簡易檢索 / 詳目顯示

研究生: 陳俊達
Chun-Ta Chen
論文名稱: 纖維素結合功能域(CBD)融合碳酸酐酶在纖維素奈米結晶表面固定化及其在捕捉二氧化碳之應用
Cellulose binding domain fused carbonic anhydrase and its application for carbon dioxide capture with immobilized enzyme on cellulosic materials
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
楊珮芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 碳酸酐酶纖維素結合功能域纖維素奈米結晶捕捉二氧化碳
外文關鍵詞: carbonic anhydrase, cellulose binding domain, cellulose nanocrystal, carbon dioxide sequestration
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球暖化元凶主要是二氧化碳,而捕捉二氧化碳方法有很多種,本論文利用碳酸酐酶(CA,carbonic anhydrase)進行二氧化碳水合反應來捕捉二氧化碳,CA本身大腸桿菌中表現生產所得的可溶性蛋白量頗低,使用來自熱纖梭菌(Clostridium thermocellum)的纖維素結合功能域(cellulose binding domain, CBD)融合於CA之C端可提高其可溶性,纖維素奈米結晶(cellulose nanocrystal, CNC)可以直接用以純化與固定化CA-CBD融合蛋白,在相同蛋白質濃度下的CA與CA-CBD粗萃液,CA-CBD在與CNC進行吸附固定化後之比活性較CA高約3倍,表示CNC對CBD結合能力較強,所吸附固定化的CA-CBD也多。CA-CBD熱穩定性方面較CA高10℃,經四次的重複使用,固定化CA-CBD活性還維持原本的80%以上,固定化CA活性則掉到原本60%。經FE-SEM分析,固定化CA-CBD於CNC可成功將二氧化碳轉化成碳酸鈣沉澱。CA-CBD亦可固定在其它纖維素材料,細菌纖維素(BC)、微晶纖維素(MCC)與纖維素奈米結晶(CNC)在二氧化碳水合活性上此三種纖維素之趨勢為:MCC>CNC>BC,然而在75℃水浴下加熱15分鐘後,其二氧化碳水合活性趨勢則為:MCC<CNC< BC,此結果表示CNC是可利用於固定化CBD融合酵素來進行催化反應。


    Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2. A biomimetic method for CO2 capture is to use immobilized carbonic anhydrase (CA) to catalyze the reversible hydration of CO2 to HCO3- and H+. However, cost-efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA based CO2 capture processes. The amount of soluble protein produced by CA in E. coli is quite low. Also, the cellulose binding domain (CBD) from Clostridium thermocellum can enhance the solubility of the expressed CA. This research aimed to develop a bifunctional enzyme containing CA from Synechocystis sp. PCC 6803 and a cellulose binding domain (CBD) from Clostridium thermocellum. This fusion enzyme is of particular interest due to its binding affinity toward cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gases. In this research, CA-CBD was immobilized onto cellulose nanocrystal(CNC). The cellulose nanocrystal (CNC) was directly used for CA and CA-CBD adsorption. The specific hydratase activity of CA-CBD after immobilization onto CNC is about 3 times higher than the immobilized CA, indicating that the binding ability between CNC and CA-CBD is stronger than electrostatic interaction between CNC and CA. The thermal stability of CA-CBD was 10°C higher than that of CA. The activity of immobilized CA and CA-CBD was maintained at 80% and 60% after four times uses. By FE-SEM analysis, immobilized CA-CBD can successfully convert carbon dioxide into calcium carbonate precipitate on CNC. Furthermore, CA-CBD can also be immobilized on other cellulosic materials. The trend of hydratase activity of CA bounded bacterial cellulose (BC), microcrystalline cellulose (MCC) and cellulose nanocrystal (CNC) is: MCC> CNC>BC. However, after heating for 15 minutes at
    75 °C, the trend of carbon dioxide hydration activity is: MCC<CNC< BC, which indicates that the CNC can be used for immobilized CBD fusion enzyme to carry out catalytic reaction.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的及內容簡介 2 第二章 文獻回顧 3 2.1 碳捕捉與封存(CCS) 3 2.1.1 發電廠的碳捕捉程序 3 2.1.2 碳酸酐酶於工業上捕捉二氧化碳之應用 4 2.2 碳酸酐酶 7 2.2.1 碳酸酐酶來源 7 2.2.2 碳酸酐酶活性測試方法 12 2.2.3 碳酸酐酶固定化 17 2.3 纖維素結合功能域 (cellulose binding domain, CBD) 21 2.3.1 纖維素結合功能域的由來與近況 21 2.3.2 纖維素結合功能域的分類 21 2.3.3 纖維素結合功能域之應用 22 2.3.4 纖維素奈米結晶 24 第三章 實驗材料與方法 26 3.1 實驗流程 26 3.2 實驗材料 26 3.2.1 實驗菌株 26 3.2.2 質體 26 3.2.3 其它 27 3.3 實驗藥品 27 3.4 溶液配製 28 3.5 實驗儀器與設備 32 3.6 實驗方法 33 3.6.1 E.coli重組基因菌株培養及CA重組蛋白之生產 33 3.6.2 纖維素奈米結晶(CNC)吸附CA及CA-CBD之吸附動力測定 34 3.6.3 纖維素奈米結晶(CNC)吸附CA及CA-CBD之含量測定 35 3.6.4 CA與CA-CBD重組蛋白之直接固定化於纖維素奈米結晶懸浮液 35 3.6.5 CA-CBD重組蛋白固定化於不同纖維材料 35 3.6.6 蛋白質電泳分析 36 3.6.6.1 12 % SDS-PAGE膠片製作 36 3.6.6.2 樣品處理 37 3.6.6.3 電泳分析 37 3.6.7 CA與CA-CBD重組蛋白質之濃度分析 37 3.6.8 CNC@CA與CNC@CA-CBD之蛋白質含量 39 3.6.9 CA與CA-CBD 酯酶活性分析 39 3.6.10 固定化CA酯酶活性分析 40 3.6.11 溫度與pH值對CA、CA-CBD、CNC@CA與CNC@CA-CBD 酯酶穩定性的影響 41 3.6.12 CNC@CA與CNC@CA-CBD 重複使用穩定性 41 3.6.13 CA的二氧化碳轉化效率 42 3.6.14 FE-SEM 42 3.6.15 TGA 42 3.6.16 界達電位(Zeta potential) 42 第四章 結果與討論 43 4.1 大腸桿菌表現生產CA及CBD融合之CA-CBD 43 4.1.1 發酵槽生長曲線 43 4.2 pNP之消光係數(ε)與CA酯酶活性分析 46 4.2.1 消光係數(ε) 46 4.3 CA與纖維素奈米結晶之吸附 47 4.3.1 固定化基材CNC的特性 47 4.3.2 CNC吸附CA與CA-CBD 48 4.4 CA-CBD與其它纖維素材料之吸附 53 4.4.1 細菌纖維素(Bacteria Cellulose, BC) 53 4.4.2 微晶纖維素(Microcrystalline cellulose, MCC) 54 4.5 溫度與pH值對CA活性之影響 56 4.5.1 CA之pH反應性 56 4.5.2 CA之熱穩定性 58 4.6 固定化CA之重複使用性 60 4.7 酵素之二氧化碳轉化效率 60 4.7.1 CA固定於CNC前後之電極法測試二氧化碳水合活性 60 4.7.2 CA固定化轉換二氧化碳成碳酸鈣沉澱 62 4.7.3 CA固定於不同纖維素材料之活性分析 64 第五章 結論 67 參考資料 69

    Alber, B. E., & Ferry, J. G. (1994). A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proceedings of the National Academy of Sciences, 91(15), 6909-6913.
    Alber, B. E., & Ferry, J. G. (1996). Characterization of heterologously produced carbonic anhydrase from Methanosarcina thermophila. Journal of bacteriology, 178(11), 3270-3274.
    Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C. T., & De Simone, G. (2012). Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chemical reviews, 112(8), 4421-4468.
    Araki, J., Wada, M., & Kuga, S. (2001). Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir, 17(1), 21-27.
    Aspatwar, A., Tolvanen, M. E., Ortutay, C., & Parkkila, S. (2014). Carbonic anhydrase related proteins: molecular biology and evolution Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications (pp. 135-156): Springer.
    Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2), 1048-1054.
    Boone, C. D., Gill, S., Habibzadegan, A., & McKenna, R. (2013). Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications. International Journal of Chemical Engineering, 2013, 1-6. doi:10.1155/2013/813931
    Bradley, R. S. (2001). Many citations support global warming trend. Science, 292(5524), 2011-2011.
    Brinkman, R., Margaria, R., & Roughton, F. (1934). The kinetics of the carbon dioxide-carbonic acid reaction. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 232, 65-97.
    Chandra, M., Waheed, A., & Singh, R. K. (2013). Characterization of functionally active immobilized carbonic anhydrase purified from sheep blood lysates. Process Biochemistry, 48(2), 231-241.
    Chien, L.-J., Sureshkumar, M., Hsieh, H.-H., & Wang, J.-L. (2013). Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst. Biotechnology and Bioprocess Engineering, 18(3), 567-574. doi:10.1007/s12257-012-0398-2
    Comstock, M. J. (1991). Protein Refolding, Copyright, ACS Symposium Series, Foreword. In M. J. Comstock (Ed.), Protein Refolding (Vol. 470, pp. i-vi): American Chemical Society.
    Cox, E. H., McLendon, G. L., Morel, F. M., Lane, T. W., Prince, R. C., Pickering, I. J., & George, G. N. (2000). The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry, 39(40), 12128-12130.
    Credou, J., & Berthelot, T. (2014). Cellulose: from biocompatible to bioactive material. Journal of Materials Chemistry B, 2(30), 4767-4788.
    D'Alessandro, D. M., Smit, B., & Long, J. R. (2010). Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 49(35), 6058-6082.
    Darde, V., Thomsen, K., Van Well, W. J., & Stenby, E. H. (2010). Chilled ammonia process for CO2 capture. International Journal of Greenhouse Gas Control, 4(2), 131-136.
    Del Prete, S., Vullo, D., De Luca, V., Supuran, C. T., & Capasso, C. (2014). Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. Journal of enzyme inhibition and medicinal chemistry, 29(6), 906-911.
    Del Prete, S., Vullo, D., Fisher, G. M., Andrews, K. T., Poulsen, S.-A., Capasso, C., & Supuran, C. T. (2014). Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—The η-carbonic anhydrases. Bioorganic & medicinal chemistry letters, 24(18), 4389-4396.
    Del Prete, S., Vullo, D., Scozzafava, A., Capasso, C., & Supuran, C. T. (2014). Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorganic & medicinal chemistry, 22(1), 531-537.
    Dong, X. M., Kimura, T., Revol, J.-F., & Gray, D. G. (1996). Effects of ionic strength on the isotropic− chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir, 12(8), 2076-2082.
    Elleuche, S., & Pöggeler, S. (2010). Carbonic anhydrases in fungi. Microbiology, 156(1), 23-29.
    Fernández, C., Díaz, E., & García, J. L. (2014). Insights on the regulation of the phenylacetate degradation pathway from E scherichia coli. Environmental microbiology reports, 6(3), 239-250.
    Ferry, J. G. (2010). The γ class of carbonic anhydrases. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(2), 374-381.
    Freeman, S. A., Dugas, R., Van Wagener, D. H., Nguyen, T., & Rochelle, G. T. (2010). Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control, 4(2), 119-124.
    George, J., & Bawa, A. S. (2010). Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Paper presented at the Advanced Materials Research.
    Gupta, M., Coyle, I., & Thambimuthu, K. (2003). CO2 capture technologies and opportunities in Canada. Paper presented at the 1st Canadian CC&S Technology Roadmap Workshop.
    Hall, P. L., Kaiser, B., & Kaiser, E. T. (1969). pH Dependence and competitive product inhibition of the carboxypeptidase A catalyzed hydrolysis of O-(trans-cinnamoyl) L-. beta.-phenyllactate. Journal of the American Chemical Society, 91(2), 485-491.
    Hamad, W. Y. (2017). Cellulose nanocrystals: properties, production and applications: John Wiley & Sons.
    Herzog, H. J. (2001). Peer reviewed: what future for carbon capture and sequestration? : ACS Publications.
    Hewett-Emmett, D., & Tashian, R. E. (1996). Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Molecular phylogenetics and evolution, 5(1), 50-77.
    Junmin, Q. (2002). Zhang Xing 2 Lü Fei 2 Li Xuxiang 2 (1. School of Materials Science and Engineering Xi'an Jiaotong University, 2. School of Environmental and Chemical Engineering Xi'an Jiaotong University, Xi'an 710049); Recent progress of materials used as enzyme immobilization carriers [J]. New Chemical Materials, 10.
    Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., . . . Sasamoto, S. (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA research, 3(3), 109-136.
    Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.-M., & Bouallou, C. (2010). Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 30(1), 53-62. doi:10.1016/j.applthermaleng.2009.05.005
    Khalifah, R. G. (1971). The carbon dioxide hydration activity of carbonic anhydrase I. Stop-flow kinetic studies on the native human isoenzymes B and C. Journal of Biological Chemistry, 246(8), 2561-2573.
    Kim, H. J., Park, S., Kim, S. H., Kim, J. H., Yu, H., Kim, H. J., . . . Lee, S. H. (2015). Biocompatible cellulose nanocrystals as supports to immobilize lipase. Journal of Molecular Catalysis B: Enzymatic, 122, 170-178. doi:https://doi.org/10.1016/j.molcatb.2015.09.007
    Klodmann, J., Sunderhaus, S., Nimtz, M., Jänsch, L., & Braun, H.-P. (2010). Internal architecture of mitochondrial complex I from Arabidopsis thaliana. The Plant Cell, 22(3), 797-810.
    Knuutila, H., Svendsen, H., & Anttila, M. (2009). CO2 capture from coal-fired power plants based on sodium carbonate slurry; a systems feasibility and sensitivity study. International Journal of Greenhouse Gas Control, 3(2), 143-151. doi:10.1016/j.ijggc.2008.06.006
    Kohl, A. L., & Nielsen, R. (1997). Gas purification: Elsevier.
    Kruus, K., Lua, A. C., Demain, A. L., & Wu, J. (1995). The anchorage function of CipA (CelL), a scaffolding protein of the Clostridium thermocellum cellulosome. Proceedings of the National Academy of Sciences, 92(20), 9254-9258.
    Kumar, R. S. S., & Ferry, J. G. (2014). Prokaryotic carbonic anhydrases of Earth’s environment Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications (pp. 77-87): Springer.
    Kupriyanova, E., Pronina, N., & Los, D. (2017). Carbonic anhydrase—a universal enzyme of the carbon-based life. Photosynthetica, 55(1), 3-19.
    Lane, T. W., & Morel, F. M. (2000). A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences, 97(9), 4627-4631.
    Lane, T. W., Saito, M. A., George, G. N., Pickering, I. J., Prince, R. C., & Morel, F. M. (2005). Biochemistry: a cadmium enzyme from a marine diatom. Nature, 435(7038), 42.
    Levy, I., & Shoseyov, O. (2002). Cellulose-binding domains: biotechnological applications. Biotechnology advances, 20(3-4), 191-213.
    Linder, M., & Teeri, T. T. (1997). The roles and function of cellulose-binding domains. Journal of Biotechnology, 57(1), 15-28. doi:https://doi.org/10.1016/S0168-1656(97)00087-4
    Liu, Z., Bartlow, P., Dilmore, R. M., Soong, Y., Pan, Z., Koepsel, R., & Ataai, M. (2009). Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum. Biotechnol Prog, 25(1), 68-74. doi:10.1002/btpr.80
    Liu, Z., Bartlow, P., Dilmore, R. M., Soong, Y., Pan, Z., Koepsel, R., & Ataai, M. (2009). Production, purification, and characterization of a fusion protein of carbonic anhydrase fromNeisseria gonorrhoeaeand cellulose binding domain fromClostridium thermocellum. Biotechnology Progress, 25(1), 68-74. doi:10.1002/btpr.80
    Lowe, C. R. (2001). Combinatorial approaches to affinity chromatography. Current Opinion in Chemical Biology, 5(3), 248-256.
    Lu, Y., Ye, X., Zhang, Z., Khodayari, A., & Djukadi, T. (2011). Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate. Energy Procedia, 4, 1286-1293. doi:10.1016/j.egypro.2011.01.185
    Meldrum, N. U., & Roughton, F. J. W. (1933). Carbonic anhydrase. Its preparation and properties. The Journal of physiology, 80(2), 113-142.
    Merlin, C., Masters, M., McAteer, S., & Coulson, A. (2003). Why is carbonic anhydrase essential to Escherichia coli? Journal of bacteriology, 185(21), 6415-6424.
    Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment, 29(2), 205-220. doi:10.1080/13102818.2015.1008192
    Moroney, J. V., Ma, Y., Frey, W. D., Fusilier, K. A., Pham, T. T., Simms, T. A., . . . Mukherjee, B. (2011). The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynthesis Research, 109(1-3), 133-149.
    Mulkidjanian, A. Y., Koonin, E. V., Makarova, K. S., Mekhedov, S. L., Sorokin, A., Wolf, Y. I., . . . Kaznadzey, D. (2006). The cyanobacterial genome core and the origin of photosynthesis. Proceedings of the National Academy of Sciences, 103(35), 13126-13131.
    Mumford, K. A., Smith, K. H., Anderson, C. J., Shen, S., Tao, W., Suryaputradinata, Y. A., . . . Kentish, S. E. (2011). Post-combustion capture of CO2: results from the solvent absorption capture plant at Hazelwood power station using potassium carbonate solvent. Energy & Fuels, 26(1), 138-146.
    Pagès, S., Belaich, A., Tardif, C., Reverbel-Leroy, C., Gaudin, C., & Belaich, J.-P. (1996). Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. Journal of bacteriology, 178(8), 2279-2286.
    Park, H.-M., Park, J.-H., Choi, J.-W., Lee, J., Kim, B. Y., Jung, C.-H., & Kim, J.-S. (2012). Structures of the γ-class carbonic anhydrase homologue YrdA suggest a possible allosteric switch. Acta Crystallographica Section D: Biological Crystallography, 68(8), 920-926.
    Park, H., Song, B., & Morel, F. M. (2007). Diversity of the cadmium‐containing carbonic anhydrase in marine diatoms and natural waters. Environmental microbiology, 9(2), 403-413.
    Pinto, R., Carvalho, J., Mota, M., & Gama, M. (2006). Large-scale production of cellulose-binding domains. Adsorption studies using CBD-FITC conjugates. Cellulose, 13(5), 557-569. doi:10.1007/s10570-006-9060-5
    Pocker, Y., & Meany, J. (1967). The catalytic versatility of erythrocyte carbonic anhydrase. II. Kinetic studies of the enzyme-catalyzed hydration of pyridine aldehydes. Biochemistry, 6(1), 239-246.
    Prabhu, C., Wanjari, S., Gawande, S., Das, S., Labhsetwar, N., Kotwal, S., . . . Rayalu, S. (2009). Immobilization of carbonic anhydrase enriched microorganism on biopolymer based materials. Journal of Molecular Catalysis B: Enzymatic, 60(1-2), 13-21.
    Ray, B. (1977). Purification and immobilization of human carbonic anhydrase B by using polyacrylamide gel. Experientia, 33(11), 1439-1440.
    Reese, E. T., Siu, R. G., & Levinson, H. S. (1950). The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of bacteriology, 59(4), 485.
    Reungprapavut, S., Krungkrai, S. R., & Krungkrai, J. (2004). Plasmodium falciparum carbonic anhydrase is a possible target for malaria chemotherapy. Journal of enzyme inhibition and medicinal chemistry, 19(3), 249-256.
    Revol, J.-F. (1982). On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydrate Polymers, 2(2), 123-134.
    Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R., & Gray, D. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International journal of biological macromolecules, 14(3), 170-172.
    Roberts, S. B., Lane, T. W., & Morel, F. M. (1997). CARBONIC ANHYDRASE IN THE MARINE DIATOM THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) 1. Journal of Phycology, 33(5), 845-850.
    Roughton, F., & Booth, V. (1946). The effect of substrate concentration, pH and other factors upon the activity of carbonic anhydrase. Biochemical Journal, 40(2), 319.
    Rowlett, R. S. (2014). Structure and catalytic mechanism of β-carbonic anhydrases Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications (pp. 53-76): Springer.
    Russo, M. E., Olivieri, G., Marzocchella, A., Salatino, P., Caramuscio, P., & Cavaleiro, C. (2013). Post-combustion carbon capture mediated by carbonic anhydrase. Separation and Purification Technology, 107, 331-339. doi:10.1016/j.seppur.2012.06.022
    Sawaya, M. R., Cannon, G. C., Heinhorst, S., Tanaka, S., Williams, E. B., Yeates, T. O., & Kerfeld, C. A. (2006). The structure of β-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. Journal of Biological Chemistry, 281(11), 7546-7555.
    Shanbhag, B. K., Liu, B., Fu, J., Haritos, V. S., & He, L. (2016). Self-assembled enzyme nanoparticles for carbon dioxide capture. Nano letters, 16(5), 3379-3384.
    Shekh, A. Y., Krishnamurthi, K., Mudliar, S. N., Yadav, R. R., Fulke, A. B., Devi, S. S., & Chakrabarti, T. (2012). Recent advancements in carbonic anhydrase–driven processes for CO2 sequestration: minireview. Critical Reviews in Environmental Science and Technology, 42(14), 1419-1440.
    Shoseyov, O., Shani, Z., & Levy, I. (2006). Carbohydrate binding modules: biochemical properties and novel applications. Microbiology and molecular biology reviews, 70(2), 283-295.
    Smith, K. S., & Ferry, J. G. (1999). A plant-type (β-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. Journal of bacteriology, 181(20), 6247-6253.
    So, A. K.-C., Espie, G. S., Williams, E. B., Shively, J. M., Heinhorst, S., & Cannon, G. C. (2004). A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. Journal of bacteriology, 186(3), 623-630.
    So, A. K., & Espie, G. S. (1998). Cloning, characterization and expression of carbonic anhydrase from the cyanobacterium Synechocystis PCC6803. Plant molecular biology, 37(2), 205-215.
    Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., . . . Long, J. R. (2011). Carbon dioxide capture in metal–organic frameworks. Chemical reviews, 112(2), 724-781.
    Supuran, C. T. (2016). Structure and function of carbonic anhydrases. Biochemical Journal, 473(14), 2023-2032.
    Supuran, C. T., Conroy, C. W., & Maren, T. H. (1997). Is cyanate a carbonic anhydrase substracte? Proteins: Structure, Function, and Bioinformatics, 27(2), 272-278.
    Supuran, C. T., & Scozzafava, A. (2000). Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opinion on Therapeutic Patents, 10(5), 575-600.
    Svendsen, H. F., Hessen, E. T., & Mejdell, T. (2011). Carbon dioxide capture by absorption, challenges and possibilities. Chemical Engineering Journal, 171(3), 718-724.
    Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology, 60(5), 523-533.
    Thongekkaew, J., Ikeda, H., & Iefuji, H. (2012). Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei. Biochemical and biophysical research communications, 420(1), 183-187.
    Tripp, B. C., Smith, K., & Ferry, J. G. (2001). Carbonic anhydrase: new insights for an ancient enzyme. Journal of Biological Chemistry, 276(52), 48615-48618.
    Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242(18), 4221-4229.
    Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Nam, S. C., & Yoon, Y. (2012). Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO2 sequestration. Chemistry, 18(38), 12028-12034. doi:10.1002/chem.201201112
    Vullo, D., Del Prete, S., Osman, S. M., De Luca, V., Scozzafava, A., AlOthman, Z., . . . Capasso, C. (2014). Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorganic & medicinal chemistry letters, 24(1), 275-279.
    Wilbur, K. M., & Anderson, N. G. (1948). Electrometric and colorimetric determination of carbonic anhydrase. Journal of Biological Chemistry, 176(1), 147-154.
    Yadav, R. R., Mudliar, S. N., Shekh, A. Y., Fulke, A. B., Devi, S. S., Krishnamurthi, K., . . . Chakrabarti, T. (2012). Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite. Process Biochemistry, 47(4), 585-590. doi:10.1016/j.procbio.2011.12.017
    Yong, J. K. J., Stevens, G. W., Caruso, F., & Kentish, S. E. (2015). The use of carbonic anhydrase to accelerate carbon dioxide capture processes. Journal of Chemical Technology & Biotechnology, 90(1), 3-10. doi:10.1002/jctb.4502
    Yu, Y., Chen, B., Qi, W., Li, X., Shin, Y., Lei, C., & Liu, J. (2012). Enzymatic conversion of CO2 to bicarbonate in functionalized mesoporous silica. Microporous and Mesoporous Materials, 153, 166-170.
    YUAN, D., ZHANG, Q., HOU, Z., LI, D., ZHANG, J., & ZHANG, H. (2006). The Latest Research Advance of Immobilized Enzyme'Carriers [J]. Materials Review, 1, 020.
    Zhang, Y.-T., Zhang, L., Chen, H.-L., & Zhang, H.-M. (2010). Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chemical Engineering Science, 65(10), 3199-3207.
    Zhang, Y.-T., Zhi, T.-T., Zhang, L., Huang, H., & Chen, H.-L. (2009). Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite. Polymer, 50(24), 5693-5700.
    Zhu, Y., Li, W., Sun, G., Tang, Q., & Bian, H. (2016). Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO 2 capture in vertical reactor. International Journal of Greenhouse Gas Control, 49, 290-296. doi:10.1016/j.ijggc.2016.03.016
    Zimmerman, S. A., Tomb, J.-F., & Ferry, J. G. (2010). Characterization of CamH from Methanosarcina thermophila, founding member of a subclass of the γ class of carbonic anhydrases. Journal of bacteriology, 192(5), 1353-1360.
    巫宜庭. (2016). 纖維素結合功能域(CBD)融合醣化胜肽氧化酶(FPOX)之表現與其在測定糖化血紅素(HbA1c)之應用. (碩士), 國立臺灣科技大學, 台北市.
    欧阳嘉, 李鑫, 王向明, 严明, & 徐琳. (2008). 纤维素结合域的研究进展. 生物加工過程, 6(2), 10-16.
    高伟芳. (2010). 碳酸酐酶的固定化及其酶学性质研究. 杭州: 浙江工业大学.
    張雅婷. (2017). 節肢彈性蛋白與纖維素結合蛋白融合表現及其修飾纖維素材料提升性能之研究. (碩士), 國立臺灣科技大學, 台北市.
    曾广智, 黄火强, 谭宁华, 嵇长久, & 潘蓄林. (2006). 碳酸酐酶 Ⅱ 及其抑制剂研究进展.
    潘富军, & 周作明. (2014). 碳酸酐酶固定化技术研究与应用进展. 化学工程, 42(3), 11-17.
    谭宁华, 付祥, 嵇长久, 曾广智, 姜立花, & 贾锐锐. (2004). 碳酸酐酶 Ⅱ 在天然产物生物活性筛选研究中的应用--结构, 功能, 活性筛选, 抑制剂及其相互作用. 有机化学(z1), 139.

    QR CODE