簡易檢索 / 詳目顯示

研究生: 陳宜斈
Yi-Syue Chen
論文名稱: 以二氧化碳發泡技術製備不同成核劑/熱塑性聚氨酯之微米孔洞發泡研究
Preparation of Different Nucleating Agent / Thermoplastic Polyurethane Microcellular Foam by Supercritical CO2 Foaming
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 胡孝光
Shiaw-Guang Hu
朱建嘉
Chien-Chia Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 熱塑性聚氨酯成核劑多元醇二氧化碳批次發泡膨脹倍率泡材密度
外文關鍵詞: Thermoplastic Polyurethane, Nucleating Agent, polyol, carbon dioxide, batch foam, Expansion ratio, foam density
相關次數: 點閱:407下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TPU具備可調控硬度、耐磨耗、回彈性佳等特性,而TPU發泡材料,具備低密度、耐磨性、柔韌性和高回彈性,本研究利用CO2做為發泡技術探討添加不同的片狀成核劑對熱塑性聚氨脂(TPU)發泡材料的泡孔結構影響。
    本實驗分成兩大部分,第一部分為自行合成TPU,分別加入不同軟段多元醇(聚四亞甲基醚二醇(PTMEG)、聚丙二醇(PPG)、聚(1,4-丁烯己二酸酯)(PBA))與4,4'-二異氰酸二苯甲烷(MDI)混合反應完全,再加入1,4-丁二醇(BD)及催化劑使其聚合並放入烘箱熟成,形成熱塑性聚氨酯(TPU)。為了比較不同的成核劑在TPU中的成核效率,本實驗加入熱還原氧化石墨烯(TRG)、滑石粉(talc)及奈米黏土(clay)作為成核劑以提升成核效率。
    第二部分利用scCO2以一步批式方法製造TPU發泡材。針對操作條件如含浸溫度來探討與泡孔型態之間的關係,含浸溫度從80-120°C,過去實驗中發現未添加成核劑之TPU發泡材料,泡體中間會有明顯裂縫且泡材外觀不平整,因此添加不同的成核劑來改善此一現象,且同時增加成核點,使形體快速膨脹。我們成功製備出穩定膨脹倍率約4倍的發泡材料。


    Thermoplastic Polyurethane (TPU) possseses many excellent characters such as wear resistance and high resilience. The hardness of TPU can be tuned by changing the ratio or the type of hard and soft segments. In this study, we focus on preparing TPU microcellular foam using different nucleating agents by scCO2 foaming.
    The TPU was synthesized using 4,4’-methylene bis(phenyl isocyanate) (MDI), polyol and 1,4-butanediol(BD) using a pre-polymer method. Poly (tetramethylene ether) glycol (PTMEG), poly (propylene glycol) (PPG), and poly (1,4-butylene adipate) (PBA) were used as polyols. Graphene, talc, or clay was added as the nucleation agent before the chain extension.
    The synthesized TPUs were foamed by one-step batch foaming using scCO2 as the blowing agent. The cell morphology of TPU foam was examined. Adding nucleation agent could improve the cell structure and the appearance of TPU foams.

    摘要 i Abstract iii 誌謝 iv 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 前言 1 第二章 文獻回顧 4 2.1熱塑性聚氨酯(thermoplastic polyurethane) 4 2.2合成TPU 6 2.2.1二異氰酸酯 7 2.2.2多元醇 8 2.2.3擴鏈劑 9 2.2.4催化劑 9 2.3無機填料 10 2.3.1滑石粉 11 2.3.2熱還原石墨烯 11 2.3.3奈米黏土 11 2.4高分子發泡材料 13 2.4.1發泡劑 13 2.4.2發泡機制 14 第三章 實驗方法 18 3.1實驗藥品 18 3.2實驗儀器 24 3.3實驗流程與步驟 27 3.3.1實驗流程圖 27 3.3.2熱還原石墨烯製備 29 3.3.3熱塑性聚氨酯複合材料之製備 31 3.3.4混煉加工 34 3.3.5批次發泡 34 3.4測量方法 35 3.4.1掃描式電子顯微鏡(SEM) 35 3.4.2穿透式電子顯微鏡(TEM) 35 3.4.3熱重分析儀(TGA) 35 3.4.4示差掃描量熱儀(DSC) 36 3.4.5比表面積測量(BET) 36 3.4.6 X-ray繞射儀(XRD) 37 3.4.7發泡密度量測 38 3.4.8泡孔孔徑(cell size)計算 39 3.4.9泡孔密度(cell density)計算 39 3.4.10膨脹倍率計算 40 第四章 結果與討論 41 4.1成核劑之比表面積測量分析 41 4.2不同比例成核劑/熱塑性聚氨酯複合材料性質分析 42 4.2.1預聚物滴定分析 42 4.2.2不同成核劑/熱塑性聚氨酯之黏度 43 4.2.3熱塑性聚氨酯之硬度量測 45 4.2.4不同成核劑/熱塑性聚氨酯之分子量量測 45 4.2.5不同成核劑/熱塑性聚氨酯之熱分析 49 4.3奈米黏土/熱塑性聚氨酯之XRD分析 54 4.4石墨烯/熱塑性聚氨酯之TEM分析 55 4.5不同比例成核劑/熱塑性聚氨酯發泡材料分析 58 4.5.1添加成核劑對泡孔型態之影響 58 4.5.2添加成核劑對膨脹倍率之影響 68 4.6不同發泡時間對發泡之影響 74 4.6.1藉由不同發泡槽大小來改變發泡時間之泡孔型態影響 74 4.6.2石墨烯/TPU發泡之阻氣效果 82 第五章 結論 84 參考文獻 86 附錄A 量測Tg 取點方法 97 附錄B 藉由公用DSC量測Tm 98 附錄C 緩慢洩壓之實驗 99 附錄D ImageJ軟體換算膨脹倍率 100 附錄E 添加抗縮劑對TPU的效果 103 附錄F 混煉時的最大黏度 104 附錄G 混煉時的平均黏度 105 附錄H DMA實驗 106 附錄I 含浸溫度140°C下PBA+0.1 wt% TRG之發泡實驗 108

    1. Global Market Insights, I. Thermoplastic elastomers market size in excess of $20bn by 2023. 2017; Available from: https://www.gminsights.com/pressrelease/thermoplastic-elastomers-tpe-market-size
    2. marketandmarkets.com. Copolyester ether elastomers, and polyether block amide), application (automotive, building & construction, footwear, engineering, and medical) - Global Trends & Forecasts to 2020. August 2015;
    Available from: http://www.marketsandmarkets.com/Market-Reports/thermoplastic-elastomers-market-1012.html
    3. Thermoplastic elastomers market worth 27.8 billion USD by 2020.
    4. A. Frick and A. Rochman, Characterization of TPU-elastomers by thermal analysis (DSC). Polymer Testing, 2004. 23(4): p. 413-417.
    5. M. Aurilia, F. Piscitelli, L. Sorrentino, M. Lavorgna and S. Iannace, Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. European Polymer Journal, 2011. 47(5): p. 925-936.
    6. D. J. Martin, A. F. Osman, Y. Andriani and G. A. Edwards, Chapter 11: “Thermoplastic polyurethane (TPU)-based polymer nanocomposites.” in Advances in polymer nanocomposites: Types and applications, edited by F. Gao. 2012: Elsevier Science Ltd: UK, p. 321-329.
    7. E. Badamshina, Y. Estrin, and M. Gafurova, Nanocomposites based on polyurethanes and carbon nanoparticles: preparation, properties and application. Journal of Materials Chemistry A, 2013. 1(22): p. 6509-6529.
    8. 中國前瞻產業研究院專欄文章:技術發展對接下游需求,熱塑性聚氨酯彈性體市場規模逼近百億美元. 2017; Available from: http://www.qianzhan.com/analyst/detail/220/170330-ba51dafe.html.
    9. Infinergy® (E-TPU) – The first expanded TPU - BASF Polyurethanes. Available from: http://www.polyurethanes.basf.de/pu/solutions/en/function/conversions:/publish/content/group/News_und_Medien/Polyurethan/Infinergy_Flyer_EN.pdf.
    10. F. Prissok and F. Braun, Foams based on thermoplastic polyurethanes. US20100222442 A1 2010.
    11. A. I. Cooper, Polymer synthesis and processing using supercritical carbon dioxide. Journal of Materials Chemistry, 2000. 10(2): p. 207-234.
    12. D. Klempner and V. Sendijarevic, Polymeric Foams and Foam Technology. 2nd Edition ed. 2004: Hanser, Germany.
    13. D. Pedrazzoli and I. Manas-Zloczower, Understanding phase separation and morphology in thermoplastic polyurethanes nanocomposites. Polymer, 2016. 90: p. 256-263.
    14. M. Lee, J. Koo, H. Ki, K. H. Lee, B. H. Min, Y. C. Lee and J. H. Kim, Phase separation and electrical conductivity of nanocomposites made of ether-/ester-based polyurethane blends and carbon nanotubes. Macromolecular Research, 2017. 25(3): p. 231-242.
    15. P. Pokharel and D. S. Lee, Thermal and mechanical properties of reduced graphene oxide/polyurethane nanocomposite. Journal of Nanoscience and Nanotechnology, 2014. 14(8): p. 5718-5721.
    16. D. Ljubic, M. Srinivasan, R. Szoszkiewicz, I. Javni and Z. S. Petrović, Surface modified graphene/single-phase polyurethane elastomers with improved thermo-mechanical and dielectric properties. European Polymer Journal, 2015. 70: p. 55-65.
    17. D. A. Nguyen, Y. R. Lee, A. V. Raghu, H. M. Jeong, C. M. Shin and B. K. Kim, Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polymer International, 2009. 58(4): p. 412-417.
    18. C. H. Dan, M. H. Lee, Y. D. Kim, B. H. Min and J. H. Kim, Effect of clay modifiers on the morphology and physical properties of thermoplastic polyurethane/clay nanocomposites. Polymer, 2006. 47(19): p. 6718-6730.
    19. N. Taheri and S. Sayyahi, Effect of clay loading on the structural and mechanical properties of organoclay/HDI-based thermoplastic polyurethane nanocomposites. e-Polymers, 2016. 16(1): p. 65 – 71.
    20. S. K. Yeh, Y. C. Liu, W. Z. Wu, K. C. Chang, W. J. Guo and S. F. Wang. Polymer nanocomposite foam for textile applications. SPE ANTEC. 2012, p. 2379 – 2383.
    21. Y. R. Chen, S. P. Peng, S. K. Yeh, C. C. Chu and W. J. Guo. Preparation of micro and nanocellular TPU-graphene nanocomposite foam by supercritical CO2 foaming. SPE ANTEC, 2015, p. 2846-2850
    22. S. K. Yeh, Y. C. Liu, W. Z. Wu, K. C. Chang, W. J. Guo and S. F. Wang, Thermoplastic polyurethane/clay nanocomposite foam made by batch foaming. Journal of Cellular Plastics, 2013. 49(2): p. 119-130.
    23. C. Dai, C. Zhang, W. Huang, K. C. Chang and L. J. Lee, Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming. Polymer Engineering and Science, 2013. 53(11): p. 2360-2369.
    24. S. L. Cooper and A.V. Tobolsky, Properties of linear elastomeric polyurethanes. Journal of Applied Polymer Science, 1966. 10(12): p. 1837-1844.
    25. D. Dieterich and H. Hespe, Structure property relationship in polyurethanes, Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties. 2nd ed. 1994, Hanser, Germany.
    26. S. B. Clough and N. S. Schneider, Structural studies on urethane elastomers. Journal of Macromolecular Science, Part B, 1968. 2(4): p. 553-566.
    27. R. W. Seymour and S. L. Cooper, Thermal analysis of polyurethane block polymers. Macromolecules, 1973. 6(1): p. 48-53.
    28. T. K. Chen, Y. I. Tien, and K. H. Wei, Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer, 2000. 41(4): p. 1345-1353.
    29. J. Vega-Baudrit, V. Navarro-Bañón, P. Vázquez and J. M. Martín-Martínez, Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. International Journal of Adhesion and Adhesives, 2006. 26(5): p. 378-387.
    30. L. Huang, N. Yi, Y. Wu, Y. Zhang, Q. Zhang, Y. Huang, Y. Ma and Y. Chen, Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Advanced Materials, 2013. 25(15): p. 2224-2228.
    31. N. J. Hossieny, M. R. Barzegari, M. Nofar, S. H. Mahmood and C. B. Park, Crystallization of hard segment domains with the presence of butane for microcellular thermoplastic polyurethane foams. Polymer, 2014. 55(2): p. 651-662.
    32. N. Hossieny, V. Shaayegan, A. Ameli, M. Saniei and C. B. Park, Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer, 2017. 112: p. 208-218.
    33. R. J. Gaymans, Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Progress in Polymer Science, 2011. 36(6): p. 713-748.
    34. P. Król, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007. 52(6): p. 915-1015.
    35. R. Gachter and H. Muller, Plastics Additives Handbook, Chapter 9: Additives. 3rd 1990, Hanser, Germany.
    36. H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 2009. 19(12): p. 1987-1992.
    37. S. S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 2003. 28(11): p. 1539-1641.
    38. X. Kornmann, H. Lindberg, and L.A. Berglund, Synthesis of epoxy-clay nanocomposites: Influence of the nature of the clay on structure. Polymer, 2001. 42(4): p. 1303-1310.
    39. 陳學仕、李世陽. 高分子奈米複合材料. 化工資訊 ChemNet 奈米專欄 2002年 五月號
    40. X. Cao, L. James Lee, T. Widya and C. Macosko, Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer, 2005. 46(3): p. 775-783.
    41. A. Pattanayak and S. C. Jana, Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer, 2005. 46(10): p. 3275-3288.
    42. F. Cao and S. C. Jana, Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer, 2007. 48(13): p. 3790-3800.
    43. 劉宇哲, 超臨界二氧化碳發泡製備法奈米孔徑之熱塑性聚氨酯奈米複合材料研究. 2012, 碩士論文 國立台北科技大學: 化學工程研究所.
    44. L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu, Polymer nanocomposite foams. Composites Science and Technology, 2005. 65(15-16): p. 2344-2363.
    45. C. Okolieocha, D. Raps, K. Subramaniam and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004-2015) and future directions - A review. European Polymer Journal, 2015. 73: p. 500-519.
    46. F. A. Shutov, D. Visco and J. R. Harper, Chapter 18 : Blowing Agents for Polymer Foams,in Polymeric Foams and Foam Technology, 2nd ed by D. Klempner and V. Sendijarevic. 2004: Hanser, Germany.
    47. Z. M. Xu, X. L. Jiang, T. Liu, G. H. Hu, L. Zhao, Z. N. Zhu and W. K. Yuan, Foaming of polypropylene with supercritical carbon dioxide. Journal of Supercritical Fluids, 2007. 41(2): p. 299-310.
    48. S. K. Goel and E.J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation. Polymer Engineering and Science, 1994. 34(14): p. 1137-1147.
    49. S.K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation. Polymer Engineering and Science, 1994. 34(14): p. 1148-1156.
    50. J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion. Polymer Engineering and Science, 1987. 27(7): p. 493-499.
    51. J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987. 27(7): p. 485-492.
    52. J. S. Colton and N. P. Suh, Nucleation of microcellular foam: theory and practice. Polymer Engineering and Science, 1987. 27(7): p. 500-503.
    53. D. R. Uhlmann and B. Chalmers, The energetics of nucleation. Industrial & Engineering Chemistry, 1965. 57(9): p. 19-31.
    54. C. D. Han and H. J. Yoo, Studies on structural foam processing. IV. Bubble growth during mold filling. Polymer Engineering and Science, 1981. 21(9): p. 518-533.
    55. A. Wong and C. B. Park, A visualization system for observing plastic foaming processes under shear stress. Polymer Testing, 2012. 31(3): p. 417-424.
    56. A. Wong and C. B. Park, The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide. Chemical Engineering Science, 2012. 75: p. 49-62.
    57. S. N. Leung, A. Wong, L. C. Wang and C. B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012. 63: p. 187-198.
    58. G. Wang, J. Zhao, K. Yu, L. H. Mark, G. Wang, P. Gong, C. B. Park and G. Zhao, Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer, 2017. 119: p. 28-39.
    59. Bay Carbon Inc., SP-1 Graphite Powder. Available from: https://www.baycarbon.com/SP1Summary.htm
    60. H. Kim, A. A. Abdala, and C. W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules, 2010. 43(16): p. 6515-6530.
    61. 陳瀅如, 以超臨界二氧化碳發泡製備石墨烯/熱塑性聚氨酯之微奈米孔洞發泡材料, 2015, 碩士論文 國立台北科技大學: 化學工程研究所.
    62. J. A. Helsen and A. Kuczumow, Chapter 2 Wavelength-Dispersive X-ray Fluorescence in Handbook of X-Ray Spectrometry, 2nd ed edited by R. E. Van Grieken and A. Markowicz 2001, Marcel Dekker. Inc.: New York
    63. M. D. Stoller, S. Park, Z. Yanwu, J. An and R. S. Ruoff, Graphene-Based ultracapacitors. Nano Letters, 2008. 8(10): p. 3498-3502.
    64. 曾子娟, 以二氧化碳批次發泡不同軟段多元 醇組成熱塑性聚氨酯之研究 2017, 碩士論文 國立臺灣科技大學: 材料科學與工程學研究所.
    65. A. S. Nia and W. H. Binder, Graphene as initiator/catalyst in polymerization chemistry. Progress in Polymer Science, 2017. 67: p. 48-76.
    66. L. Chen, D. Rende, L. S. Schadler and R. Ozisik, Polymer nanocomposite foams. Journal of Materials Chemistry A, 2013. 1(12): p. 3837-3850.
    67. 邱博文, 林永昌and鄭碩方, 石墨烯之電子特性與電子元件之應用潛力(上) The Electronic Properties and Potential Electronic Device Applications of Graphene (Ⅰ). 工業材料, 2011: p. 116-122.
    68. Y. I. Tien and K. H. Wei, Thermal transitions of montmorillonite/polyurethane nanocomposites. Journal of Polymer Research, 2000. 7(4): p. 245-250.
    69. M. Ionescu, Chemistry and Technology of Polyols for Polyurethanes, Chapter 8: Polyester polyols for elastic polyurethanes. 2005: Rapra Technology Limited. p. 285-318.
    70. P.C. Hiemenz and T. P. Lodge, Polymer chemistry. 2nd ed. 2007, CRC Press: Boca Raton
    71. M. Van der Schuur and R. J. Gaymans, Segmented block copolymers based on poly(propylene oxide) and monodisperse polyamide-6,T segments. Journal of Polymer Science Part A-Polymer Chemistry, 2006. 44(16): p. 4769-4781.
    72. T. C. Wen, J. C. Fang, and A. Gopalan, Morphology and conductivity changes in a thermoplastic polyurethane-based copolymer consisting of different soft segments. Journal of Applied Polymer Science, 2001. 82(6): p. 1462-1473.
    73. H. Liu, M. Dong, W. Huang, J. Gao, K. Dai, J. Guo, G. Zheng, C. Liu, C. Shen and Z. Guo, Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. Journal of Materials Chemistry C, 2017. 5(1): p. 73-83.
    74. M. Hoseinabadi, M. Naderi, M. Najafi, S. Motahari and M. Shokri, A study of rigid polyurethane foams: The effect of synthesized polyols and nanoporous graphene. Journal of Applied Polymer Science, 2017. 134(26), 45001
    75. Z. Xu, X. Tang, and J. Zheng, Thermal stability and flame retardancy of rigid polyurethane foams/ organoclay nanocomposites. Polymer - Plastics Technology and Engineering, 2008. 47(11): p. 1136-1141.
    76. J. J. Wie, H. Jin, S. K. Chung, S. C. Kim and W. J. Choi, Effect of inner and outer chain length in multi-cationic site organoclays on the properties of PU/organoclay nanocomposites. Macromolecular Research, 2010. 18(4): p. 380-386.
    77. A. K. Barick and D. K. Tripathy, Preparation and characterization of thermoplastic polyurethane/organoclay nanocomposites by melt intercalation technique: Effect of nanoclay on morphology, mechanical, thermal, and rheological properties. Journal of Applied Polymer Science, 2010. 117(2): p. 639-654.
    78. J. G. Drobny, Chapter 9 - Thermoplastic Polyurethane Elastomers in Handbook of Thermoplastic Elastomers 2nd ed, 2014. William Andrew, Norwich, NY
    79. K. Bagdi, K. Molnár, I. Sajó and B. Pukánszky, Specific interactions, structure and properties in segmented polyurethane elastomers. Express Polymer Letters, 2011. 5(5): p. 417-427.
    80. T. Kuila, S. Bose, C. E. Hong, M. E. Uddin, P. Khanra, N. H. Kim and J. H. Lee, Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon, 2011. 49(3): p. 1033-1037.
    81. S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, Y. Tang and J. Ma, Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 2014. 55(1): p. 201-210.
    82. R. J. Albalak, Z. Tadmor, and Y. Talmon, Polymer melt devolatilization mechanisms. AIChE Journal, 1990. 36(9): p. 1313-1320.
    83. S. Taheri and G. M. M. Sadeghi, Microstructure–property relationships of organo-montmorillonite/polyurethane nanocomposites: Influence of hard segment content. Applied Clay Science, 2015. 114: p. 430-439.
    84. S. K. Yeh, C. H. Huang, C. C. Su, K. C. Cheng, T. H. Chuang, W. J. Guo and S. F. Wang, Effect of dispersion method and process variables on the properties of supercritical CO2 foamed polystyrene/graphite nanocomposite foam. Polymer Engineering and Science, 2013. 53(10): p. 2061-2072.
    85. G. Yang, J. Su, J. Gao, X. Hu, C. Geng and Q. Fu, Fabrication of well-controlled porous foams of graphene oxide modified poly(propylene-carbonate) using supercritical carbon dioxide and its potential tissue engineering applications. Journal of Supercritical Fluids, 2013. 73: p. 1-9.
    86. J. Murphy, Chapter 4 - Modifying Specific Properties: Mechanical Properties – Fillers, in Additives for Plastics Handbook 2nd ed. 2001, Elsevier Science: Amsterdam. p. 19-35.
    87. C. B. Park, D. F. Baldwin, and N. P. Suh, Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science, 1995. 35(5): p. 432-440.
    88. T. Ellingham, L. Duddleston, and L.S. Turng, Sub-critical gas-assisted processing using CO2 foaming to enhance the exfoliation of graphene in polypropylene + graphene nanocomposites. Polymer, 2017. 117: p. 132-139.

    QR CODE