簡易檢索 / 詳目顯示

研究生: Tolessa Fita Chala
Tolessa Fita Chala
論文名稱: 奈米氧化鎢於光熱致水氣蒸發及光催化之研究
Study of Tungsten Oxide based Materials for Photothermal Steam Generation and Photocatalytic Applications
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 張棋榕 教授
Chi-Jung Chang
吳志明教授 鈞鑒
Jyh-Ming Wu
芮祥鵬 教授
Syang-Peng Ruei
鄭國彬 教授
Kou-Bing Cheng
郭東昊 教授
Dong-Hau Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 168
中文關鍵詞: 氧化鎢材料近紅外光光熱轉換奈米複合材料聚氨酯聚乳酸熔融靜電紡絲水氣蒸發性能銣鎢青銅/釩酸銀奈米混成材料全光譜光催化性能
外文關鍵詞: Tungsten trioxide, near infrared, Photothermal conversion, nanocomposites, polyurethane, Polylactic acid, melt electrospinning, water evaporation, RbxWO3/Ag3VO4 nanocomposites, Full-spectrum, Photocatalysis
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鎢及其複合材料由於其結構易於調整和獨特的物理化學性質,近年來在奈米技術的發展與應用上受到相當大的關注,本篇研究深入探討氧化鎢(WO3-x)材料的光熱轉換性能、光致界面水蒸發性能以及全光譜(紫外光,可見光和近紅外光)光催化活性於降解有機污染物(染料)。
    本文第一部分透過熱還原、球磨技術及行星式脫泡攪拌機製備新型氧化鎢/聚氨酯(WO3-x/PU)奈米複合材料,探討不同相變化(WO3→WO2.8→WO2.72)及不同氧化鎢重量分率下,對其奈米複合材料之光學性能、光熱轉化性質和熱性質的影響,由於球磨技術有效的降低氧化鎢的粒徑,及在聚氨酯基材中良好分散性,此奈米複合材料在780-2500nm之近紅外光(NIR)波段表現出極佳的光吸收性,並具有優異的光熱轉換性能,當WO3-x中氧空缺濃度越高,有助於NIR的吸收並將其轉化為熱能。其中WO2.72 奈米複合材料顯示出最佳(92%) 的NIR光吸收性以及比其他WO3/PU納米複合材料更好的導熱性和熱吸收性,此外,當紅外光照射7wt %WO2.72奈米複合材料時,材料的溫度在5分鐘內快速上升至120℃並維持穩定平衡。該溫升比純PU材料高52℃,證實此奈米複合材料優異的光熱轉換能力使其相當適合作為太陽能集熱器、智能塗層和節能等應用的功能性材料。
    高效率光熱材料的開發為光致水氣蒸發研究中最重要的課題,在第二部份研究中,利用還原氧化鎢(WO2.72)優異的NIR光吸收性能,使用雙螺桿混鍊機將WO2.72奈米粒子摻混入PLA基材中,並結合單螺桿擠出機抽製成線材,再將此線材利用低成本且環保之熔融靜電紡絲技術成功地製備具有高效NIR光熱轉換性質之還原氧化鎢/聚乳酸(WO2.72/PLA)纖維膜,並研究此熔融電紡纖維膜於光熱材料之前瞻應用,探討此複合纖維膜於光致界面水氣蒸發性能,由於纖維膜表面疏水且質輕,而可漂浮在水上,再利用纖維膜將太陽光進行光熱轉換,加熱纖維膜,再利用水滲透入薄層纖維膜後,藉由界面加熱特性使水蒸發,研究結果顯示,7wt%的WO2.72/PLA纖維膜,其水氣蒸發效率可達81.39%,遠高於純PLA纖維膜及純水之水氣蒸發效率。因此,此研究結果有助於開發新型光熱纖維膜應用,並增強材料於光致水氣蒸發性能,未來於水處理和脫鹽等領域具高度應用潛力。
    本文最後部份,採用化學沉澱法成功製備銣鎢青銅/釩酸銀(RbxWO3/Ag3VO4)奈米混成材料,並探討在全光譜(紫外光,可見光和近紅外光)光照射下,對亞甲基藍染料(MB)之光催化降解性能,研究結果顯示,與純RbxWO3或Ag3VO4相比較,RbxWO3/Ag3VO4奈米混成材料有較佳之光催化降解活性,特別是當RbxWO3/Ag3VO4的莫耳數比為1:1時,其對MB染料之光降解速率在UV光(88%),可見光(93%)和NIR光(76%)下均具有最佳效能,此結果乃由於在全光譜區域中,光學吸收延長、兩個半導體之間的緊密接觸、電子和電洞對的有效分離(e-/h+)以及RbxWO3與Ag3VO4之間的協效作用,導致其光催化性能得到顯著提升,因此,本研究開發的奈米混成材料未來可望應用於去除廢水中的有機物如染料,在環保領域具有應用潛力。


    Tungsten oxides based materials and its composites receives considerable attention in the future development of nanotechnology in various application, due to their highly tunable structures and unique physicochemical properties. Herein, the dissertation highlights tungsten oxides (WO3-x) materials for photothermal conversion properties, applications for light-driven interfacial water evaporation and full-spectrum photocatalytic activities under UV, Visible and Near Infrared region for degradation of organic pollutant.
    In the first section we report novel WO3-x/polyurethane (PU) nanocomposites were prepared by ball milling followed by stirring using a planetary mixer/de-aerator. The effects of phase transformation (WO3WO2.8WO2.72) and different weight fractions of tungsten oxide on the optical performance, photothermal conversion, and thermal properties of the prepared nanocomposites were examined. It was found that the nanocomposites exhibited strong photoabsorption in the entire near-infrared (NIR) region of 780-2500 nm and excellent photothermal conversion properties. This is because the particle size of WO3-x was greatly reduced by ball milling and they were well-dispersed in the polyurethane matrix. The higher concentration of oxygen vacancies in WO3-x contribute to the efficient absorption of NIR light and its conversion into thermal energy. In particular, WO2.72/PU nanocomposites showed strong NIR light absorption of ca. 92%, high photothermal conversion, and better thermal conductivity and absorptivity than other WO3/PU nanocomposites. Furthermore, when the nanocomposite with 7 wt% concentration of WO2.72 nanoparticles was irradiated with infrared light, the temperature of the nanocomposite increased rapidly and stabilized at 120 °C after 5 min. This temperature is 52 °C higher than that achieved by pure PU. These nanocomposites are suitable functional materials for solar collectors, smart coatings, and energy-saving applications.
    In second work we report melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as photothermal material for light-driven interfacial water evaporation. The development of efficient photothermal materials is the most important issue in solar water evaporation. Accordingly, melt electrospun reduced tungsten oxide-Polylactic acid (WO2.72/PLA) fiber membranes were successfully prepared with improved near-infrared (NIR) photothermal conversion properties owing to strong NIR photoabsorption by the metal oxide. WO2.72 powder nanoparticles were incorporated into PLA matrix by melt processing, following which the composites were extruded into wires using a single screw extruder. Subsequently, fiber membranes were prepared from the extruded wire of the WO2.72/PLA composite by melt electrospinning, which is a cost-effective technique that can produce fiber membranes without the addition of environmentally unfriendly chemicals. The melt electrospun WO2.72/PLA fiber membranes, floatable on water due to surface hydrophobicity, was systematically designed for, and applied to, vapour generation based on the interfacial concept of solar heating. With the photothermal WO2.72/PLA fiber membrane containing 7 wt% of WO2.72 nanoparticles, the water evaporation efficiency was reached 81.39 %, which is higher than that for the pure PLA fiber membrane and bulk water. Thus, this work contributes to the development of novel photothermal fiber membranes in order to enhance light-driven water evaporation performance for potential applications in the fields of water treatment and desalination.
    The final part of the thesis presents rubidium tungsten bronze/Silver Vanadate (RbxWO3/Ag3VO4) nanocomposites towards efficient full-spectrum (UV, Visible, and Near Infrared) Photocatalysis.
    It was found that nanostructured RbxWO3/Ag3VO4 nanocomposites with improved photocatalytic performance for degradation of methylene blue (MB) under UV-Visible and NIR irradiations were successfully prepared by a chemical precipitation method. The resulting RbxWO3/Ag3VO4 nanocomposites exhibited enhanced photocatalytic activity for the degradation of MB compared to RbxWO3 or Ag3VO4 alone under full-spectrum exposure. Particularly when the molar ratio of RbxWO3/Ag3VO4 was 1:1, the nanocomposites possessed the best photodegradation rate of MB dye under UV light (88%), visible light (93%), and NIR light (76%). The photocatalytic performance was significantly enhanced due to extended optical absorption in the entire UV-Visible-NIR region, intimate contact between the two semiconductors, efficient separation of photogenerated electron and hole pairs (e-/h+), and a synergetic effect between RbxWO3 and Ag3VO4. Thus, the prepared nanocomposites are promising for use in the removal of organic dyes in waste water and has potential applications in the field of environmental remediation.

    Abstract ii 中文摘要 vii Acknowledgments ix List of figures xv List of table xxi Chapter 1: Introduction 1 1.1. Why photothermal materials and photocatalysis 1 1.2. Motivation and objectives of the study 4 References 8 Chapter 2: Background and Literature review 18 2.1. Fundamental Properties of Tungsten Oxide 19 2.1.1. Crystal structures and phase transition 19 2.1.2. Structures of non-stoichiometric WO3-x 19 2.1.3. Electronic band structure 20 2.1.4. Near infrared (NIR) absorption properties 21 2.2. Application 22 2.2.1. Sensing Applications 22 2.2.2. Electrochromism and Supercapacitors 23 2.2.3. Optical Recording Device 24 2.2.4. Phototherapy application 24 2.3. Development of Photothermal materials and its applications 25 2.3.1. Carbon based materials 27 2.3.2. Plasmonic metals 28 2.3.3. Semiconductor materials 31 2.3.3.1. Bandgap engineering 32 2.3.3.2. Free-carrier-induced LSPR 34 2.3.3.3. Structural design 36 2.3.4. Polymers 41 2.4. Bulk and Interfacial heating system 42 2.5. Full-spectrum (UV-Vis-NIR) photocatalysis 43 2.5.1. Full-spectrum-responsive photocatalytic degradation mechanism 45 References 50 Chapter 3: Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites 68 3.1. Introduction 68 3.2. Materials and Methods 70 3.2.1. Materials 70 3.2.2. Preparation of WO3-x nanoparticles 70 3.2.3. Preparation of WO3-x/PU nanocomposites 71 3.2.4. Characterization 71 3.3. Results and Discussion 72 3.3.1. Characterization of WO3-x nanoparticles 72 3.3.2. Optical properties and morphologies of WO3-x/PU nanocomposites 77 3.3.3. NIR photothermal conversion and thermal properties of nanocomposites 81 3.4. Summary 84 References 86 Chapter 4: Melt Electrospun Reduced Tungsten oxide /Polylactic acid Fiber Membranes as Photothermal Material for Light-driven Interfacial Water Evaporation 93 4.1. Introduction 93 4.2. Materials and Methods 96 4.2.1 Preparation of melt electrospun WO2.72/PLA fiber membrane 96 4.2.2. Water evaporation performance measurement 97 4.2.3. Characterization 98 4.3. Results and Discussion 99 4.3.1. Morphology of the melt electrospun WO2.72/PLA fiber membranes 99 4.3.2. Optical and NIR photothermal conversion properties 101 4.3.3. Water evaporation performance 106 4.4. Summary 111 References 113 Chapter 5: RbxWO3/Ag3VO4 Nanocomposites Towards Efficient Full-Spectrum (UV, Visible, and Near Infrared) Photocatalysis 122 5.1. Introduction 122 5.2. Materials and methods 124 5.2.1. Synthesis of RbxWO3 nanorods 124 5.2.2. Synthesis of RbxWO3/Ag3VO4 Nanocomposites 124 5.2.3. Characterization 125 5.2.4. Evaluation of photocatalytic activity 125 5.3. Results and Discussion 126 5.3.1. Characterization of samples 126 5.3.2. Photocatalytic activity test 135 5.3.3. Photocatalytic degradation mechanism 141 5.4. Summary 145 References 147 Chapter 6: Conclusions and outlook 165 6.1 Conclusions 165 6.2. Outlook 167

    (1) Ding, T.; Liu, K.; Li, J.; Xue, G.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All‐Printed Porous Carbon Film for Electricity Generation from Evaporation‐Driven Water Flow. Advanced Functional Materials 2017, 27 (22), 1700551.
    (2) Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 2006, 103 (43), 15729-15735.
    (3) Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nature materials 2017, 16 (1), 16.
    (4) Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L. Water-evaporation-induced electricity with nanostructured carbon materials. Nature nanotechnology 2017, 12 (4), 317.
    (5) Liu, F.; Zeng, M.; Li, Y.; Yang, Y.; Mao, M.; Zhao, X. UV–Vis–Infrared Light Driven Thermocatalytic Activity of Octahedral Layered Birnessite Nanoflowers Enhanced by a Novel Photoactivation. Advanced Functional Materials 2016, 26 (25), 4518-4526.
    (6) Christopher, P.; Xin, H.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature chemistry 2011, 3 (6), 467.
    (7) Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research 2008, 41 (12), 1578-1586.
    (8) Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G. Nanoparticles for photothermal therapies. nanoscale 2014, 6 (16), 9494-9530.
    (9) Hou, J.; Li, Y.; Mao, M.; Yue, Y.; Greaves, G. N.; Zhao, X. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification. Nanoscale 2015, 7 (6), 2633-2640.
    (10) Shang, W.; Deng, T. Solar steam generation: Steam by thermal concentration. Nature Energy 2016, 1 (9), 16133.
    (11) Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics 2016, 10 (6), 393.
    (12) Liu, G.; Xu, J.; Wang, K. Solar water evaporation by black photothermal sheets. Nano Energy 2017, 41, 269-284.
    (13) Deng, Z.; Zhou, J.; Miao, L.; Liu, C.; Peng, Y.; Sun, L.; Tanemura, S. The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry A 2017, 5 (17), 7691-7709.
    (14) Dao, V. D.; Choi, H. S. Carbon‐Based Sunlight Absorbers in Solar‐Driven Steam Generation Devices. Global Challenges 2018, 2 (2), 1700094.
    (15) Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angewandte Chemie International Edition 2014, 53 (43), 11478-11482.
    (16) Hussein, E. A.; Zagho, M. M.; Nasrallah, G. K.; Elzatahry, A. A. Recent advances in functional nanostructures as cancer photothermal therapy. International journal of nanomedicine 2018, 13, 2897.
    (17) Wang, J.; Qiu, J. A review of organic nanomaterials in photothermal cancer therapy. Cancer Res. Front 2016, 2, 67-84.
    (18) Zhou, J.; Lu, Z.; Zhu, X.; Wang, X.; Liao, Y.; Ma, Z.; Li, F. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials 2013, 34 (37), 9584-9592.
    (19) Paiva, M. B.; Blackwell, K. E.; Saxton, R. E.; Bublik, M.; Liu, C. D.; Paolini, A. A. P. P.; Calcaterra, T. C.; Castro, D. J. Nd: YAG laser therapy for palliation of recurrent squamous cell carcinomas in the oral cavity. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 2002, 31 (1), 64-69.
    (20) Paiva, M. B.; Blackwell, K. E.; Saxton, R. E.; Calcaterra, T. C.; Ward, P. H.; Soudant, J.; Castro, D. J. Palliative laser therapy for recurrent head and neck cancer: a phase II clinical study. The Laryngoscope 1998, 108 (9), 1277-1283.
    (21) Becker, A.; Hessenius, C.; Licha, K.; Ebert, B.; Sukowski, U.; Semmler, W.; Wiedenmann, B.; Grötzinger, C. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature biotechnology 2001, 19 (4), 327.
    (22) Bao, Z.; Liu, X.; Liu, Y.; Liu, H.; Zhao, K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. asian journal of pharmaceutical sciences 2016, 11 (3), 349-364.
    (23) Dong, W.; Li, Y.; Niu, D.; Ma, Z.; Gu, J.; Chen, Y.; Zhao, W.; Liu, X.; Liu, C.; Shi, J. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@ hybrid@ Au shell nanocomposite for bimodal imaging and photothermal therapy. Advanced materials 2011, 23 (45), 5392-5397.
    (24) Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced materials 2013, 25 (9), 1353-1359.
    (25) Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Advanced materials 2013, 25 (5), 777-782.
    (26) Delyannis, E. Historic background of desalination and renewable energies. Solar energy 2003, 75 (5), 357-366.
    (27) Kabeel, A.; El-Agouz, S. Review of researches and developments on solar stills. Desalination 2011, 276 (1-3), 1-12.
    (28) Muftah, A. F.; Alghoul, M.; Fudholi, A.; Abdul-Majeed, M.; Sopian, K. Factors affecting basin type solar still productivity: A detailed review. Renewable and Sustainable Energy Reviews 2014, 32, 430-447.
    (29) Hu, X.; Xu, W.; Zhou, L.; Tan, Y.; Wang, Y.; Zhu, S.; Zhu, J. Tailoring Graphene Oxide‐Based Aerogels for Efficient Solar Steam Generation under One Sun. Advanced materials 2017, 29 (5), 1604031.
    (30) Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315 (5813), 798-801.
    (31) Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nature communications 2014, 5, ncomms5449.
    (32) Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313 (5790), 1068-1072.
    (33) Li, C.; Goswami, Y.; Stefanakos, E. Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews 2013, 19, 136-163.
    (34) Ito, Y.; Tanabe, Y.; Han, J.; Fujita, T.; Tanigaki, K.; Chen, M. Multifunctional Porous Graphene for High‐Efficiency Steam Generation by Heat Localization. Advanced Materials 2015, 27 (29), 4302-4307.
    (35) Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO 3− x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53 (50), 6744-6747.
    (36) Li, P.; Liu, B.; Ni, Y.; Liew, K. K.; Sze, J.; Chen, S.; Shen, S. Large‐Scale Nanophotonic Solar Selective Absorbers for High‐Efficiency Solar Thermal Energy Conversion. Advanced Materials 2015, 27 (31), 4585-4591.
    (37) Zhang, C.; Yan, C.; Xue, Z.; Yu, W.; Xie, Y.; Wang, T. Shape‐Controlled Synthesis of High‐Quality Cu7S4 Nanocrystals for Efficient Light‐Induced Water Evaporation. Small 2016, 12 (38), 5320-5328.
    (38) Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J.; Shalaev, V. M.; Kildishev, A. V. Plasmonics: Refractory plasmonics with titanium nitride: Broadband metamaterial absorber (adv. mater. 47/2014). Advanced Materials 2014, 26 (47), 7921-7921.
    (39) Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K. Convertible organic nanoparticles for near‐infrared photothermal ablation of cancer cells. Angewandte Chemie International Edition 2011, 50 (2), 441-444.
    (40) Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Advanced materials 2012, 24 (41), 5586-5592.
    (41) Wang, H.; Miao, L.; Tanemura, S. Morphology Control of Ag Polyhedron Nanoparticles for Cost‐Effective and Fast Solar Steam Generation. Solar RRL 2017, 1 (3-4), 1600023.
    (42) Liu, Z.; Yang, Z.; Huang, X.; Xuan, C.; Xie, J.; Fu, H.; Wu, Q.; Zhang, J.; Zhou, X.; Liu, Y. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. Journal of Materials Chemistry A 2017, 5 (37), 20044-20052.
    (43) Yang, Y.; Zhao, R.; Zhang, T.; Zhao, K.; Xiao, P.; Ma, Y.; Ajayan, P. M.; Shi, G.; Chen, Y. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification. ACS nano 2018, 12 (1), 829-835.
    (44) Ding, H.; Peng, G.; Mo, S.; Ma, D.; Sharshir, S. W.; Yang, N. Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study. Nanoscale 2017, 9 (48), 19066-19072.
    (45) Yi, L.; Ci, S.; Luo, S.; Shao, P.; Hou, Y.; Wen, Z. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy 2017, 41, 600-608.
    (46) Tao, F.; Zhang, Y.; Cao, S.; Yin, K.; Chang, X.; Lei, Y.; Fan, R.; Dong, L.; Yin, Y.; Chen, X. CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation. Materials Today Energy 2018, 9, 285-294.
    (47) Tao, F.; Zhang, Y.; Zhang, F.; An, Y.; Dong, L.; Yin, Y. Structural evolution from CuS nanoflowers to Cu9S5 nanosheets and their applications in environmental pollution removal and photothermal conversion. RSC Advances 2016, 6 (68), 63820-63826.
    (48) Li, R.; Zhang, L.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS nano 2017, 11 (4), 3752-3759.
    (49) Chang, Y.; Wang, Z.; Shi, Y.-e.; Ma, X.; Ma, L.; Zhang, Y.; Zhan, J. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun. Journal of Materials Chemistry A 2018, 6 (23), 10939-10946.
    (50) Habisreutinger, S. N.; Schmidt‐Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition 2013, 52 (29), 7372-7408.
    (51) Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 2014, 43 (22), 7520-7535.
    (52) Chen, H. M.; Chen, C. K.; Liu, R.-S.; Zhang, L.; Zhang, J.; Wilkinson, D. P. Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews 2012, 41 (17), 5654-5671.
    (53) Shimura, K.; Yoshida, H. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy & Environmental Science 2011, 4 (7), 2467-2481.
    (54) Schneider, J.; Jia, H.; Muckerman, J. T.; Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chemical Society Reviews 2012, 41 (6), 2036-2051.
    (55) Koodali, R. T.; Zhao, D. Photocatalytic degradation of aqueous organic pollutants using titania supported periodic mesoporous silica. Energy & Environmental Science 2010, 3 (5), 608-614.
    (56) Nicewicz, D. A.; MacMillan, D. W. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 2008, 322 (5898), 77-80.
    (57) Narayanam, J. M.; Stephenson, C. R. Visible light photoredox catalysis: applications in organic synthesis. Chemical Society Reviews 2011, 40 (1), 102-113.
    (58) Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. Water‐soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie International Edition 2010, 49 (26), 4430-4434.
    (59) Sang, Y.; Liu, H.; Umar, A. Photocatalysis from UV/Vis to Near‐Infrared Light: Towards Full Solar‐Light Spectrum Activity. ChemCatChem 2015, 7 (4), 559-573.
    (60) Wang, G.; Huang, B.; Ma, X.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H. Cu2 (OH) PO4, a Near‐Infrared‐Activated Photocatalyst. Angewandte Chemie International Edition 2013, 52 (18), 4810-4813.
    (61) Guo, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods. Chem Commun (Camb) 2011, 47 (31), 8853-5.
    (62) Uhuegbu, C. C. Photo-thermal solar energy conversion device. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2011, 2 (1), 96-101.
    (63) Lizama-Tzec, F.; Macias, J.; Estrella-Gutiérrez, M.; Cahue-López, A.; Arés, O.; de Coss, R.; Alvarado-Gil, J.; Oskam, G. Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion. Journal of Materials Science: Materials in Electronics 2015, 26 (8), 5553-5561.
    (64) Li, B.; Nie, S.; Hao, Y.; Liu, T.; Zhu, J.; Yan, S. Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light–heat conversion for thermal energy storage. Energy Conversion and Management 2015, 98, 314-321.
    (65) Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles. Advanced Materials 2017, 29 (3).
    (66) Chen, C.-J.; Chen, D.-H. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles. Nanoscale research letters 2013, 8 (1), 57.
    (67) Huang, X.; El-Sayed, M. A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 2010, 1 (1), 13-28.
    (68) Huang, X.; Tang, S.; Liu, B.; Ren, B.; Zheng, N. Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core‐Shell Architecture. Advanced Materials 2011, 23 (30), 3420-3425.
    (69) Horiguchi, Y.; Honda, K.; Kato, Y.; Nakashima, N.; Niidome, Y. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir 2008, 24 (20), 12026-12031.
    (70) Li, G.; Zhang, S.; Guo, C.; Liu, S. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide. Nanoscale 2016, 8 (18), 9861-9868.
    (71) An, Y.; Li, X.-F.; Zhang, Y.-J.; Tao, F.-J.; Zuo, M.-C.; Dong, L.-H.; Yin, Y.-S. Fabrication and Application of a New-Type Photothermal Conversion Nano Composite Coating. Journal of nanoscience and nanotechnology 2015, 15 (4), 3151-3156.
    (72) Yang, C.; Chen, J.-F.; Zeng, X.; Cheng, D.; Cao, D. Design of the Alkali-Metal-Doped WO3as a Near-Infrared Shielding Material for Smart Window. Industrial & Engineering Chemistry Research 2014, 53 (46), 17981-17988.
    (73) Bai, H.; Su, N.; Li, W.; Zhang, X.; Yan, Y.; Li, P.; Ouyang, S.; Ye, J.; Xi, G. W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. Journal of Materials Chemistry A 2013, 1 (20), 6125.
    (74) Zhou, J.; Ding, Y.; Deng, S. Z.; Gong, L.; Xu, N. S.; Wang, Z. L. Three‐Dimensional Tungsten Oxide Nanowire Networks. Advanced Materials 2005, 17 (17), 2107-2110.
    (75) Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. Journal of the American Chemical Society 2012, 134 (9), 3995-3998.
    (76) Fang, Z.; Jiao, S.; Kang, Y.; Pang, G.; Feng, S. Photothermal Conversion of W18O49 with a Tunable Oxidation State. ChemistryOpen 2017.
    (77) Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorganic chemistry 2012, 51 (8), 4763-4771.
    (78) Li, B.; Shao, X.; Liu, T.; Shao, L.; Zhang, B. Construction of metal/WO2.72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental 2016, 198, 325-333.
    (79) Huo, D.; He, J.; Li, H.; Huang, A. J.; Zhao, H. Y.; Ding, Y.; Zhou, Z. Y.; Hu, Y. X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles. Biomaterials 2014, 35 (33), 9155-9166.
    (80) Farghali, A. A.; El Rouby, W. M.; Hamdedein, A. Effect of hydrothermal conditions on microstructures of pure and doped CeO2 nanoparticles and their photo-catalytic activity: degradation mechanism and pathway of methylene blue dye. Research on Chemical Intermediates 2017, 43 (12), 7171-7192.
    (81) Wong, P. K., Photocatalysis: Preface. Journal of environmental science 2017,6 0,1-2.
    (82) Wu, J.; Liu, B.; Ren, Z.; Ni, M.; Li, C.; Gong, Y.; Qin, W.; Huang, Y.; Sun, C. Q.; Liu, X. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light. Journal of colloid and interface science 2018, 517, 80-85
    (1) Deb, S. K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Solar Energy Materials and Solar Cells 2008, 92 (2), 245-258.
    (2) Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar‐zadeh, K. Nanostructured tungsten oxide-properties, synthesis, and applications. Advanced Functional Materials 2011, 21 (12), 2175-2196.
    (3) Zhang, W.; Lin, C.; Cong, S.; Hou, J.; Liu, B.; Geng, F.; Jin, J.; Wu, M.; Zhao, Z. W18O49 nanowire composites as novel barrier layers for Li–S batteries based on high loading of commercial micro-sized sulfur. RSC Advances 2016, 6 (18), 15234-15239.
    (4) Azens, A.; Vaivars, G.; Veszelei, M.; Kullman, L.; Granqvist, C. Electrochromic devices embodying W oxide/Ni oxide tandem films. Journal of Applied Physics 2001, 89 (12), 7885-7887.
    (5) Lee, S.-H.; Cheong, H. M.; Tracy, C. E.; Mascarenhas, A.; Pitts, J. R.; Jorgensen, G.; Deb, S. K. Alternating current impedance and Raman spectroscopic study on electrochromic a-WO3 films. Applied Physics Letters 2000, 76 (26), 3908-3910.
    (6) Granqvist, C. Electrochromic oxides: a bandstructure approach. Solar Energy Materials and Solar Cells 1994, 32 (4), 369-382.
    (7) Granqvist, C. G. Electrochromic tungsten oxide films: review of progress 1993-1998. Solar Energy Materials and Solar Cells 2000, 60 (3), 201-262.
    (8) Shim, H.-S.; Kim, J. W.; Sung, Y.-E.; Kim, W. B. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Solar Energy Materials and Solar Cells 2009, 93 (12), 2062-2068.
    (9) Liu, B. J.-W.; Zheng, J.; Wang, J.-L.; Xu, J.; Li, H.-H.; Yu, S.-H. Ultrathin W18O49 nanowire assemblies for electrochromic devices. Nano letters 2013, 13 (8), 3589-3593.
    (10) Lee, K.; Seo, W. S.; Park, J. T. Synthesis and optical properties of colloidal tungsten oxide nanorods. Journal of the American Chemical Society 2003, 125 (12), 3408-3409.
    (11) Remškar, M.; Kovac, J.; Viršek, M.; Mrak, M.; Jesih, A.; Seabaugh, A. W5O14 Nanowires. Advanced Functional Materials 2007, 17 (12), 1974-1978.
    (12) Guo, C.; Yin, S.; Dong, Q.; Sato, T. The near infrared absorption properties of W18O49. RSC Advances 2012, 2 (12), 5041-5043.
    (13) Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M. Ultrathin PEGylated W18O49 Nanowires as a New 980 nm‐Laser‐Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Advanced materials 2013, 25 (14), 2095-2100.
    (14) Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorganic chemistry 2012, 51 (8), 4763-4771.
    (15) Li, B.; Shao, X.; Liu, T.; Shao, L.; Zhang, B. Construction of metal/WO2.72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental 2016, 198, 325-333.
    (16) Chang, Y.; Wang, Z.; Shi, Y.-e.; Ma, X.; Ma, L.; Zhang, Y.; Zhan, J. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun. Journal of Materials Chemistry A 2018, 6 (23), 10939-10946.
    (17) Zheng, J. Y.; Haider, Z.; Van, T. K.; Pawar, A. U.; Kang, M. J.; Kim, C. W.; Kang, Y. S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17 (32), 6070-6093.
    (18) Salje, E. K.; Rehmann, S.; Pobell, F.; Morris, D.; Knight, K. S.; Herrmannsdörfer, T.; Dove, M. T. Crystal structure and paramagnetic behaviour of. Journal of Physics: Condensed Matter 1997, 9 (31), 6563.
    (19) Vogt, T.; Woodward, P. M.; Hunter, B. A. The high-temperature phases of WO3. Journal of Solid State Chemistry 1999, 144 (1), 209-215.
    (20) Gerand, B.; Nowogrocki, G.; Guenot, J.; Figlarz, M. Structural study of a new hexagonal form of tungsten trioxide. Journal of Solid State Chemistry 1979, 29 (3), 429-434.
    (21) Liu, X.; Wang, F.; Wang, Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Physical Chemistry Chemical Physics 2012, 14 (22), 7894-7911.
    (22) Ng, C.; Ye, C.; Ng, Y. H.; Amal, R. Flower-Shaped Tungsten Oxide with Inorganic Fullerene-like Structure: Synthesis and Characterization. Crystal Growth & Design 2010, 10 (8), 3794-3801.
    (23) Guo, Y.; Murata, N.; Ono, K.; Okazaki, T. Production of ultrafine particles of high-temperature tetragonal WO3 by dc arc discharge in Ar-O2 gases. Journal of Nanoparticle Research 2005, 7 (1), 101-106.
    (24) Huang, Z.-F.; Song, J.; Pan, L.; Lv, F.; Wang, Q.; Zou, J.-J.; Zhang, X.; Wang, L. Mesoporous W18O49 hollow spheres as highly active photocatalysts. Chemical Communications 2014, 50 (75), 10959-10962.
    (25) Polaczek, A.; Pekala, M.; Obuszko, Z. Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. Journal of Physics: Condensed Matter 1994, 6 (39), 7909.
    (26) Takeda, H.; Adachi, K. Near infrared absorption of tungsten oxide nanoparticle dispersions. Journal of the American Ceramic Society 2007, 90 (12), 4059-4061.
    (27) Shanks, H.; Sidles, P.; Danielson, G. Electrical properties of the tungsten bronzes; Ames Lab., Ames, Iowa: 1962.
    (28) Williams, P. A.; Leverett, P.; Sharpe, J. L.; Colchester, D. M.; Rankin, J. Elsmoreite, cubic WO3· 0.5 H2O, a new mineral species from Elsmore, New South Wales, Australia. The Canadian Mineralogist 2005, 43 (3), 1061-1064.
    (29) Chemseddine, A.; Babonneau, F.; Livage, J. Anisotropic WO3· nH2O layers deposited from gels. Journal of non-crystalline solids 1987, 91 (2), 271-278.
    (30) Szymański, J.; Roberts, A. The crystal structure of tungstite, WO3· H2O. Canadian Mineralogist 1984, 22, 681-688.
    (31) Rüscher, C. H.; Dey, K. R.; Debnath, T.; Horn, I.; Glaum, R.; Hussain, A. Perovskite tungsten bronze-type crystals of LixWO3 grown by chemical vapour transport and their characterisation. Journal of Solid State Chemistry 2008, 181 (1), 90-100.
    (32) Gullapalli, S.; Vemuri, R.; Ramana, C. Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films. Applied Physics Letters 2010, 96 (17), 171903.
    (33) Gillet, M.; Aguir, K.; Lemire, C.; Gillet, E.; Schierbaum, K. The structure and electrical conductivity of vacuum-annealed WO3 thin films. Thin Solid Films 2004, 467 (1-2), 239-246.
    (34) Hjelm, A.; Granqvist, C. G.; Wills, J. M. Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3. Physical Review B 1996, 54 (4), 2436.
    (35) Woodward, P.; Sleight, A.; Vogt, T. Ferroelectric tungsten trioxide. Journal of Solid State Chemistry 1997, 131 (1), 9-17.
    (36) Yan, M.; Gu, H.; Liu, Z.; Guo, C.; Liu, S. Effective near-infrared absorbent: ammonium tungsten bronze nanocubes. RSC Advances 2015, 5 (2), 967-973.
    (37) Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. Journal of the American Chemical Society 2012, 134 (9), 3995-3998.
    (38) Lin, H.-M.; Hsu, C.-M.; Yang, H.-Y.; Lee, P.-Y.; Yang, C.-C. Nanocrystalline WO3-based H2S sensors. Sensors and Actuators B: Chemical 1994, 22 (1), 63-68.
    (39) Bai, J.; Zhou, B. Titanium dioxide nanomaterials for sensor applications. Chemical reviews 2014, 114 (19), 10131-10176.
    (40) Liu, Q.; Wu, C.; Cai, H.; Hu, N.; Zhou, J.; Wang, P. Cell-based biosensors and their application in biomedicine. Chemical reviews 2014, 114 (12), 6423-6461.
    (41) Chandra, D.; Saito, K.; Yui, T.; Yagi, M. Crystallization of Tungsten Trioxide Having Small Mesopores: Highly Efficient Photoanode for Visible‐Light‐Driven Water Oxidation. Angewandte Chemie International Edition 2013, 52 (48), 12606-12609.
    (42) D’Arienzo, M.; Armelao, L.; Mari, C. M.; Polizzi, S.; Ruffo, R.; Scotti, R.; Morazzoni, F. Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters. Journal of the American Chemical Society 2011, 133 (14), 5296-5304.
    (43) Vallejos, S.; Umek, P.; Stoycheva, T.; Annanouch, F.; Llobet, E.; Correig, X.; De Marco, P.; Bittencourt, C.; Blackman, C. Sensors: Single‐Step Deposition of Au‐and Pt‐Nanoparticle‐Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosol‐Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays (Adv. Funct. Mater. 10/2013). Advanced Functional Materials 2013, 23 (10), 1226-1226.
    (44) Huang, Z. F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Advanced Materials 2015, 27 (36), 5309-5327.
    (45) Chang, X.; Sun, S.; Dong, L.; Hu, X.; Yin, Y. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochimica acta 2014, 129, 40-46.
    (46) Thakur, V. K.; Ding, G.; Ma, J.; Lee, P. S.; Lu, X. Hybrid materials and polymer electrolytes for electrochromic device applications. Advanced Materials 2012, 24 (30), 4071-4096.
    (47) Seidel, J.; Luo, W.; Suresha, S.; Nguyen, P.-K.; Lee, A.; Kim, S.-Y.; Yang, C.-H.; Pennycook, S. J.; Pantelides, S. T.; Scott, J. Prominent electrochromism through vacancy-order melting in a complex oxide. Nature communications 2012, 3, 799.
    (48) Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347 (6217), 1246501.
    (49) Zhang, P.; Zhang, J.; Gong, J. Tantalum-based semiconductors for solar water splitting. Chemical Society Reviews 2014, 43 (13), 4395-4422.
    (50) Tian, Y.; Cong, S.; Su, W.; Chen, H.; Li, Q.; Geng, F.; Zhao, Z. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano letters 2014, 14 (4), 2150-2156.
    (51) Kim, D.-H. Effects of phase and morphology on the electrochromic performance of tungsten oxide nano-urchins. Solar Energy Materials and Solar Cells 2012, 107, 81-86.
    (52) Jung, J.; Kim, D. H. W18O49 nanowires assembled on carbon felt for application to supercapacitors. Applied Surface Science 2018, 433, 750-755.
    (53) Yoon, S.; Kang, E.; Kim, J. K.; Lee, C. W.; Lee, J. Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chemical Communications 2011, 47 (3), 1021-1023.
    (54) Wang, D.; Li, J.; Cao, X.; Pang, G.; Feng, S. Hexagonal mesocrystals formed by ultra-thin tungsten oxide nanowires and their electrochemical behaviour. Chemical Communications 2010, 46 (41), 7718-7720.
    (55) Cong, S.; Tian, Y.; Li, Q.; Zhao, Z.; Geng, F. Single‐crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Advanced Materials 2014, 26 (25), 4260-4267.
    (56) Takeda, Y.; Kato, N.; Fukano, T.; Takeichi, A.; Motohiro, T.; Kawai, S. WO 3∕ metal thin-film bilayered structures as optical recording materials. Journal of applied physics 2004, 96 (5), 2417-2422.
    (57) Lu, Y.; Qiu, H. Laser coloration and bleaching of amorphous WO3 thin film. Journal of Applied Physics 2000, 88 (2), 1082-1087.
    (58) Aoki, T.; Matsushita, T.; Suzuki, A.; Tanabe, K.; Okuda, M. Optical recording characteristics of WO 3 films grown by pulsed laser deposition method. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2005, 23 (5), 1325-1330.
    (59) Guo, C.; Yin, S.; Yu, H.; Liu, S.; Dong, Q.; Goto, T.; Zhang, Z.; Li, Y.; Sato, T. Photothermal ablation cancer therapy using homogeneous Cs x WO 3 nanorods with broad near-infra-red absorption. Nanoscale 2013, 5 (14), 6469-6478.
    (60) Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Accounts of chemical research 2008, 41 (12), 1842-1851.
    (61) Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angewandte Chemie International Edition 2013, 52 (47), 12332-12336.
    (62) Yan, J.; Wang, T.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Gong, J. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Advanced Materials 2015, 27 (9), 1580-1586.
    (63) Lu, Y.; Jiang, Y.; Gao, X.; Wang, X.; Chen, W. Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society 2014, 136 (33), 11687-11697.
    (64) Zhou, Z.; Kong, B.; Yu, C.; Shi, X.; Wang, M.; Liu, W.; Sun, Y.; Zhang, Y.; Yang, H.; Yang, S. Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy. Scientific reports 2014, 4, 3653.
    (65) Gu, Z.; Ma, Y.; Zhai, T.; Gao, B.; Yang, W.; Yao, J. A Simple Hydrothermal Method for the Large‐Scale Synthesis of Single‐Crystal Potassium Tungsten Bronze Nanowires. Chemistry–A European Journal 2006, 12 (29), 7717-7723.
    (66) Tian, G.; Zhang, X.; Zheng, X.; Yin, W.; Ruan, L.; Liu, X.; Zhou, L.; Yan, L.; Li, S.; Gu, Z. Multifunctional RbxWO3 Nanorods for Simultaneous Combined Chemo‐photothermal Therapy and Photoacoustic/CT Imaging. Small 2014, 10 (20), 4160-4170.
    (67) Dong, W.; Li, Y.; Niu, D.; Ma, Z.; Gu, J.; Chen, Y.; Zhao, W.; Liu, X.; Liu, C.; Shi, J. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@ hybrid@ Au shell nanocomposite for bimodal imaging and photothermal therapy. Advanced materials 2011, 23 (45), 5392-5397.
    (68) Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Advanced materials 2013, 25 (5), 777-782.
    (69) Li, M.; Yang, X.; Ren, J.; Qu, K.; Qu, X. Using graphene oxide high near‐infrared absorbance for photothermal treatment of Alzheimer's disease. Advanced materials 2012, 24 (13), 1722-1728.
    (70) Xu, S.; Bai, X.; Wang, L. Exploration of photothermal sensors based on photothermally responsive materials: a brief review. Inorganic Chemistry Frontiers 2018, 5 (4), 751-759.
    (71) Bisoyi, H. K.; Urbas, A. M.; Li, Q. Soft Materials Driven by Photothermal Effect and Their Applications. Advanced Optical Materials 2018, 1800458.
    (72) Guo, C.; Yin, S.; Yu, H.; Liu, S.; Dong, Q.; Goto, T.; Zhang, Z.; Li, Y.; Sato, T. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale 2013, 5 (14), 6469-6478.
    (73) Zhang, L.; Tang, B.; Wu, J.; Li, R.; Wang, P. Hydrophobic Light‐to‐Heat Conversion Membranes with Self‐Healing Ability for Interfacial Solar Heating. Advanced Materials 2015, 27 (33), 4889-4894.
    (74) Hua, Z.; Li, B.; Li, L.; Yin, X.; Chen, K.; Wang, W. Designing a Novel Photothermal Material of Hierarchical Microstructured Copper Phosphate for Solar Evaporation Enhancement. The Journal of Physical Chemistry C 2017, 121 (1), 60-69.
    (75) Zhu, L.; Gao, M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons 2018, 5 (3), 323-343.
    (76) Amri, A.; Jiang, Z. T.; Pryor, T.; Yin, C.-Y.; Djordjevic, S. Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: a review. Renewable and Sustainable Energy Reviews 2014, 36, 316-328.
    (77) Ni, G.; Li, G.; Boriskina, S. V.; Li, H.; Yang, W.; Zhang, T.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy 2016, 1 (9), nenergy2016126.
    (78) Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. ACS Nano 2017, 11 (5), 5087-5093.
    (79) Wang, P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano 2018, 5 (5), 1078-1089.
    (80) Zhu, X.; Yang, K.; Chen, B. Membranes prepared from graphene-based nanomaterials for sustainable applications: a review. Environmental Science: Nano 2017, 4 (12), 2267-2285.
    (81) Bjorkland, R.; Tobias, D. A.; Petersen, E. J. Increasing evidence indicates low bioaccumulation of carbon nanotubes. Environmental Science: Nano 2017, 4 (4), 747-766.
    (82) Dao, V. D.; Choi, H. S. Carbon‐Based Sunlight Absorbers in Solar‐Driven Steam Generation Devices. Global Challenges 2018, 2 (2), 1700094.
    (83) Wang, Y.; Zhang, L.; Wang, P. Self-Floating Carbon Nanotube Membrane on Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation. ACS Sustainable Chemistry & Engineering 2016, 4 (3), 1223-1230.
    (84) Zhou, J.; Sun, Z.; Chen, M.; Wang, J.; Qiao, W.; Long, D.; Ling, L. Macroscopic and Mechanically Robust Hollow Carbon Spheres with Superior Oil Adsorption and Light‐to‐Heat Evaporation Properties. Advanced Functional Materials 2016, 26 (29), 5368-5375.
    (85) Zeng, Y.; Wang, K.; Yao, J.; Wang, H. Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science 2014, 116, 704-709.
    (86) Webb, J. A.; Bardhan, R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale 2014, 6 (5), 2502-2530.
    (87) de Aberasturi, D. J.; Serrano‐Montes, A. B.; Liz‐Marzán, L. M. Modern applications of plasmonic nanoparticles: from energy to health. Advanced Optical Materials 2015, 3 (5), 602-617.
    (88) Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion. The Journal of Physical Chemistry C 2015, 119 (45), 25518-25528.
    (89) Gwo, S.; Chen, H.-Y.; Lin, M.-H.; Sun, L.; Li, X. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chemical Society Reviews 2016, 45 (20), 5672-5716.
    (90) Rakić, A. D.; Djurišić, A. B.; Elazar, J. M.; Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied optics 1998, 37 (22), 5271-5283.
    (91) Johnson, P. B.; Christy, R.-W. Optical constants of the noble metals. Physical review B 1972, 6 (12), 4370.
    (92) Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics 2016, 10 (6), 393.
    (93) Xia, Y.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS bulletin 2005, 30 (5), 338-348.
    (94) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111 (6), 3669-3712.
    (95) Deng, Z.; Zhou, J.; Miao, L.; Liu, C.; Peng, Y.; Sun, L.; Tanemura, S. The emergence of solar thermal utilization: solar-driven steam generation. Journal of Materials Chemistry A 2017, 5 (17), 7691-7709.
    (96) Umlauff, M.; Hoffmann, J.; Kalt, H.; Langbein, W.; Hvam, J. M.; Scholl, M.; Söllner, J.; Heuken, M.; Jobst, B.; Hommel, D. Direct observation of free-exciton thermalization in quantum-well structures. Physical Review B 1998, 57 (3), 1390.
    (97) Chen, X.; Liu, L.; Peter, Y. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 1200448.
    (98) Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles. Advanced Materials 2017, 29 (3), 1603730.
    (99) Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews 2015, 44 (7), 1861-1885.
    (100) Li, R.; Zhang, L.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS nano 2017, 11 (4), 3752-3759.
    (101) Liu, X.; Zhu, G.; Wang, X.; Yuan, X.; Lin, T.; Huang, F. Progress in black titania: a new material for advanced photocatalysis. Advanced Energy Materials 2016, 6 (17), 1600452.
    (102) Ye, M.; Jia, J.; Wu, Z.; Qian, C.; Chen, R.; O'Brien, P. G.; Sun, W.; Dong, Y.; Ozin, G. A. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Advanced Energy Materials 2017, 7 (4), 1601811.
    (103) Liu, G.; Xu, J.; Wang, K. Solar water evaporation by black photothermal sheets. Nano Energy 2017, 41, 269-284.
    (104) Li, B.; Wang, Q.; Zou, R.; Liu, X.; Xu, K.; Li, W.; Hu, J. Cu 7.2 S 4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 2014, 6 (6), 3274-3282.
    (105) Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano letters 2011, 11 (6), 2560-2566.
    (106) Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature materials 2011, 10 (5), 361.
    (107) Jain, P. K.; Manthiram, K.; Engel, J. H.; White, S. L.; Faucheaux, J. A.; Alivisatos, A. P. Doped nanocrystals as plasmonic probes of redox chemistry. Angewandte Chemie 2013, 125 (51), 13916-13920.
    (108) Liu, C.; Huang, J.; Hsiung, C. E.; Tian, Y.; Wang, J.; Han, Y.; Fratalocchi, A. High‐Performance Large‐Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. Advanced Sustainable Systems 2017, 1 (1-2), 1600013.
    (109) Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy & Environmental Science 2012, 5 (3), 6180-6187.
    (110) Wang, D.; Han, D.; Liu, L.; Niu, L. Sub-stoichiometric WO 2.9 for formaldehyde sensing and treatment: a first-principles study. Journal of Materials Chemistry A 2016, 4 (37), 14416-14422.
    (111) Sun, L.; Li, Z.; Su, R.; Wang, Y.; Li, Z.; Du, B.; Sun, Y.; Guan, P.; Besenbacher, F.; Yu, M. Phase‐transition induced conversion to photothermal material: Quasi‐metallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy. Angewandte Chemie International Edition 2018.
    (112) Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53 (50), 6744-6747.
    (113) Wang, Z.; Ye, Q.; Liang, X.; Xu, J.; Chang, C.; Song, C.; Shang, W.; Wu, J.; Tao, P.; Deng, T. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry A 2017, 5 (31), 16359-16368.
    (114) Jiang, Q.; Gholami Derami, H.; Ghim, D.; Cao, S.; Jun, Y.-S.; Singamaneni, S. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. Journal of Materials Chemistry A 2017, 5 (35), 18397-18402.
    (115) Chen, R.; Wu, Z.; Zhang, T.; Yu, T.; Ye, M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Advances 2017, 7 (32), 19849-1985.
    (116) Hu, X.; Liu, X.; Tian, J.; Li, Y.; Cui, H. Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator. Catalysis Science & Technology 2017, 7 (18), 4193-4205.
    (117) Li, J.; Cui, H.; Song, X.; Wei, N.; Tian, J. The high surface energy of NiO {110} facets incorporated into TiO2 hollow microspheres by etching Ti plate for enhanced photocatalytic and photoelectrochemical activity. Applied Surface Science 2017, 396, 1539-1545.
    (118) Li, Y.; Li, T.; Tian, J.; Wang, X.; Cui, H. TiO2 Nanobelts Decorated with In2S3 Nanoparticles as Photocatalysts with Enhanced Full‐Solar‐Spectrum (UV–vis–NIR) Photocatalytic Activity toward the Degradation of Tetracycline. Particle & Particle Systems Characterization 2017, 34 (7), 1700127.
    (119) Molinari, R.; Lavorato, C.; Argurio, P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catalysis Today 2017, 281, 144-164.
    (120) Wang, Y.; Du, G.; Liu, H.; Liu, D.; Qin, S.; Wang, N.; Hu, C.; Tao, X.; Jiao, J.; Wang, J. Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications. Advanced Functional Materials 2008, 18 (7), 1131-1137.
    (121) Yang, L.; Liu, B.; Liu, T.; Ma, X.; Li, H.; Yin, S.; Sato, T.; Wang, Y. A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Scientific Reports 2017, 7, 45715.
    (122) Nakata, K.; Ochiai, T.; Murakami, T.; Fujishima, A. Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta 2012, 84, 103-111.
    (123) Wang, L.; Wei, H.; Fan, Y.; Gu, X.; Zhan, J. One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. The Journal of Physical Chemistry C 2009, 113 (32), 14119-14125.
    (124) Hou, Y.-F.; Liu, S.-J.; Zhang, J.-h.; Cheng, X.; Wang, Y. Facile hydrothermal synthesis of TiO2-Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties. Dalton Transactions 2014, 43 (3), 1025-1031.
    (125) Guo, C.; Yin, S.; Dong, Q.; Sato, T. Simple route to (NH4) xWO3 nanorods for near infrared absorption. Nanoscale 2012, 4 (11), 3394-3398.
    (126) Park, J. Visible and near infrared light active photocatalysis based on conjugated polymers. Journal of Industrial and Engineering Chemistry 2017, 51, 27-43.
    (127) Li, N.; Liu, M.; Yang, B.; Shu, W.; Shen, Q.; Liu, M.; Zhou, J. Enhanced photocatalytic performance toward CO2 hydrogenation over nanosized TiO2-loaded Pd under UV irradiation. The Journal of Physical Chemistry C 2017, 121 (5), 2923-2932.
    (128) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano‐photocatalytic materials: possibilities and challenges. Advanced materials 2012, 24 (2), 229-251.
    (129) Zhang, F.; Zhang, C. L.; Peng, H. Y.; Cong, H. P.; Qian, H. S. Near‐Infrared Photocatalytic Upconversion Nanoparticles/TiO2 Nanofibers Assembled in Large Scale by Electrospinning. Particle & Particle Systems Characterization 2016, 33 (5), 248-253.
    (130) Fan, W.; Bai, H.; Shi, W. Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting. CrystEngComm 2014, 16 (15), 3059-3067.
    (131) Li, H.; Liu, R.; Liu, Y.; Huang, H.; Yu, H.; Ming, H.; Lian, S.; Lee, S.-T.; Kang, Z. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry 2012, 22 (34), 17470-17475.
    (132) Li, H.; Liu, R.; Lian, S.; Liu, Y.; Huang, H.; Kang, Z. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 2013, 5 (8), 3289-3297.
    (133) Qin, W.; Zhang, D.; Zhao, D.; Wang, L.; Zheng, K. Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chemical communications 2010, 46 (13), 2304-2306.
    (134) Bloembergen, N. Solid state infrared quantum counters. Physical Review Letters 1959, 2 (3), 84.
    (135) Jia, X.; Li, J.; Wang, E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4 (18), 5572-5575.
    (136) Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chemical reviews 2004, 104 (1), 139-174.
    (137) Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews 2009, 38 (4), 976-989.
    (138) Tian, J.; Sang, Y.; Yu, G.; Jiang, H.; Mu, X.; Liu, H. A Bi2WO6‐based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near‐infrared irradiation. Advanced Materials 2013, 25 (36), 5075-5080.
    (139) Kim, S.; Kim, M.; Kim, Y. K.; Hwang, S.-H.; Lim, S. K. Core-shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity. Applied Catalysis B: Environmental 2014, 148, 170-176.
    (140) Sang, Y.; Liu, H.; Umar, A. Photocatalysis from UV/Vis to Near‐Infrared Light: Towards Full Solar‐Light Spectrum Activity. ChemCatChem 2015, 7 (4), 559-573.
    (141) Liu, Y.; Zhao, L.; Su, J.; Li, M.; Guo, L. Fabrication and Properties of a Branched (NH4) x WO3 Nanowire Array Film and a Porous WO3 Nanorod Array Film. ACS applied materials & interfaces 2015, 7 (6), 3532-3538.
    (142) Guo, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Discovery of an excellent IR absorbent with a broad working waveband: CsxWO3 nanorods. Chemical Communications 2011, 47 (31), 8853-8855.
    (143) Wang, L.; Zhan, J.; Fan, W.; Cui, G.; Sun, H.; Zhuo, L.; Zhao, X.; Tang, B. Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts. Chemical Communications 2010, 46 (46), 8833-8835.
    (144) Green, M.; Travlos, A. Sodium-tungsten bronze thin films: I. Optical properties of dilute bronzes. Philosophical magazine B 1985, 51 (5), 501-520.
    (145) Lynch, D.; Rosei, R.; Weaver, J.; Olson, C. The optical properties of some alkali metal tungsten bronzes from 0.1 to 38 eV. Journal of Solid State Chemistry 1973, 8 (3), 242-252.
    (146) Li, G.; Guo, C.; Yan, M.; Liu, S. CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental 2016, 183, 142-148.
    (147) Yan, M.; Li, G.; Guo, C.; Guo, W.; Ding, D.; Zhang, S.; Liu, S. WO3-x sensitized TiO2 spheres with full-spectrum-driven photocatalytic activities from UV to near infrared. Nanoscale 2016, 8 (41), 17828-17835.
    (148) Man, H.; Wang, C.; Sun, Y.; Ning, Y.; Song, P.; Huang, W. Studies on CsxWO3/BiOCl composite as a novel visible light droven photocatalyst. Journal of Materiomics 2016, 2 (4), 338-343.
    (1) Choi, J.; Moon, K.; Kang, I.; Kim, S.; Yoo, P. J.; Oh, K. W.; Park, J. Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine. Chemical Engineering Journal 2015, 281, 236-242.
    (2) Yan, M.; Gu, H.; Liu, Z.; Guo, C.; Liu, S. Effective near-infrared absorbent: ammonium tungsten bronze nanocubes. RSC Advances 2015, 5 (2), 967-973.
    (3) Guo, C.; Yin, S.; Dong, Q.; Sato, T. Near-infrared absorption properties of RbxWO3 nanoparticles. CrystEngComm 2012, 14 (22), 7727-7732.
    (4) Guo, C.; Yin, S.; Huang, L.; Yang, L.; Sato, T. Discovery of an excellent IR absorbent with a broad working waveband: CsxWO3 nanorods. Chem Commun (Camb) 2011, 47 (31), 8853-5.
    (5) Uhuegbu, C. C. Photo-thermal solar energy conversion device. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2011, 2 (1), 96-101.
    (6) Lizama-Tzec, F.; Macias, J.; Estrella-Gutiérrez, M.; Cahue-López, A.; Arés, O.; de Coss, R.; Alvarado-Gil, J.; Oskam, G. Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion. Journal of Materials Science: Materials in Electronics 2015, 26 (8), 5553-5561.
    (7) Li, B.; Nie, S.; Hao, Y.; Liu, T.; Zhu, J.; Yan, S. Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light–heat conversion for thermal energy storage. Energy Conversion and Management 2015, 98, 314-321.
    (8) Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles. Advanced Materials 2017, 29 (3).
    (9) Chen, C.-J.; Chen, D.-H. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles. Nanoscale research letters 2013, 8 (1), 57.
    (10) Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Advanced materials 2012, 24 (41), 5586-5592.
    (11) Chen, C.-J.; Chen, D.-H. Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material. Chemical Engineering Journal 2012, 180, 337-342.
    (12) Huang, X.; El-Sayed, M. A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 2010, 1 (1), 13-28.
    (13) Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano letters 2010, 10 (9), 3318-3323.
    (14) Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 2013, 42 (2), 530-547.
    (15) Huang, X.; Tang, S.; Liu, B.; Ren, B.; Zheng, N. Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core‐Shell Architecture. Advanced Materials 2011, 23 (30), 3420-3425.
    (16) Horiguchi, Y.; Honda, K.; Kato, Y.; Nakashima, N.; Niidome, Y. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir 2008, 24 (20), 12026-12031.
    (17) Liu, Z.; Song, H.; Yu, L.; Yang, L. Fabrication and near-infrared photothermal conversion characteristics of Au nanoshells. Applied Physics Letters 2005, 86 (11), 113109.
    (18) Ke, H.; Wang, J.; Dai, Z.; Jin, Y.; Qu, E.; Xing, Z.; Guo, C.; Yue, X.; Liu, J. Gold‐Nanoshelled Microcapsules: A Theranostic Agent for Ultrasound Contrast Imaging and Photothermal Therapy. Angewandte Chemie 2011, 123 (13), 3073-3077.
    (19) Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z.-Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano letters 2007, 7 (5), 1318.
    (20) Li, G.; Zhang, S.; Guo, C.; Liu, S. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide. Nanoscale 2016, 8 (18), 9861-9868.
    (21) An, Y.; Li, X.-F.; Zhang, Y.-J.; Tao, F.-J.; Zuo, M.-C.; Dong, L.-H.; Yin, Y.-S. Fabrication and Application of a New-Type Photothermal Conversion Nano Composite Coating. Journal of nanoscience and nanotechnology 2015, 15 (4), 3151-3156.
    (22) Yang, C.; Chen, J.-F.; Zeng, X.; Cheng, D.; Cao, D. Design of the Alkali-Metal-Doped WO3as a Near-Infrared Shielding Material for Smart Window. Industrial & Engineering Chemistry Research 2014, 53 (46), 17981-17988, DOI: 10.1021/ie503284x.
    (23) Bai, H.; Su, N.; Li, W.; Zhang, X.; Yan, Y.; Li, P.; Ouyang, S.; Ye, J.; Xi, G. W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. Journal of Materials Chemistry A 2013, 1 (20), 6125.
    (24) Zhou, J.; Ding, Y.; Deng, S. Z.; Gong, L.; Xu, N. S.; Wang, Z. L. Three‐Dimensional Tungsten Oxide Nanowire Networks. Advanced Materials 2005, 17 (17), 2107-2110.
    (25) Wen, L.; Chen, L.; Zheng, S.; Zeng, J.; Duan, G.; Wang, Y.; Wang, G.; Chai, Z.; Li, Z.; Gao, M. Ultrasmall Biocompatible WO3-x Nanodots for Multi‐Modality Imaging and Combined Therapy of Cancers. Advanced Materials 2016, 28 (25), 5072-5079.
    (26) Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. Journal of the American Chemical Society 2012, 134 (9), 3995-3998.
    (27) Fang, Z.; Jiao, S.; Kang, Y.; Pang, G.; Feng, S. Photothermal Conversion of W18O49 with a Tunable Oxidation State. ChemistryOpen 2017, 6 ,261 –265.
    (28) Lee, W. H.; Hwang, H.; Moon, K.; Shin, K.; Han, J. H.; Um, S. H.; Park, J.; Cho, J. H. Increased environmental stability of a tungsten bronze NIR-absorbing window. Fibers and Polymers 2013, 14 (12), 2077-2082.
    (29) Takeda, H.; Adachi, K. Near infrared absorption of tungsten oxide nanoparticle dispersions. Journal of the American Ceramic Society 2007, 90 (12), 4059-4061.
    (30) Wang, T.; Xiong, Y.; Li, R.; Cai, H. Dependence of infrared absorption properties on the Mo doping contents in MxWO3 with various alkali metals. New Journal of Chemistry 2016, 40 (9), 7476-7481.
    (31) Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorganic chemistry 2012, 51 (8), 4763-4771.
    (32) Li, B.; Shao, X.; Liu, T.; Shao, L.; Zhang, B. Construction of metal/WO2.72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental 2016, 198, 325-333.
    (33) Huo, D.; He, J.; Li, H.; Huang, A. J.; Zhao, H. Y.; Ding, Y.; Zhou, Z. Y.; Hu, Y. X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles. Biomaterials 2014, 35 (33), 9155-9166.
    (34) Zhang, Y.; Li, B.; Cao, Y.; Qin, J.; Peng, Z.; Xiao, Z.; Huang, X.; Zou, R.; Hu, J. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells. Dalton Transactions 2015, 44 (6), 2771-2779.
    (35) Chen, J.; Zhou, Y.; Nan, Q.; Ye, X.; Sun, Y.; Zhang, F.; Wang, Z. Preparation and properties of optically active polyurethane/TiO 2 nanocomposites derived from optically pure 1, 1′-binaphthyl. European Polymer Journal 2007, 43 (10), 4151-4159.
    (36) Mirabedini, S.; Sabzi, M.; Zohuriaan-Mehr, J.; Atai, M.; Behzadnasab, M. Weathering performance of the polyurethane nanocomposite coatings containing silane treated TiO2 nanoparticles. Applied Surface Science 2011, 257 (9), 4196-4203.
    (37) Chen, J.; Zhou, Y.; Nan, Q.; Sun, Y.; Ye, X.; Wang, Z. Synthesis, characterization and infrared emissivity study of polyurethane/TiO 2 nanocomposites. Applied Surface Science 2007, 253 (23), 9154-9158.
    (38) Chen, X. D.; Wang, Z.; Liao, Z. F.; Mai, Y. L.; Zhang, M. Q. Roles of anatase and rutile TiO 2 nanoparticles in photooxidation of polyurethane. Polymer Testing 2007, 26 (2), 202-208.
    (39) Nikje, M. M. A.; Moghaddam, S. T.; Noruzian, M. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles. Polímeros 2016.
    (40) Meng, Q. B.; Lee, S.-I.; Nah, C.; Lee, Y.-S. Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Progress in Organic Coatings 2009, 66 (4), 382-386.
    (41) Venables, D. S.; Brown, M. E. Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochimica acta 1996, 285 (2), 361-382.
    (42) Fouad, N.; Attyia, K.; Zaki, M. Thermogravimetry of WO3 reduction in hydrogen: kinetic characterization of autocatalytic effects. Powder technology 1993, 74 (1), 31-37.
    (43) Leftheriotis, G.; Papaefthimiou, S.; Yianoulis, P.; Siokou, A. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin solid films 2001, 384 (2), 298-306.
    (44) Jeon, S.; Yong, K. Direct synthesis of W18O49 nanorods from W2N film by thermal annealing. Nanotechnology 2007, 18 (24), 245602.
    (45) Xu, W.; Tian, Q.; Chen, Z.; Xia, M.; Macharia, D. K.; Sun, B.; Tian, L.; Wang, Y.; Zhu, M. Optimization of photothermal performance of hydrophilic W18O49 nanowires for the ablation of cancer cells in vivo. Journal of Materials Chemistry B 2014, 2 (34), 5594-5601.
    (46) Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M. Ultrathin PEGylated W18O49 Nanowires as a New 980 nm‐Laser‐Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Advanced Materials 2013, 25 (14), 2095-2100.
    (47) Kim, D.; Jang, M.; Seo, J.; Nam, K.-H.; Han, H.; Khan, S. B. UV-cured poly (urethane acrylate) composite films containing surface-modified tetrapod ZnO whiskers. Composites Science and Technology 2013, 75, 84-92.
    (48) Xu, W.; Meng, Z.; Yu, N.; Chen, Z.; Sun, B.; Jiang, X.; Zhu, M. PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells. RSC Advances 2015, 5 (10), 7074-7082.
    (49) Jia, G. Z.; Lou, W. K.; Cheng, F.; Wang, X. L.; Yao, J. H.; Dai, N.; Lin, H. Q.; Chang, K. Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots. Nano Research 2015, 8 (5), 1443-1453.
    (50) Mebrouk, K.; Debnath, S.; Fourmigué, M.; Camerel, F. Photothermal Control of the Gelation Properties of Nickel Bis (dithiolene) Metallogelators under Near-Infrared Irradiation. Langmuir 2014, 30 (28), 8592-8597.
    (51) Zhong, W.; Yu, N.; Zhang, L.; Liu, Z.; Wang, Z.; Hu, J.; Chen, Z. Synthesis of CuS nanoplate-containing PDMS film with excellent near-infrared shielding properties. RSC Advances 2016, 6 (23), 18881-18890.
    (52) Guo, C.; Yin, S.; Huang, Y.; Dong, Q.; Sato, T. Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. Langmuir 2011, 27 (19), 12172-12178.
    (53) Li, D.; Zhang, Y.; Wen, S.; Song, Y.; Tang, Y.; Zhu, X.; Shen, M.; Mignani, S.; Majoral, J.-P.; Zhao, Q. Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy. Journal of Materials Chemistry B 2016, 4 (23), 4216-4226.
    (54) Jin, Y.; Wang, J.; Ke, H.; Wang, S.; Dai, Z. Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 2013, 34 (20), 4794-4802.
    (55) Matusiak, M. Investigation of the thermal insulation properties of multilayer textiles. Fibres & Textiles in Eastern Europe 2006, 14 (5), 98-102
    (1) Li, B.; Nie, S.; Hao, Y.; Liu, T.; Zhu, J.; Yan, S. Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light-heat conversion for thermal energy storage. Energy conversion and management 2015, 98, 314-321.
    (2) Hua, Z.; Li, B.; Li, L.; Yin, X.; Chen, K.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. The Journal of Physical Chemistry C 2016, 121 (1), 60-69.
    (3) Chang, C.; Yang, C.; Liu, Y.; Tao, P.; Song, C.; Shang, W.; Wu, J.; Deng, T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS applied materials & interfaces 2016, 8 (35), 23412-23418.
    (4) Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles. Advanced Materials 2017, 29 (3), 1603730.
    (5) Wondimu, T. H.; Chen, G.-C.; Kabtamu, D. M.; Chen, H.-Y.; Bayeh, A. W.; Huang, H.-C.; Wang, C. H. Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction. International Journal of Hydrogen Energy 2018, 43 (13), 6481-6490.
    (6) Bayeh, A. W.; Kabtamu, D. M.; Chang, Y.-C.; Chen, G.-C.; Chen, H.-Y.; Lin, G.-Y.; Liu, T.-R.; Wondimu, T. H.; Wang, K.-C.; Wang, C.-H. Ta2O5-Nanoparticle-Modified Graphite Felt As a High-Performance Electrode for a Vanadium Redox Flow Battery. ACS Sustainable Chemistry & Engineering 2018, 6 (3), 3019-3028.
    (7) Zhang, L.; Tang, B.; Wu, J.; Li, R.; Wang, P. Hydrophobic Light‐to‐Heat Conversion Membranes with Self‐Healing Ability for Interfacial Solar Heating. Advanced Materials 2015, 27 (33), 4889-4894.
    (8) Shi, L.; Wang, Y.; Zhang, L.; Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry A 2017, 5 (31), 16212-16219.
    (9) Shang, M.; Li, N.; Zhang, S.; Zhao, T.; Zhang, C.; Liu, C.; Li, H.; Wang, Z. Full-Spectrum Solar-to-Heat Conversion Membrane with Interfacial Plasmonic Heating Ability for High-Efficiency Desalination of Seawater. ACS Applied Energy Materials 2017.
    (10) Zhang, C.; Yan, C.; Xue, Z.; Yu, W.; Xie, Y.; Wang, T. Shape‐Controlled Synthesis of High‐Quality Cu7S4 Nanocrystals for Efficient Light‐Induced Water Evaporation. Small 2016, 12 (38), 5320-5328.
    (11) Guo, A.; Ming, X.; Fu, Y.; Wang, G.; Wang, X. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation. ACS applied materials & interfaces 2017, 9 (35), 29958-29964.
    (12) Li, R.; Zhang, L.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS nano 2017, 11 (4), 3752-3759.
    (13) Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. Solar vapor generation enabled by nanoparticles. ACS nano 2012, 7 (1), 42-49.
    (14) Miyako, E.; Hosokawa, C.; Kojima, M.; Yudasaka, M.; Funahashi, R.; Oishi, I.; Hagihara, Y.; Shichiri, M.; Takashima, M.; Nishio, K. A Photo‐Thermal‐Electrical Converter Based On Carbon Nanotubes for Bioelectronic Applications. Angewandte Chemie International Edition 2011, 50 (51), 12266-12270.
    (15) Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M. Ultrathin PEGylated W18O49 Nanowires as a New 980 nm‐Laser‐Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo. Advanced materials 2013, 25 (14), 2095-2100.
    (16) Yan, M.; Gu, H.; Liu, Z.; Guo, C.; Liu, S. Effective near-infrared absorbent: ammonium tungsten bronze nanocubes. RSC Advances 2015, 5 (2), 967-973.
    (17) Liu, G.; Xu, J.; Wang, K. Solar water evaporation by black photothermal sheets. Nano Energy 2017, 41, 269-284.
    (18) Yu, S.; Zhang, Y.; Duan, H.; Liu, Y.; Quan, X.; Tao, P.; Shang, W.; Wu, J.; Song, C.; Deng, T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Scientific reports 2015, 5, 13600.
    (19) Chen, R.; Wu, Z.; Zhang, T.; Yu, T.; Ye, M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Advances 2017, 7 (32), 19849-19855.
    (20) Shang, W.; Deng, T. Solar steam generation: Steam by thermal concentration. Nature Energy 2016, 1 (9), 16133.
    (21) Liu, Y.; Chen, J.; Guo, D.; Cao, M.; Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS applied materials & interfaces 2015, 7 (24), 13645-13652.
    (22) Jiang, Q.; Derami, H. G.; Ghim, D.; Cao, S.; Jun, Y.-S.; Singamaneni, S. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. Journal of Materials Chemistry A 2017, 5 (35), 18397-18402.
    (23) Wang, Z.; Ye, Q.; Liang, X.; Xu, J.; Chang, C.; Song, C.; Shang, W.; Wu, J.; Tao, P.; Deng, T. based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry A 2017, 5 (31), 16359-16368.
    (24) Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53 (50), 6744-6747.
    (25) Ye, M.; Jia, J.; Wu, Z.; Qian, C.; Chen, R.; O'Brien, P. G.; Sun, W.; Dong, Y.; Ozin, G. A. Synthesis of Black TiOx Nanoparticles by Mg Reduction of TiO2 Nanocrystals and their Application for Solar Water Evaporation. Advanced Energy Materials 2017, 7 (4), 601811.
    (26) Wang, Y.; Wang, C.; Song, X.; Megarajan, S. K.; Jiang, H. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. Journal of Materials Chemistry A 2018 6, 963-971.
    (27) Liu, Z.; Yang, Z.; Huang, X.; Xuan, C.; Xie, J.; Fu, H.; Wu, Q.; Zhang, J.; Zhou, X.; Liu, Y. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. Journal of Materials Chemistry A 2017, 5 (37), 20044-20052.
    (28) Fu, Y.; Wang, G.; Mei, T.; Li, J.; Wang, J.; Wang, X. Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sustainable Chemistry & Engineering 2017, 5 (6), 4665-4671.
    (29) Yan, J.; Liu, P.; Ma, C.; Lin, Z.; Yang, G. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 2016, 8 (16), 8826-8838.
    (30) Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and in vivo near‐infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Advanced materials 2012, 24 (41), 5586-5592.
    (31) Huang, X.; Yu, Y.-H.; de Llergo, O. L.; Marquez, S. M.; Cheng, Z. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC Advances 2017, 7 (16), 9495-9499.
    (32) Ito, Y.; Tanabe, Y.; Han, J.; Fujita, T.; Tanigaki, K.; Chen, M. Multifunctional Porous Graphene for High‐Efficiency Steam Generation by Heat Localization. Advanced Materials 2015, 27 (29), 4302-4307.
    (33) Li, X.; Xu, W.; Tang, M.; Zhou, L.; Zhu, B.; Zhu, S.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences 2016, 113 (49), 13953-13958.
    (34) Jiang, Q.; Tian, L.; Liu, K. K.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Bilayered biofoam for highly efficient solar steam generation. Advanced Materials 2016, 28 (42), 9400-9407.
    (35) Zeng, Y.; Wang, K.; Yao, J.; Wang, H. Hollow carbon beads for significant water evaporation enhancement. Chemical Engineering Science 2014, 116, 704-709.
    (36) Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano letters 2016, 17 (1), 384-391.
    (37) Shi, Y.; Li, R.; Shi, L.; Ahmed, E.; Jin, Y.; Wang, P. A Robust CuCr2O4/SiO2 Composite Photothermal Material with Underwater Black Property and Extremely High Thermal Stability for Solar‐Driven Water Evaporation. Advanced Sustainable Systems 2018, 2 (3), 1700145.
    (38) Hu, X.; Xu, W.; Zhou, L.; Tan, Y.; Wang, Y.; Zhu, S.; Zhu, J. Tailoring Graphene Oxide‐Based Aerogels for Efficient Solar Steam Generation under One Sun. Advanced materials 2017, 29 (5).
    (39) Tian, L.; Luan, J.; Liu, K.-K.; Jiang, Q.; Tadepalli, S.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Plasmonic biofoam: a versatile optically active material. Nano letters 2015, 16 (1), 609-616.
    (40) Ogata, N.; Yamaguchi, S.; Shimada, N.; Lu, G.; Iwata, T.; Nakane, K.; Ogihara, T. Poly (lactide) nanofibers produced by a melt‐electrospinning system with a laser melting device. Journal of applied polymer science 2007, 104 (3), 1640-1645.
    (41) Lu, X.; Liu, X.; Zhang, W.; Wang, C.; Wei, Y. Large-scale synthesis of tungsten oxide nanofibers by electrospinning. Journal of colloid and interface science 2006, 298 (2), 996-999.
    (42) Dong, B.; Song, H.; Yu, H.; Zhang, H.; Qin, R.; Bai, X.; Pan, G.; Lu, S.; Wang, F.; Fan, L. Upconversion properties of Ln3+ doped NaYF4/polymer composite fibers prepared by electrospinning. The Journal of Physical Chemistry C 2008, 112 (5), 1435-1440.
    (43) Dalton, P. D.; Grafahrend, D.; Klinkhammer, K.; Klee, D.; Möller, M. Electrospinning of polymer melts: phenomenological observations. Polymer 2007, 48 (23), 6823-6833.
    (44) Zhou, H.; Green, T. B.; Joo, Y. L. The thermal effects on electrospinning of polylactic acid melts. Polymer 2006, 47 (21), 7497-7505.
    (45) Gupta, B.; Revagade, N.; Hilborn, J. Poly (lactic acid) fiber: an overview. Progress in polymer science 2007, 32 (4), 455-482.
    (46) Liu, C.-K.; Sun, R.-J.; Lai, K.; Sun, C.-Q.; Wang, Y.-W. Preparation of short submicron-fiber yarn by an annular collector through electrospinning. Materials letters 2008, 62 (29), 4467-4469.
    (47) Wang, X.; Zhang, K.; Zhu, M.; Yu, H.; Zhou, Z.; Chen, Y.; Hsiao, B. S. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer 2008, 49 (11), 2755-2761.
    (48) Góra, A.; Sahay, R.; Thavasi, V.; Ramakrishna, S. Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polymer Reviews 2011, 51 (3), 265-287.
    (49) Lyons, J.; Li, C.; Ko, F. Melt-electrospinning part I: processing parameters and geometric properties. Polymer 2004, 45 (22), 7597-7603.
    (50) Liu, Z.; Liu, Y.; Ding, Y.; Li, H.; Chen, H.; Yang, W. Tug of war effect in melt electrospinning. Journal of Non-Newtonian Fluid Mechanics 2013, 202, 131-136.
    (51) Wang, H.; Xu, Y.; Wei, Q. Preparation of bamboo-hat-shaped deposition of a poly(ethylene terephthalate) fiber web by melt-electrospinning. Textile Research Journal 2015, 85 (17), 1838-1848.
    (52) Wang, H.; Xu, Y.; Wei, Q. Preparation of bamboo-hat-shaped deposition of a poly (ethylene terephthalate) fiber web by melt-electrospinning. Textile Research Journal 2015, 85 (17), 1838-1848.
    (53) Xie, G.; Wang, Y.; Han, X.; Gong, Y.; Wang, J.; Zhang, J.; Deng, D.; Liu, Y. Pulsed Electric Fields on Poly-L-(lactic acid) Melt Electrospun Fibers. Industrial & Engineering Chemistry Research 2016, 55 (26), 7116-7123.
    (54) Chala, T. F.; Wu, C.-M.; Chou, M.-H.; Gebeyehu, M. B.; Cheng, K.-B. Highly Efficient Near Infrared Photothermal Conversion Properties of Reduced Tungsten Oxide/Polyurethane Nanocomposites. Nanomaterials 2017, 7 (7), 191.
    (55) Wu, C.-M.; Chen, I.-T.; Chiang, J.-C., Ultrafine Fiber Printing System. U.S. Patents 20,170,268,130 A1, 2017.
    (56) Wang, G.; Fu, Y.; Guo, A.; Mei, T.; Wang, J.; Li, J.; Wang, X. Reduced Graphene Oxide–Polyurethane Nanocomposite Foam as a Reusable Photoreceiver for Efficient Solar Steam Generation. Chemistry of Materials 2017, 29 (13), 5629-5635.
    (57) Bae, K.; Kang, G.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature communications 2015, 6, 10103.
    (58) Wang, P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano 2018, 5 (5), 1078-1089.
    (59) Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic flower‐Like CuS Superstructures as an efficient 980 nm laser‐driven photothermal agent for ablation of cancer cells. Advanced materials 2011, 23 (31), 3542-3547.
    (60) Xu, W.; Tian, Q.; Chen, Z.; Xia, M.; Macharia, D. K.; Sun, B.; Tian, L.; Wang, Y.; Zhu, M. Optimization of photothermal performance of hydrophilic W18O49 nanowires for the ablation of cancer cells in vivo. Journal of Materials Chemistry B 2014, 2 (34), 5594-5601.
    (61) Li, G.; Zhang, S.; Guo, C.; Liu, S. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide. Nanoscale 2016, 8 (18), 9861-9868.
    (62) Yan, M.; Li, G.; Guo, C.; Guo, W.; Ding, D.; Zhang, S.; Liu, S. WO3-x sensitized TiO2 spheres with full-spectrum-driven photocatalytic activities from UV to near infrared. Nanoscale 2016, 8 (41), 17828-17835.
    (63) Zhu, L.; Gao, M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons 2018, 5 (3), 323-343.
    (64) Xu, W.; Meng, Z.; Yu, N.; Chen, Z.; Sun, B.; Jiang, X.; Zhu, M. PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells. RSC Advances 2015, 5 (10), 7074-7082.
    (65) Wang, Z.; Tao, P.; Liu, Y.; Xu, H.; Ye, Q.; Hu, H.; Song, C.; Chen, Z.; Shang, W.; Deng, T. Rapid charging of thermal energy storage materials through plasmonic heating. Scientific reports 2014, 4, 6246.
    (66) Wang, Y.; Zhang, L.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering 2016, 4 (3), 1223-1230.
    (1) Huang, M.-Z.; Yuan, B.; Dai, L.; Fu, M.-L. Toward NIR driven photocatalyst: Fabrication, characterization, and photocatalytic activity of β-NaYF4: Yb3+, Tm3+/g-C3N4 nanocomposite. Journal of colloid and interface science 2015, 460, 264-272.
    (2) Li, H.; Chen, T.; Wang, Y.; Tang, J.; Wang, Y.; Sang, Y.; Liu, H. Surface-sulfurized Ag2O nanoparticles with stable full-solar-spectrum photocatalytic activity. Chinese Journal of Catalysis 2017, 38 (6), 1063-1071.
    (3) Shi, W.; Lv, H.; Yuan, S.; Huang, H.; Liu, Y.; Kang, Z. Near-infrared light photocatalytic ability for degradation of tetracycline using carbon dots modified Ag/AgBr nanocomposites. Separation and Purification Technology 2017, 174, 75-83.
    (4) Li, Y.; Li, T.; Tian, J.; Wang, X.; Cui, H. TiO2 Nanobelts Decorated with In2S3 Nanoparticles as Photocatalysts with Enhanced Full‐Solar‐Spectrum (UV–vis–NIR) Photocatalytic Activity toward the Degradation of Tetracycline. Particle & Particle Systems Characterization 2017, 34 (7), 1700127.
    (5) Chala, T. F.; Wu, C.-M.; Chou, M.-H.; Guo, Z.-L. Melt Electrospun Reduced Tungsten Oxide/Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation. ACS applied materials & interfaces 2018, 10 (34), 28955-28962.
    (6) Wang, S.; Li, D.; Sun, C.; Yang, S.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Applied Catalysis B: Environmental 2014, 144, 885-892.
    (7) Wang, P.; Tang, H.; Ao, Y.; Wang, C.; Hou, J.; Qian, J.; Li, Y. In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation. Journal of Alloys and Compounds 2016, 688, 1-7.
    (8) Zhang, L.; He, Y.; Ye, P.; Wu, Y.; Wu, T. Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites. Journal of Alloys and Compounds 2013, 549, 105-113.
    (9) Inceesungvorn, B.; Teeranunpong, T.; Nunkaew, J.; Suntalelat, S.; Tantraviwat, D. Novel NiTiO3/Ag3VO4 composite with enhanced photocatalytic performance under visible light. Catalysis Communications 2014, 54, 35-38.
    (10) Wangkawong, K.; Tantraviwat, D.; Phanichphant, S.; Inceesungvorn, B. Band offsets of novel CoTiO3/Ag3VO4 heterojunction measured by X-ray photoelectron spectroscopy. Applied Surface Science 2015, 324, 705-709.
    (11) Jing, L.; Xu, Y.; Qin, C.; Liu, J.; Huang, S.; He, M.; Xu, H.; Li, H. Visible-light-driven ZnFe2O4/Ag/Ag3VO4 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Materials Research Bulletin 2017, 95, 607-615.
    (12) Liang, S.; Zhang, D.; Pu, X.; Yao, X.; Han, R.; Yin, J.; Ren, X. A novel Ag2O/g-C3N4 pn heterojunction photocatalysts with enhanced visible and near-infrared light activity. Separation and Purification Technology 2019, 210, 786-797.
    (13) Wu, X.; Wang, J.; Zhang, G.; Katsumata, K.-i.; Yanagisawa, K.; Sato, T.; Yin, S. Series of MxWO3/ZnO (M= K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Applied Catalysis B: Environmental 2017, 201, 128-136.
    (14) Zhang, L.; Wang, W.; Sun, S.; Jiang, D. Near-infrared light photocatalysis with metallic/semiconducting HxWO3/WO3 nanoheterostructure in situ formed in mesoporous template. Applied Catalysis B: Environmental 2015, 168, 9-13.
    (15) Zhang, J.; Ma, Y.; Du, Y.; Jiang, H.; Zhou, D.; Dong, S. Carbon nanodots/WO3 nanorods Z-scheme composites: remarkably enhanced photocatalytic performance under broad spectrum. Applied Catalysis B: Environmental 2017, 209, 253-264.
    (16) Yang, L.; Liu, B.; Liu, T.; Ma, X.; Li, H.; Yin, S.; Sato, T.; Wang, Y. A P25/(NH 4)x WO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Scientific Reports 2017, 7, 45715.
    (17) Li, J.; Li, W.; Li, X.; Li, Y.; Bai, H.; Li, M.; Xi, G. Plasmonic W18O49-photosensitized TiO2 nanosheets with wide-range solar light harvesting. RSC Advances 2017, 7 (38), 23846-23850.
    (18) Liu, D.; Li, G.; Zhao, C.; Wang, X.; Sun, M.; Sun, X.; Yan, M.; Guo, C. WO3-x for rapid adsorption and full-spectrum-responsive photocatalytic activities. Journal of Materials Science: Materials in Electronics 2018, 29 (17), 15029-15033.
    (19) Li, G.; Guo, C.; Yan, M.; Liu, S. CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental 2016, 183, 142-148.
    (20) Tian, J.; Sang, Y.; Yu, G.; Jiang, H.; Mu, X.; Liu, H. A Bi2WO6‐based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near‐infrared irradiation. Advanced Materials 2013, 25 (36), 5075-5080.
    (21) Wang, G.; Huang, B.; Ma, X.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H. Cu2 (OH) PO4, a Near‐Infrared‐Activated Photocatalyst. Angewandte Chemie International Edition 2013, 52 (18), 4810-4813.
    (22) Sang, Y.; Zhao, Z.; Zhao, M.; Hao, P.; Leng, Y.; Liu, H. From UV to near‐infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation. Advanced Materials 2015, 27 (2), 363-369.
    (23) Hu, X.; Li, Y.; Tian, J.; Yang, H.; Cui, H. Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures. Journal of Industrial and Engineering Chemistry 2017, 45, 189-196.
    (24) Guo, J.; Dong, C.; Yang, L.; Chen, H. Crystal structure and superconductivity of rubidium tungsten bronzes RbxWO3 prepared by a hybrid microwave method. Materials Research Bulletin 2008, 43 (4), 779-786.
    (25) Wang, Y.; Hsu, C.; Hsu, Y.; Chang, C.; Dong, C.; Chan, T.; Kumar, K.; Liu, H.; Chen, C.; Wu, M. Structural distortion and electronic states of Rb doped WO3 by X-ray absorption spectroscopy. RSC Advances 2016, 6 (109), 107871-107877.
    (26) Wang, T.; Xiong, Y.; Li, R.; Cai, H. Dependence of infrared absorption properties on the Mo doping contents in MxWO3 with various alkali metals. New Journal of Chemistry 2016, 40 (9), 7476-7481.
    (27) Lee, J.-S.; Liu, H.-C.; Peng, G.-D.; Tseng, Y. Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals. Journal of Crystal Growth 2017, 465, 27-33.
    (28) Tian, G.; Zhang, X.; Zheng, X.; Yin, W.; Ruan, L.; Liu, X.; Zhou, L.; Yan, L.; Li, S.; Gu, Z. Multifunctional RbxWO3 Nanorods for Simultaneous Combined Chemo‐photothermal Therapy and Photoacoustic/CT Imaging. Small 2014, 10 (20), 4160-4170.
    (29) Guo, C.; Yin, S.; Yu, H.; Liu, S.; Dong, Q.; Goto, T.; Zhang, Z.; Li, Y.; Sato, T. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale 2013, 5 (14), 6469-6478.
    (30) Tahmasebi, N.; Madmoli, S. Facile synthesis of a WOx/CsyWO3 heterostructured composite as a visible light photocatalyst. RSC Advances 2018, 8 (13), 7014-7021.
    (31) Yan, M.; Li, G.; Guo, C.; Guo, W.; Ding, D.; Zhang, S.; Liu, S. WO3-x sensitized TiO2 spheres with full-spectrum-driven photocatalytic activities from UV to near infrared. Nanoscale 2016, 8 (41), 17828-17835.
    (32) Li, Y.; Wu, X.; Li, J.; Wang, K.; Zhang, G. Z-scheme g-C3N4@ CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs. Applied Catalysis B: Environmental 2018, 229, 218-226.
    (33) Liang, H.; Zou, H.; Hu, S. Preparation of the W18O49/gC3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New Journal of Chemistry 2017, 41 (17), 8920-8926.
    (34) Wu, X.; Yin, S.; Xue, D.; Komarneni, S.; Sato, T. A Cs x WO 3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale 2015, 7 (40), 17048-17054.
    (35) Wang, J.; Wang, P.; Cao, Y.; Chen, J.; Li, W.; Shao, Y.; Zheng, Y.; Li, D. A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response. Applied Catalysis B: Environmental 2013, 136, 94-102.
    (36) Wangkawong, K.; Phanichphant, S.; Tantraviwat, D.; Inceesungvorn, B. CoTiO3/Ag3VO4 composite: A study on the role of CoTiO3 and the active species in the photocatalytic degradation of methylene blue. Journal of colloid and interface science 2015, 454, 210-215.
    (37) Liu, T.; Liu, B.; Yang, L.; Ma, X.; Li, H.; Yin, S.; Sato, T.; Sekino, T.; Wang, Y. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Applied Catalysis B: Environmental 2017, 204, 593-601.
    (38) Guo, C.; Yin, S.; Dong, Q.; Sato, T. Near-infrared absorption properties of RbxWO3 nanoparticles. CrystEngComm 2012, 14 (22), 7727-7732.
    (39) Chala, T. F.; Wu, C.-M.; Chou, M.-H.; Gebeyehu, M. B.; Cheng, K.-B. Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials 2017, 7 (7), 191.
    (40) Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorganic chemistry 2012, 51 (8), 4763-4771.
    (41) Zhang, L.; He, Y.; Ye, P.; Qin, W.; Wu, Y.; Wu, T. Enhanced photodegradation activity of Rhodamine B by Co3O4/Ag3VO4 under visible light irriadiation. Materials Science and Engineering: B 2013, 178 (1), 45-52.
    (42) Xu, H.; Li, H.; Sun, G.; Xia, J.; Wu, C.; Ye, Z.; Zhang, Q. Photocatalytic activity of La2O3-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation. Chemical Engineering Journal 2010, 160 (1), 33-41.
    (43) Wang, S.; Guan, Y.; Wang, L.; Zhao, W.; He, H.; Xiao, J.; Yang, S.; Sun, C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Applied Catalysis B: Environmental 2015, 168, 448-457.
    (44) Jing, L.; Xu, Y.; Huang, S.; Xie, M.; He, M.; Xu, H.; Li, H.; Zhang, Q. Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: highly efficient visible light photocatalytic and antibacterial activity. Applied Catalysis B: Environmental 2016, 199, 11-22.
    (45) Yang, H.; Tian, J.; Li, T.; Cui, H. Synthesis of novel Ag/Ag2O heterostructures with solar full spectrum (UV, visible and near-infrared) light-driven photocatalytic activity and enhanced photoelectrochemical performance. Catalysis Communications 2016, 87, 82-85.
    (46) Wang, H.; Yuan, X.; Wang, H.; Chen, X.; Wu, Z.; Jiang, L.; Xiong, W.; Zeng, G. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance. Applied Catalysis B: Environmental 2016, 193, 36-46.
    (47) Yan, M.; Wu, Y.; Yan, Y.; Yan, X.; Zhu, F.; Hua, Y.; Shi, W. Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes. ACS Sustainable Chemistry & Engineering 2015, 4 (3), 757-766.
    (48) Yan, M.; Wu, Y.; Zhu, F.; Hua, Y.; Shi, W. The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Physical Chemistry Chemical Physics 2016, 18 (4), 3308-3315.
    (49) Mousavi, M.; Habibi-Yangjeh, A.; Abitorabi, M. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of colloid and interface science 2016, 480, 218-231.
    (50) Habibi-Yangjeh, A.; Shekofteh-Gohari, M. Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: Enhanced visible-light photocatalytic performance through pn heterojunctions. Separation and Purification Technology 2017, 184, 334-346.
    (51) Pearson, R. G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic chemistry 1988, 27 (4), 734-740.
    (52) Gao, L.; Li, Z.; Liu, J. Facile synthesis of Ag3VO4/β-AgVO3 nanowires with efficient visible-light photocatalytic activity. RSC Advances 2017, 7 (44), 27515-27521.
    (53) Wu, Z.; Yuan, X.; Wang, H.; Wu, Z.; Jiang, L.; Wang, H.; Zhang, L.; Xiao, Z.; Chen, X.; Zeng, G. Facile synthesis of a novel full-spectrum-responsive Co2.67S4 nanoparticles for UV-, vis-and NIR-driven photocatalysis. Applied Catalysis B: Environmental 2017, 202, 104-111.
    (54) Jonjana, S.; Phuruangrat, A.; Thongtem, S.; Wiranwetchayan, O.; Thongtem, T. Preparation and characterization of Ag3VO4/Bi2MoO6 nanocomposites with highly visible-light-induced photocatalytic properties. Materials Letters 2016, 180, 93-96

    無法下載圖示 全文公開日期 2024/01/19 (校內網路)
    全文公開日期 2029/01/19 (校外網路)
    全文公開日期 2029/01/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE