium in TiO2NbO2 solid solutions through X-ray absorption spectroscopy. J

    QR CODE