簡易檢索 / 詳目顯示

研究生: 范章瑋
Chang-Wei Fan
論文名稱: 碳酸酐酶支撐式液膜於碳捕捉之應用
Carbonic anhydrase supported liquid membranes for carbon capture
指導教授: 胡蒨傑
Chien-Chieh Hu
口試委員: 賴君義
Juin-Yih Lai
孫一明
Yi-Ming Sun
黃書賢
Shu-Hsien Huang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 二氧化碳捕捉支撐性液膜碳酸酐酶二氧化碳吸收
外文關鍵詞: Carbon dioxide capture, Supported liquid membrane, Carbonic anhydrase, Carbon dioxide absorption
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於工業革命以來,溫室效應愈發嚴重,全世界對於溫室氣體越來越重視,希望藉由管控溫室氣體的排放,以及捕捉空氣中的溫室氣體,以減緩溫室效應。在溫室氣體的比例中,二氧化碳對於溫室效應的貢獻被認為是最大的,因此對溫室效應抑制逐漸與二氧化碳捕捉技術畫上等號。近來各種二氧化碳捕捉的技術與時俱進,最近幾年薄膜氣體分離技術開始進入眾人的視野中,並且被證明了具有氣體分離的潛力,也是一個非常有發展性的捕碳技術。
    本研究藉由碳酸酐酶 (Carbonic Anhydrase, CA) 促進二氧化碳的水合效率,開發一種基於生物型觸媒的支撐式液膜。期望利用此支撐式液膜進行二氧化碳捕捉,為臺灣2050淨零碳排提供新的技術與設計。碳酸酐酶是生物體內運輸二氧化碳的重要酵素。這種酵素可以在各種生物體中找到,例如人類和牛等哺乳動物。 它對二氧化碳的周轉效率 (turnover rate) 非常高。在本研究中借鑑生物體內的碳酸酐酶反應來開發支撐式液膜。將牛紅細胞 (Bovine Erythrocytes) 中提取的碳酸酐酶應用於支撐式液膜,模擬生物體內的二氧化碳傳輸反應,分離並純化二氧化碳,完成碳捕捉。本研究中支撐式液膜的二氧化碳透過係數在觸媒濃度700ppm、操作溫度35℃以及觸媒溶液pH 7的條件下達到1051 Barrer,且選擇性達到50,另外,在模擬煙道氣(Flue gas)的混和進料中(15% CO2),二氧化碳的滲透係數達到2444 Barrer,並且選擇性有112,而以空氣作為進料之後,更可以觀察到通量以及選擇性顯著的上升,通量可以提升至3243 Barrer,選擇性更是高達了155, 碳酸酐酶支撐式液膜具有發展成為商業化二氧化碳分離技術的潛力。


    In view of the fact that the greenhouse effect has become more and more serious since the industrial revolution, the world has paid more and more attention to greenhouse gases, hoping to slow down the greenhouse effect by controlling the emission of greenhouse gases and capturing greenhouse gases in the air. In the proportion of greenhouse gases, carbon dioxide is considered to be the largest contributor to the greenhouse effect, so the response to the greenhouse effect is gradually equated with carbon dioxide capture technology. Among them, the technology of carbon dioxide capture is also advancing with the times. In recent years, thin-film gas separation technology has begun to enter the field of vision of the public, and it has been proved that it has the potential of gas separation, and it is also a very developing technology.
    In this study, carbonic anhydrase (Carbonic Anhydrase, CA) is used to promote the hydration efficiency of carbon dioxide to develop a supported liquid membrane based on a biocatalyst. It is expected to use this supported liquid membrane to capture carbon dioxide and provide new technologies and designs for Taiwan's 2050 net zero carbon emissions. Carbonic anhydrase is an important enzyme for transporting carbon dioxide in organisms. This enzyme can be found in various organisms such as humans and mammals such as cows. It has a very high turnover rate of carbon dioxide. In this study, the carbonic anhydrase reaction in vivo was borrowed to develop a supported liquid membrane. Carbonic anhydrase extracted from bovine erythrocytes (Bovine Erythrocytes) is applied to a supported liquid membrane to simulate the carbon dioxide transport reaction in organisms, separate and purify carbon dioxide, and complete carbon capture. In this study, the carbon dioxide permeability coefficient of the supported liquid membrane reached 1051 Barrer under the conditions of catalyst concentration of 700ppm, operating temperature of 35°C, and catalyst solution pH of 7, and the selectivity reached 50. In addition, in the simulated flue gas in the mixed feed (15% CO2), the permeability coefficient of carbon dioxide reaches 2444 Barrer and the selectivity is 112. This system is applied to the capture of CO2 in the air, showing the CO2 permeability coefficient 3243 Barrer and selectivity coefficient of 155. Carbonic anhydrase-supported liquid membranes have the potential to be developed into a commercial carbon dioxide separation technique.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1背景 1 1.2二氧化碳捕捉技術 2 1.2.1吸收法 2 1.2.2吸附法 3 1.2.3低溫法 3 1.2.4薄膜分離法 3 1.3薄膜概述 4 1.3.1薄膜種類 4 1.3.2薄膜分離程序種類 5 1.3.3薄膜製備方式 6 1.4研究動機 6 第二章 文獻回顧 7 2.1氣體分離薄膜概述 7 2.1.1無機薄膜 7 2.1.2有機高分子薄膜 9 2.1.3混合基質薄膜 11 2.1.4液體膜 14 2.2氣體薄膜分離機制 16 2.2.1多孔薄膜之氣體傳輸理論 16 (1) Poiseuille flow 16 (2) Knudsen flow 17 (3)分子篩 (molecular sieve) 17 (4)吸附選擇/表面擴散 17 2.2.2緻密薄膜之氣體傳輸理論 18 2.2.3促進傳輸 18 2.2.4玻璃態高分子薄膜之氣體吸附 18 2.2.5自由體積理論 19 2.3薄膜接觸器 19 2.4碳酸酐酶 (Carbonic Anhydrase, CA) 22 第三章 研究方法與步驟 27 3.1實驗藥品 27 3.2 實驗儀器 28 3.3 實驗方法 29 3.3.1 薄膜表面鑑定 29 3.3.2 觸媒活性的測定 29 (1) 預先準備 29 (2) 空白測試 30 (3) 觸媒測試 30 (4) 結果計算 30 3.3.3 支撐式液膜的設置 31 3.3.4 水膜分離的機制 32 3.3.5 氣體通過效能的測試 34 第四章 結果與討論 36 4.1 薄膜表面鑑定 36 4.1.1 掃描式電子顯微鏡觀察PTFE表面型態與結構 36 4.1.2 表面疏水性測試 37 4.2 觸酶活性測定 38 4.3 裝置耐用性測試 39 4.4 二氧化碳透過效能測試 40 4.4.1 觸媒濃度對透過性能的影響 40 4.4.2 操作溫度對氣體分離性能之影響 41 4.4.3 酸鹼度對透過性能之影響 42 4.5 碳酸酐酶壽命測試 43 4.6 混和氣體進料測試 45 4.7 Robeson upper bound (2008) 46 第五章 結論 48 參考文獻 50

    參考文獻
    [1] R. Lindsey, L. Dahlman, Climate change: Global temperature, Climate. gov 16 (2020). https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
    [2] D. Aaron, C. Tsouris, Separation of CO2 from flue gas: A review, Separation Science and Technology, 2005, pp. 321-348.
    [3] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program, International Journal of Greenhouse Gas Control 2(1) (2008) 9-20. https://doi.org/10.1016/S1750-5836(07)00094-1.
    [4] D.C. Calabro, L.S. Baugh, P. Kortunov, B.A. McCool, M. Siskin, D.G. Peiffer, Q. Li, Non-aqueous amine scrubbing for removal of carbon dioxide, Google Patents, 2015.
    [5] D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure swing adsorption, John Wiley & Sons1996.
    [6] S. Sircar, Pressure swing adsorption, Industrial and Engineering Chemistry Research 41(6) (2002) 1389-1392. https://doi.org/10.1021/ie0109758.
    [7] C.G. Association, Handbook of compressed gases, Springer Science & Business Media 2012.
    [8] 賴君義, 薄膜科技概論 Introduction to Membrane Science and Technology, 五南圖書出版股份有限公司2019.
    [9] H. Shon, S. Phuntsho, D. Chaudhary, S. Vigneswaran, J. Cho, Nanofiltration for water and wastewater treatment–a mini review, Drinking Water Engineering and Science 6(1) (2013) 47-53.
    [10] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(2) (1991) 165-185.
    [11] N. Kosinov, J. Gascon, F. Kapteijn, E.J.M. Hensen, Recent developments in zeolite membranes for gas separation, J. Membr. Sci. 499 (2016) 65-79.
    [12] S.J. Khatib, S.T. Oyama, Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD), Separation and Purification Technology 111 (2013) 20-42.
    [13] R.M. De Vos, W.F. Maier, H. Verweij, Hydrophobic silica membranes for gas separation, J. Membr. Sci. 158(1-2) (1999) 277-288.
    [14] D.-H. Park, N. Nishiyama, Y. Egashira, K. Ueyama, Enhancement of hydrothermal stability and hydrophobicity of a silica MCM-48 membrane by silylation, Industrial & engineering chemistry research 40(26) (2001) 6105-6110.
    [15] H.H. El-Feky, K. Briceño, E. de Oliveira Jardim, J. Silvestre-Albero, T. Gumí, Novel silica membrane material for molecular sieve applications, Microporous and mesoporous materials 179 (2013) 22-29.
    [16] H.M. Van Veen, M.D. Rietkerk, D.P. Shanahan, M.M. Van Tuel, R. Kreiter, H.L. Castricum, J.E. Ten Elshof, J.F. Vente, Pushing membrane stability boundaries with HybSi® pervaporation membranes, J. Membr. Sci. 380(1-2) (2011) 124-131.
    [17] G.G. Paradis, D.P. Shanahan, R. Kreiter, H.M. van Veen, H.L. Castricum, A. Nijmeijer, J.F. Vente, From hydrophilic to hydrophobic HybSi® membranes: A change of affinity and applicability, J. Membr. Sci. 428 (2013) 157-162.
    [18] A.F. Ismail, L. David, A review on the latest development of carbon membranes for gas separation, J. Membr. Sci. 193(1) (2001) 1-18.
    [19] P.S. Tin, T.-S. Chung, Y. Liu, R. Wang, Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide, Carbon 42(15) (2004) 3123-3131.
    [20] Y. Xiao, M.L. Chng, T.-S. Chung, M. Toriida, S. Tamai, H. Chen, Y.J. Jean, Asymmetric structure and enhanced gas separation performance induced by in situ growth of silver nanoparticles in carbon membranes, Carbon 48(2) (2010) 408-416.
    [21] S.S. Hosseini, T.S. Chung, Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification, J. Membr. Sci. 328(1-2) (2009) 174-185.
    [22] A. Singh, W. Koros, Significance of entropic selectivity for advanced gas separation membranes, Industrial & engineering chemistry research 35(4) (1996) 1231-1234.
    [23] D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, J. Membr. Sci. 211(2) (2003) 311-334.
    [24] D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior, J. Membr. Sci. 211(2) (2003) 335-348.
    [25] M. Pera-Titus, Porous inorganic membranes for CO2 capture: present and prospects, Chemical reviews 114(2) (2014) 1413-1492.
    [26] M.H. Kassaee, Internal surface modification of zeolite MFI particles and membranes for gas separation, Georgia Institute of Technology 2012.
    [27] Y. Yan, M.E. Davis, G.R. Gavalas, Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment, J. Membr. Sci. 123(1) (1997) 95-103.
    [28] M. Hong, J.L. Falconer, R.D. Noble, Modification of zeolite membranes for H2 separation by catalytic cracking of methyldiethoxysilane, Industrial & engineering chemistry research 44(11) (2005) 4035-4041.
    [29] J.K. Mitchell, On the penetrativeness of fluids, J. Membr. Sci. 100 (1995) 11-16.
    [30] L. Sidney, S. Srinivasa, High flow porous membranes for separating water from saline solutions, Google Patents, 1964.
    [31] P.K. Gantzel, U. Merten, Gas Separations With High-Flux Cellulose Acetate Membranes, Industrial and Engineering Chemistry Process Design and Development 9(2) (1970) 331-332. https://doi.org/10.1021/i260034a028.
    [32] R.W. Baker, B.T. Low, Gas separation membrane materials: A perspective, Macromolecules 47(20) (2014) 6999-7013. https://doi.org/10.1021/ma501488s.
    [33] J.M.S. Henis, M.K. Trinodi, A novel approach to gas separations using composite hollow fiber membranes, Separation Science and Technology 15(4) (1980) 1059-1068. https://doi.org/10.1080/01496398008076287.
    [34] R.W. Baker, Future directions of membrane gas separation technology, Industrial and Engineering Chemistry Research 41(6) (2002) 1393-1411. https://doi.org/10.1021/ie0108088.
    [35] R.D. Noble, D.L. Gin, Perspective on ionic liquids and ionic liquid membranes, J. Membr. Sci. 369(1-2) (2011) 1-4.
    [36] Y. Yampolskii, I. Pinnau, B.D. Freeman, Materials science of membranes for gas and vapor separation, Wiley Online Library, 2006.
    [37] L.M. Robeson, C.D. Smith, M. Langsam, A group contribution approach to predict permeability and permselectivity of aromatic polymers, J. Membr. Sci. 132(1) (1997) 33-54.
    [38] N.B. McKeown, S. Makhseed, P.M. Budd, Phthalocyanine-based nanoporous network polymers, Chemical Communications (23) (2002) 2780-2781.
    [39] N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials, Chemistry–A European Journal 11(9) (2005) 2610-2620.
    [40] P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity, J. Membr. Sci. 251(1-2) (2005) 263-269.
    [41] P.M. Budd, N.B. McKeown, B.S. Ghanem, K.J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, V. Shantarovich, Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: Polybenzodioxane PIM-1, J. Membr. Sci. 325(2) (2008) 851-860.
    [42] B.S. Ghanem, N.B. McKeown, P.M. Budd, N.M. Al-Harbi, D. Fritsch, K. Heinrich, L. Starannikova, A. Tokarev, Y. Yampolskii, Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides, Macromolecules 42(20) (2009) 7881-7888.
    [43] T. Emmler, K. Heinrich, D. Fritsch, P.M. Budd, N. Chaukura, D. Ehlers, K. Rätzke, F. Faupel, Free volume investigation of polymers of intrinsic microporosity (PIMs): PIM-1 and PIM1 copolymers incorporating ethanoanthracene units, Macromolecules 43(14) (2010) 6075-6084.
    [44] R.S.K. Valappil, N. Ghasem, M. Al-Marzouqi, Current and future trends in polymer membrane-based gas separation technology: A comprehensive review, Journal of Industrial and Engineering Chemistry 98 (2021) 103-129.
    [45] S. Stern, T. Sinclair, P. Gareis, N. Vahldieck, P. Mohr, Helium recovery by permeation, Industrial & Engineering Chemistry 57(2) (1965) 49-60.
    [46] R. Andrews, E. Grulke, J. Brandrup, E. Immergut, E. Grulke, Polymer handbook, John Wiley & Sons, New York (1999).
    [47] T.T. Moore, R. Mahajan, D.Q. Vu, W.J. Koros, Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AIChE journal 50(2) (2004) 311-321.
    [48] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in polymer science 32(4) (2007) 483-507.
    [49] L.Y. Jiang, T.S. Chung, C. Cao, Z. Huang, S. Kulprathipanja, Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single-and dual-layer asymmetric hollow fiber membranes, J. Membr. Sci. 252(1-2) (2005) 89-100.
    [50] C.V. Funk, D.R. Lloyd, Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes: Prediction of gas separation performance, J. Membr. Sci. 313(1-2) (2008) 224-231.
    [51] M. Anson, J. Marchese, E. Garis, N. Ochoa, C. Pagliero, ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci. 243(1-2) (2004) 19-28.
    [52] J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, J. Membr. Sci. 314(1-2) (2008) 123-133.
    [53] H. Cong, M. Radosz, B.F. Towler, Y. Shen, Polymer–inorganic nanocomposite membranes for gas separation, Separation and purification technology 55(3) (2007) 281-291.
    [54] B. Sasikumar, G. Arthanareeswaran, A. Ismail, Recent progress in ionic liquid membranes for gas separation, Journal of Molecular Liquids 266 (2018) 330-341.
    [55] F. Krull, C. Fritzmann, T. Melin, Liquid membranes for gas/vapor separations, J. Membr. Sci. 325(2) (2008) 509-519.
    [56] L.A. Neves, J.G. Crespo, I.M. Coelhoso, Gas permeation studies in supported ionic liquid membranes, J. Membr. Sci. 357(1-2) (2010) 160-170.
    [57] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Industrial & Engineering Chemistry Research 48(6) (2009) 2739-2751.
    [58] J.E. Bara, D.E. Camper, D.L. Gin, R.D. Noble, Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture, Accounts of Chemical Research 43(1) (2010) 152-159.
    [59] J.E. Bara, E.S. Hatakeyama, C.J. Gabriel, X. Zeng, S. Lessmann, D.L. Gin, R.D. Noble, Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes, J. Membr. Sci. 316(1-2) (2008) 186-191.
    [60] J.E. Bara, C.J. Gabriel, E.S. Hatakeyama, T.K. Carlisle, S. Lessmann, R.D. Noble, D.L. Gin, Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents, J. Membr. Sci. 321(1) (2008) 3-7.
    [61] W.R. Vieth, J. Howell, J. Hsieh, Dual sorption theory, J. Membr. Sci. 1 (1976) 177-220.
    [62] D. Turnbull, M.H. Cohen, Free‐volume model of the amorphous phase: glass transition, The Journal of chemical physics 34(1) (1961) 120-125.
    [63] M.H. Cohen, G. Grest, Liquid-glass transition, a free-volume approach, Physical Review B 20(3) (1979) 1077.
    [64] A. Allal, C. Boned, A. Baylaucq, Free-volume viscosity model for fluids in the dense and gaseous states, Physical Review E 64(1) (2001) 011203.
    [65] A. Mansourizadeh, I. Rezaei, W.J. Lau, M.Q. Seah, A.F. Ismail, A review on recent progress in environmental applications of membrane contactor technology, Journal of Environmental Chemical Engineering (2022) 107631.
    [66] D. Bhattacharyya, A.D. Butterfield, New insights into membrane science and technology: polymeric and biofunctional membranes, Elsevier 2003.
    [67] Y. Xu, K. Goh, R. Wang, T.-H. Bae, A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction, Separation and Purification Technology 229 (2019) 115791.
    [68] Y. Zhang, R. Wang, Gas–liquid membrane contactors for acid gas removal: recent advances and future challenges, Current Opinion in Chemical Engineering 2(2) (2013) 255-262.
    [69] A. Mansourizadeh, A. Ismail, Hollow fiber gas–liquid membrane contactors for acid gas capture: a review, Journal of hazardous materials 171(1-3) (2009) 38-53.
    [70] M. Purwasasmita, P. Nabu, E. Bone, I.G. Wenten, Non Dispersive Chemical Deacidification of Crude Palm Oil in Hollow Fiber Membrane Contactor, Journal of Engineering & Technological Sciences 47(4) (2015).
    [71] A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors, J. Membr. Sci. 159(1-2) (1999) 61-106.
    [72] S. Karoor, K.K. Sirkar, Gas absorption studies in microporous hollow fiber membrane modules, Industrial & engineering chemistry research 32(4) (1993) 674-684.
    [73] Z.-F. Yang, A.K. Guha, K.K. Sirkar, Novel membrane-based synergistic metal extraction and recovery processes, Industrial & engineering chemistry research 35(4) (1996) 1383-1394.
    [74] Z. Qi, E. Cussler, Microporous hollow fibers for gas absorption: I. Mass transfer in the liquid, J. Membr. Sci. 23(3) (1985) 321-332.
    [75] Z. Qi, E. Cussler, Microporous hollow fibers for gas absorption: II. Mass transfer across the membrane, J. Membr. Sci. 23(3) (1985) 333-345.
    [76] S. Bhaumik, S. Majumdar, K. Sirkar, Hollow‐fiber membrane‐based rapid pressure swing absorption, AIChE Journal 42(2) (1996) 409-421.
    [77] Y. Xu, Y. Lin, M. Lee, C. Malde, R. Wang, Development of low mass-transfer-resistance fluorinated TiO2-SiO2/PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor, J. Membr. Sci. 552 (2018) 253-264.
    [78] B. Belaissaoui, J. Claveria-Baro, A. Lorenzo-Hernando, D.A. Zaidiza, E. Chabanon, C. Castel, S. Rode, D. Roizard, E. Favre, Potentialities of a dense skin hollow fiber membrane contactor for biogas purification by pressurized water absorption, J. Membr. Sci. 513 (2016) 236-249.
    [79] P. Jin, C. Huang, Y. Shen, X. Zhan, X. Hu, L. Wang, L. Wang, Simultaneous separation of H2S and CO2 from biogas by gas–liquid membrane contactor using single and mixed absorbents, Energy & Fuels 31(10) (2017) 11117-11126.
    [80] J. Hou, G. Dong, B. Xiao, C. Malassigne, V. Chen, Preparation of titania based biocatalytic nanoparticles and membranes for CO 2 conversion, Journal of Materials Chemistry A 3(7) (2015) 3332-3342.
    [81] N. Maheshwari, M. Kumar, I.S. Thakur, S. Srivastava, Cloning, expression and characterization of β-and γ‑carbonic anhydrase from Bacillus sp. SS105 for biomimetic sequestration of CO2, International journal of biological macromolecules 131 (2019) 445-452.
    [82] T. Sharma, S. Sharma, H. Kamyab, A. Kumar, Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review, Journal of Cleaner Production 247 (2020) 119138.
    [83] K.S. Smith, C. Jakubzick, T.S. Whittam, J.G. Ferry, Carbonic anhydrase is an ancient enzyme widespread in prokaryotes, Proceedings of the National Academy of Sciences 96(26) (1999) 15184-15189.
    [84] S. Lindskog, Structure and mechanism of carbonic anhydrase, Pharmacology & therapeutics 74(1) (1997) 1-20.
    [85] E.V. Kupriyanova, M.A. Sinetova, K.S. Mironov, G.V. Novikova, L.A. Dykman, M.V. Rodionova, D.A. Gabrielyan, D.A. Los, Highly active extracellular α-class carbonic anhydrase of Cyanothece sp. ATCC 51142, Biochimie 160 (2019) 200-209.
    [86] C.T. Supuran, Carbonic anhydrases and metabolism, MDPI, 2018, p. 25.
    [87] C.D. Boone, A. Habibzadegan, S. Gill, R. McKenna, Carbonic anhydrases and their biotechnological applications, Biomolecules 3(3) (2013) 553-562.
    [88] G. De Simone, A. Di Fiore, C. Capasso, C.T. Supuran, The zinc coordination pattern in the η-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families, Bioorganic & medicinal chemistry letters 25(7) (2015) 1385-1389.
    [89] M. Aggarwal, T.K. Chua, M.A. Pinard, D.M. Szebenyi, R. McKenna, Carbon dioxide “trapped” in a β-carbonic anhydrase, Biochemistry 54(43) (2015) 6631-6638.
    [90] R.E. Korb, P.J. Saville, A.M. Johnston, J.A. Raven, Sources of inorganic carbon for photosynthesis by three species of marine diatom 1, Journal of phycology 33(3) (1997) 433-440.
    [91] B.E. Alber, J.G. Ferry, A carbonic anhydrase from the archaeon Methanosarcina thermophila, Proceedings of the National Academy of Sciences 91(15) (1994) 6909-6913.
    [92] T.O. Yeates, C.A. Kerfeld, S. Heinhorst, G.C. Cannon, J.M. Shively, Protein-based organelles in bacteria: carboxysomes and related microcompartments, Nature Reviews Microbiology 6(9) (2008) 681-691.
    [93] A.C. Pierre, Enzymatic carbon dioxide capture, International Scholarly Research Notices 2012 (2012) 753687.
    [94] S. Faridi, H. Bose, T. Satyanarayana, Utility of immobilized recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the surface of modified iron magnetic nanoparticles in carbon sequestration, Energy & Fuels 31(3) (2017) 3002-3009.
    [95] B. Kanbar, E. Ozdemir, Thermal stability of carbonic anhydrase immobilized within polyurethane foam, Biotechnology progress 26(5) (2010) 1474-1480.
    [96] M. Oviya, S.S. Giri, V. Sukumaran, P. Natarajan, Immobilization of carbonic anhydrase enzyme purified from Bacillus subtilis VSG-4 and its application as CO2 sequesterer, Preparative Biochemistry and Biotechnology 42(5) (2012) 462-475.
    [97] R.R. Yadav, S.N. Mudliar, A.Y. Shekh, A.B. Fulke, S.S. Devi, K. Krishnamurthi, A. Juwarkar, T. Chakrabarti, Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite, Process Biochemistry 47(4) (2012) 585-590.
    [98] U. Guzik, K. Hupert-Kocurek, D. Wojcieszyńska, Immobilization as a strategy for improving enzyme properties-application to oxidoreductases, Molecules 19(7) (2014) 8995-9018.
    [99] M.A. Rahman, U. Culsum, A. Kumar, H. Gao, N. Hu, Immobilization of a novel cold active esterase onto Fe3O4∼ cellulose nano-composite enhances catalytic properties, International journal of biological macromolecules 87 (2016) 488-497.
    [100] Y. Xu, Y. Lin, N.G.P. Chew, C. Malde, R. Wang, Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor, J. Membr. Sci. 572 (2019) 532-544.
    [101] A.R. Cuesta, C. Song, pH swing adsorption process for ambient carbon dioxide capture using activated carbon black adsorbents and immobilized carbonic anhydrase biocatalysts, Applied Energy 280 (2020) 116003.
    [102] A. Bednár, N. Nemestóthy, P. Bakonyi, L. Fülöp, G. Zhen, X. Lu, T. Kobayashi, G. Kumar, K. Xu, K. Bélafi-Bakó, Enzymatically-boosted ionic liquid gas separation membranes using carbonic anhydrase of biomass origin, Chemical Engineering Journal 303 (2016) 621-626.
    [103] H. Rasouli, I. Iliuta, F. Bougie, A. Garnier, M.C. Iliuta, Hybrid enzymatic CO2 capture process in intensified flat sheet membrane contactors with immobilized carbonic anhydrase, Separation and Purification Technology 287 (2022) 120505.
    [104] Y. Fu, Y.-B. Jiang, D. Dunphy, H. Xiong, E. Coker, S.S. Chou, H. Zhang, J.M. Vanegas, J.G. Croissant, J.L. Cecchi, Ultra-thin enzymatic liquid membrane for CO2 separation and capture, Nature communications 9(1) (2018) 990.
    [105] M.Y.M. Abdelrahim, C.F. Martins, L.A. Neves, C. Capasso, C.T. Supuran, I.M. Coelhoso, J.G. Crespo, M. Barboiu, Supported ionic liquid membranes immobilized with carbonic anhydrases for CO2 transport at high temperatures, J. Membr. Sci. 528 (2017) 225-230.
    [106] Z. Wang, Y. Zhang, J. Wang, Y. Zhang, Bioinspired porous organic polymer-functionalized membranes for efficient CO 2 capture, Sustainable Energy & Fuels 4(3) (2020) 1191-1198.
    [107] K. Yao, Z. Wang, J. Wang, S. Wang, Biomimetic material—poly (N-vinylimidazole)–zinc complex for CO 2 separation, Chemical Communications 48(12) (2012) 1766-1768.
    [108] W. Zheng, Z. Tian, Z. Wang, D. Peng, Y. Zhang, J. Wang, Y. Zhang, Dual-function biomimetic carrier based facilitated transport mixed matrix membranes with high stability for efficient CO2/N2 separation, Separation and Purification Technology 285 (2022) 120371.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 2025/08/25 (校外網路)
    全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE