簡易檢索 / 詳目顯示

研究生: 郭宜臻
Yi-Zhen Guo
論文名稱: 金-鎳-錫三元系統相平衡與金/錫/鎳/銅-多層結構界面反應之研究
The Phase Equilibria of the Au-Ni-Sn Ternary System and The Interfacial Reaction in the Au/Sn/Ni/Cu Multilayer System
指導教授: 顏怡文
Yee-wen Yen
口試委員: 顏怡文
Yee-wen Yen
施劭儒
Shao-ju Shih
陳志銘
Chih-ming Chen
鄭明正
Cheng-ming Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 金-鎳-錫相平衡金/錫/鎳/銅界面反應
外文關鍵詞: Au-Ni-Sn, phase equilibrium, Au/Sn/Ni/Cu, interfacial reaction
相關次數: 點閱:397下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Au與Ni為常見的凸塊下金屬層(Under Bump Metallurgy; UBM)材料,,而為了避免基材與銲點間發生界面反應,Ni常被作為擴散阻礙層,而Sn與金屬表面有良好的潤濕性因此常被做銲料,Cu則是常見的基材,因此Au/Sn/Ni/Cu多層結構常見於電子構裝中銲點,本實驗以電鍍方法在Cu基材上分別鍍一層Ni及Sn,最後疊上Au片,形成Au/Sn/Ni/Cu多層結構反應隅,在150、180與200 ºC下進行固/固界面反應,了解介金屬相的演變過程,而為了更加確定Au, Ni, Sn的反應機制及熱力學反應參數,本實驗將會建立在180及240ºC下的Au-Ni-Sn三元合金相平衡圖。在Au-Ni-Sn三元相平衡之實驗結果發現,在兩個溫度中皆發現在Ni3Sn2相及AuSn相之間並不存在連續均勻固溶體,而是Ni3Sn2相對第三元素有著很大的溶解度,並且有一個三元相AuNi2Sn4存在於富Sn區,另外,AuSn4相對Ni也有著較大的溶解度。而在Au/Sn/Ni/Cu多層結構界面反應中,介金屬厚度隨著反應溫度的增加而增厚,但並不影響介金屬的種類,隨著反應時間的增加,富Sn相之 AuSn4、AuSn2會因為相轉變而漸漸變薄且消失;相轉變時體積收縮所造成的孔洞,隨著反應溫度的增加而減少;證實了Ni層確實會阻止Cu-Sn 相 生成,並在Au-Sn相與Ni界面處生成(Ni,Au)3Sn2相。


Au and Ni are widely used in Under Bump Metallurgy. Au is widely used as a anti-oxidation layer, because it has many advantages, such as good anti-oxidation, corrosion resistance and solderability. And Ni is widely used as a diffusion barrier to avoid interfacial reaction between solders and the substrate. Sn is a common material because it has good wetting properties with metal surfaces.And Cu is a substrate. Therefor the Au/Sn/Ni/Cu multilayer structure is a common structure at the solder joint in electronic packaging. So in this study we prepared the Au/Sn/Ni/Cu multilayer structure by depositing a Ni/Sn two-layer structure onto the Cu substrate through electroplating. In order to understand the IMC evolution with various of reaction time at different temperatures,these couples will undergo the solid-solid interfacial reaction at 150, 180 and 200 oC. At the mean time the phase equilibria of Au-Ni-Sn ternary system at 180, 240 oC were experimentally investigated.The result shows that there is no homogenous range from the Ni3Sn2 phase to the AuSn phase, but a large solubility of Au in the Ni3Sn2 phase. There is a ternary compound AuNi2Sn4 in this system, and large solubility of Ni in the AuSn4 phase. In the Au/Sn/Ni/Cu multilayer interfacial reaction shows that the thickness of IMC increased with the increasing temperature ; however, the category of the IMC weren’t change with the different temperature. As the reaction time increased, the Sn-rich phases AuSn4 and AuSn2 gradually became thinner and finally disappeared because the phase transformation. The voids caused by volume shrinkage decreased with the increasing temperature. Ni layer prevented the formation of Cu-Sn IMC, and formed (Ni,Au)3Sn2 phase between Au-Sn IMC /Ni interface.

摘要 .................................................. I Abstract ............................................ .II 誌謝 ................................................. III 目錄 .................................................. V 圖目錄 ................................................ VI 表目錄 ................................................ X 第一章、前言 .............................................1 第二章、文獻回顧 ..........................................3 2-1 相平衡 ...............................................3 2-1.1 Au-Sn二元系統相平衡圖 ...............................5 2-1.2 Au-Ni 二元系統相平衡圖 ..............................6 2-1.3 Ni-Sn 二元系統相平衡圖 ..............................7 2-1.4 Au-Ni-Sn三元系統相平衡圖 ............................8 2-1.5 Au-Sn系統中的富Au相 ................................11 2-2 界面反應與擴散理論 ....................................12 2-3 界面反應相關文獻 ......................................14 2-3.1 Sn/Au界面反應 界面反應 ..............................14 2-3.2 Au/Sn/Cu 系統界面反應 ...............................16 2-3.3相關系統界面反應 ................................ ....18 2-3.4銲料轉為 IMC相之體積收縮..............................24 2-3.5 Au-Sn IMC相之晶格參數與結構 ........................26 第三章、實驗方法 .........................................27 3-1 Au-Ni-Sn相平衡...... ................................ 27 3-1.1合金配置 ............................................27 3-1.2合金均質化 .........................................28 3-2 Au/Sn/Ni/Cu多層結構反應偶製備..... ....................31 3-2.1銅片基材處理............... .........................31 3-2.2界面反應 ............................................33 第四章、結果與討論 ................................ .......34 4-1 Au-Ni-Sn三元合金相平衡反應 ............................35 4-1.1 Au-Ni-Sn三元系統180 ºC相平衡 ........................35 4-1.2 Au-Ni-Sn三元系統240 ºC相平衡 ........................58 4-2 Au/Sn(10m) /Ni/Cu多層結構反應 ..................... .78 4-2.1 Au/Sn/Ni/Cu反應偶 反應偶 -150 ºC之界面反應 ..........78 4-2.2 Au/Sn/Ni/Cu反應偶 反應偶 -180 ºC之界面反應 .........83 4-2.3 Au/Sn/Ni/Cu反應偶 反應偶 -200 ºC之界面反應 ..........85 4-2.4 不同反應溫度對IMC生成之影響 ..........................88 第五章、結論 ..............................................95 參考文獻 .................................................96

[1]"WEEE Regulations”EU-Directive 96/EC (2002).
[2]"RoHS Regulations”EU-Directive 95/EC (2002).
[3]A.F.J. Baggerman, M. J. Batenburg, “Reliable Au-Sn Flip-Chip Bonding on Flexible Prints”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, 18(2) (1995) 257-263.
[4]J. W. Yoon, H.S. Chun, J.M. Koo, S.B. Jung, “Au–Sn flip-chip solder bump for microelectronic and optoelectronic applications”, Microsystem Technologies, 13 (2007) 1463-1469.
[5]Y. W. Yen, H. W. Tseng, K.Zeng, S. J. Wang, C. Y. Liu, “Cross-Interaction Between Au/Sn and Cu/Sn Interfacial Reactions”, Journal of Electron Materials, 38 (2009) 2257-2262
[6]C. W. Chang, Q. P. Lee, C. E. Ho, C. R. Kao, “Cross-interaction between Au and Cu in Au/Sn/Cu ternary diffusion couples”, Journal of Electronic Materials & Design, 35 (2006) 366-371.
[7]C. F. Yang, S.W. Chen, “Interfacial reactions in Au/Sn/Cu sandwich specimens”, Intermetallics, 18 (2010) 672-678.
[8]G. Ghosh, “Interfacial Microstructure and The Kinetics of Interfacial Reaction in Diffusion Couples Between Sn–Pb Solder and Cu/Ni/Pd Metallization”, Acta Materialia, 48 (2000) 3719-3738.
[9]Y. H. Wang, K. Nishid, M. Hutter, T. Kimur, S. T, “Low-Temperature Process of Fine-Pitch Au–Sn Bump Bonding in Ambient Air”, Japanese Journal of Applied Physics, 46 (2007) 1961-1967.
[10]H. Okamoto, T. B. Massalski, ”The Au-Sn (Gold-Tin) System”, Bulletin of Alloy Phase Diagrams, 5 (1984) 492-503.
[11]J. Ciulik, M. R. Noris, ”The Au-Sn phase diagram”, Journal of Alloys and Compounds, 191 (1993) 71-78.
[12]H. S. Liu, C. L. Liu, K. Ishida, Z. P. Jin,”Thermodynamic Modeling of the Au-In-Sn System”, Journal of Electron Materials, 32 (2003) 1290-1296.
[13]H. Okamoto, T. B. Massalsk, “The Au-Sn (Gold-Tin) System”, Acta Materialia, (1987) 193-208.
[14]C. Schmetterer, H. Flandorfer, K. W. Richter, U. Saeed, M. Kauffman, P. Roussel,”A new investigation of the system Ni-Sn”, Intermetallics, 15 (2007) 869-884.
[15]A. Neumann, A. Kjekshus, E. Rost, “The Tenary System Au-Ni-Sn”, Journal of Solid State Chemistry, 123 (1996) 203-207.
[16]S. Anhock, H. Oppermann, C. Kallmayer, R. Aschenbrenner, L. Thomas, H. Reichl, ”Investigations of Au-Sn alloys on different end-metallizations for high temperature applications [solders]”, Proc. 22th IEEE/CPMT Int. Electron. Manufacturing Technology Symposium, (1998) 156-165.
[17]X. J. Liu, M. Kinaka, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, “Experimental investigation and thermodynamic calculation of phase equilibria in the Sn-Au-Ni system”, Journal of Electronic Materials, 34 (2005) 670-679.
[18]H. Q. Dong, V. Vuorinen, T. Laurila, M. Paulasto-Kröckel, “Thermodynamic reassessment of Au–Ni–Sn ternary system”, Calphad, 43 (2013) 61-70.
[19]H. Q. Dong, X. M. Tao, T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, “Thermodynamic modeling of Au–Ce–Sn ternary system”, Calphad, 42 (2013) 38-50.
[20]H. G. Song, J. P. Ahn, A. M. Minor, J. W. Morris, “Au-Ni-Sn Intermetallic Phase Relationships in
Eutectic Pb-Sn Solder Formed on Ni/Au Metallization”, Journal of Electronic Materials, 30 (2001) 409-414.
[21]T. A. Tollefsen, A. Larsson, O. M. Løvvik, K. Aasmundtveit, “ Au-Sn SLID Bonding—Properties and Possibilities”, Metallurgical and Materials Transactions B, 43 (2011) 397-405.
[22]K. Schubert, H. Breimer, R. Gohle, “The Structures of the Systems Gold-Indium, Gold-Tin, Gold-Indium-Tin, and Gold-Tin-Antimony”, Z. Metallkd. 50 (1959)146-153.
[23]H. Okamoto, “Au-Sn (Gold-Tin)”, Journal of Phase Equilibria and Diffusion, 28 (2007) 490-490.
[24]J. Ciulik, M. R. Notis, ” Electronic Materials and Processing Congress, ASM, Materials Park, OH, (1989) 57-61.
[25]R. R. Chromik, D. N. Wang, A. Shugar, L. Limata, M. R. Notis, R. P. Vinci, “Mechanical properties of intermetallic compounds in the Au–Sn system”, Journal of Materials Research, 20 (2005) 2161-2172.
[26]T. B. Massalski, H. W. King, “The lattice spacing relationships in close-packed α and ζ phases based on gold”, Acta Metallurgica, 8 (1960) 677-683.
[27]F. G. Yost, M. M. Karnowsky, W. D. Drotning, J. H. Gieske, ” Thermal expansion and elastic properties of high gold-Tin Alloys”, Metallurgical and Materials Transactions A, 21 (1990) 1885-1889.
[28]K. Osada, S. Yamaguchi, M. Hirabayashi, “ An Ordered Structure of Au5Sn”, Transactions of the Japan Institute of Metals, 15 (1974) 256-260.
[29]H. Okamoto, T. B. Massalski, Binary Alloy Phase Diagrams,ASM, Materials Park, OH (1990) 433-434.
[30]W. Tang, A. He, Q. Liu, D. G. Ivey, “Room temperature interfacial reactions in electrodeposited Au/Sn couples”, Acta Materialia, 56 (2008) 5818-5827.
[31]D. Gregersen, L. Buene, T. Finstad, O. Lønsjø, T. Olsen, “A diffusion marker in Au/Sn thin films”, Thin Solid Films, 78 (1981) 95-102.
[32]S. Nakahara, R. J. McCoy, L. Buene, J. M. Vandenberg,” Room Temperature nterdiffusion Studies of Au/Sn Thin Film Couples”, Thin Solid Films 84 (1981) 185-196.
[33]W. Liu, Y. Wang, Y. Ma, Y. Huang, Q. Yu, “Interfacial microstructure evolution and shear behavior of Au-20Sn/(Sn)Cu solder joints bonded at 250 degrees C”, Materials in Electronics, 27 (2016) 5982-5991.
[34]S. Nakahara, R. McCoy, L. Buene, J. Vandenberg,” Room Temperature nterdiffusion Studies of Au/Sn Thin Film Couples”, Thin Solid Films, 84 (1981) 185-196.
[35]A. Bruson, M. Gerl, ”Diffusion coefficient of 113Sn, 124Sb, 110mAg, and 195Au in liquid Sn”, Physical Review B, 21 (1980) 5447-5454.
[36]Y. W. Yen, H. W. Tseng, K. Zeng, S. J. Wang, C. Y. Liu, “Cross-Interaction Between Au/Sn and Cu/Sn Interfacial Reactions”, Journal of Electronic Materials, 38 (2009) 2257-2263.
[37]蕭憲明, "金-錫-銅三元合金、銀-金-銅-錫四元合金相平衡系統及錫-銅合金與金基材的界面反應,國立台灣科技大學 化學工程系碩士學位論文 " 2005.
[38]S. W. Chen, Y. W. Yen, “Interfacial reactions in the Sn-Ag/Au couples”, Journal of Electronic Materials, 30 (2001) 1133-1137.
[39]J. Y. Tsai, C. W. Chang, Y. C. Shieh, Y. C. Hu, and C. R. Kao, ” Controlling the microstructures from the gold-tin reaction”, Journal of Electronic Materials, 34 (2005) 182-187 2005.
[40]H. Q. Dong, V. Vuorinen, X. W. Liu, T. Laurila, J. Li, M. Paulasto-Kröckel, “ Microstructural Evolution and Mechanical Properties of Au-20wt.%Sn|Ni Interconnection”, Journal of Electronic Materials, 45 (2015) 566-575.
[41]H. G. Song, J. P. Ahn, J. W, M. Jr, “The Microstructure of Eutectic Au-Sn Cu”, Journal of Electronic Materials, 30 (2001) 1083-1087.
[42]W. S. Liu, Y. K. Wang, Y. Z. Ma, Q. Yu, Y. F. Huang, “Interfacial microstructure evolution and shear behavior of Au-20Sn/(Sn)Cu solder joints bonded at 250 degrees C”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 651 (2016) 626-635.
[43]L. Yin, S. J. Meschter, T. J. Singler, “Wetting in the Au–Sn System”, Acta Materialia, 52 (2004) 2873-2888.
[44]C. Ghosh, “Interdiffusion study in binary gold–tin system”, Intermetallics, 18 (2010) 2178-2182,
[45]Y. Wang, W. Liu, Y. Ma, Y. Huang, Y. Tang, F. Cheng, ” Indentation size effect and micromechanics characterization of intermetallic compounds in the Au–Sn system”, Materials Science and Engineering: A, 610 (2014) 161-170.
[46]Y. W. Yen, Y. C. Chiang, C. C. Jao, D. W. Liaw, S. C. Lo, C. Lee, “Interfacial reactions and mechanical properties between Sn–4.0Ag–0.5Cu and Sn–4.0Ag–0.5Cu–0.05Ni–0.01Ge lead-free solders with the Au/Ni/Cu substrate”, Journal of Alloys and Compounds, 509 (2011) 4595-4602.
[47]C. P. Lin, C. M. Chen, “Solid-state interfacial reactions at the solder joints employing Au/Pd/Ni and Au/Ni as the surface finish metallizations”, Microelectronics Reliability, 52 (2012) 385-390.
[48]H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, “Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages”, Ieee Transactions on Device and Materials Reliability12 (2012) 233-240.
[49]J. Q. Hu, M. Xie, J. M. Zhang, M. M. Liu, Y. C. Yang, Y. T. Chen, “First principles study of Au-Sn intermetallic compounds”, Acta Physica Sinica, 62 ( 2013) 247102-1-8.
[50]J. F. Su , H. Y. Song, M. R. An, Acta Physica Sinica, 62 (2013) 063103.
[51]Y. W. Wei, Z. X. Yang, Acta Physica Sinica, 57 (2008) 7139.
[52]M. M. Wang, H. Ning, X. M. Tao, M. Q. Tan, Acta Physica Sinica, 60 (2011) 047301.
[53]Z. Y. Hu, P. Y. Wang, Z. L. Hou, X. H. Shao, Chinese Physics B, 21, (2012) 126803.

無法下載圖示 全文公開日期 2022/07/19 (校內網路)
全文公開日期 2024/07/19 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE