簡易檢索 / 詳目顯示

研究生: 丁偉庭
Wei-Ting Ding
論文名稱: 水冷式可調光LED植物燈
Water Cooled Color Tunable Light Emitting Diodes for Plant Grow Light
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 楊恆隆
Heng-Long Yang
葉秉慧
Pinghui-Sophia Yeh
林保宏
Pao-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 98
中文關鍵詞: 發光二極體熱效應調變光色
外文關鍵詞: Light Emitting Diodes, Thermal Effect, Color-Tunable
相關次數: 點閱:245下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將驗證以水冷方式散熱兼具可調光LED植物燈為研究目標,水冷式LED植物燈是由一根空心內管,表面貼附有LED陣列,再將內管穿過另一根空心壓克力管,避免水流滲入至內管表面影響LED陣列。
    LED陣列所使用的元件是由多種有色螢光粉與不同波長的晶粒所組成,而晶粒包含紫外光晶粒(λpeak=382nm)、紫光晶粒(λpeak=412nm)和藍光晶粒(λpeak=452nm),螢光膠層是由紅色、綠色螢光粉與透明矽膠混合,並且透過田口式實驗方法調整螢光粉的濃度,得到最佳的色域面積。以20mA電流各別驅動紫外光、紫光和藍光晶粒,所量測CIE1976色座標點分別為(0.1508, 0.5501)、(0.3899, 0.4292)、(0.2293, 0.1496),可調色域面積與sRGB的色域面積比值為65.07%。藉由模擬軟體優化燈管擺放距離,模擬所得照度均勻度為0.914,經實驗驗證,實際照度均勻度為0.905。


    The objective of this thesis is to verify the functions of a color tunable light emitting diode (LED) grow light with water cooling capability. The water cooled LED grow light is composed of a hollow inner tube, on which's surface a LED array is positioned , is inserted into another outer acrylic hollow tube to prevent the LED array on the surface of the inner tube from water permeating.
    The LED array is based on the principle of a multiple phosphors blend excited by different wavelengths and their combinations. Furthermore, the LED array is comprised of three excitation chips of which are a ultraviolet light chip (λpeak=382nm) and a purple light chip (λpeak=412nm) and a blue light chip (λpeak=382nm); the phosphor blend is mixing transparent resin with red and green phosphors. To optimized the LED array performance, the concentration of phosphors blend layer is adjusted by means of Taguchi Method. At 20mA drive current, the u' v' values of CIE 1976 color space of the LED array are (0.1508, 0.5501), (0.3899, 0.4292) and (0.2293, 0.1496) for blue, purple and ultraviolet chips, respectively. A 65.07% sRGB gamut is achieved and uniformity of the illumination pattern is 0.905 as comparing with the theoretical simulation result of 0.914.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 色性質可調之白光發光二極體 3 1.2.2 藍光LED激發有色螢光粉 4 1.2.3 紫外光LED激發有色螢光粉 5 1.2.4 熱對發光二極體的影響 6 1.2.5 散熱方法 7 1.3 論文架構 10 第二章 研究目的與方法 11 2.1 研究目的 11 2.2 量測方法與儀器介紹 12 2.2.1 積分球與I-V電性量測 12 2.2.2 光場分佈量測 14 2.2.3 晶粒與螢光粉之選擇 15 2.3 螢光粉材料成份與發射光譜 17 2.3.1 紅色螢光粉 17 2.3.2 綠色螢光粉 18 2.3.3 藍色螢光粉 19 2.3.4 黃色螢光粉 20 2.4 田口式實驗設計法 21 2.4.1 田口試實驗法 21 2.4.2 LED封裝製作 23 2.4.3 色域面積調製 25 2.4.4 矽膠參數優化 36 2.5 接面溫度量測 37 2.5.1 順向電壓法 37 2.5.2 實驗架構 40 2.5.3 實驗流程 41 2.6 導線架之外部溫度量測 43 2.6.1 熱電偶之原理 43 2.6.2 實驗架構 44 第三章 水冷式紫外光LED燈管測試 46 3.1 燈具製作 46 3.2 以水冷方式冷卻紫外LED溫度量測 48 3.3 溫度量測實驗結果 50 3.3.1 水流速與溫度的實驗結果 50 3.3.2 LED間距與溫度的實驗結果 53 3.3.3 紫外照度與電流大小的實驗結果 59 3.4 順向電壓法溫度量測結果 62 3.5 光場分佈模擬 66 3.5.1 紫外LED光形量測 66 3.5.2 UV LED燈管光場模擬 66 3.5.3 光場分佈模擬結果 69 第四章 可調光譜發光二極體 70 4.1 LED元件結構與封裝參數 70 4.2 發光特性量測 71 4.2.1 光場分佈 71 4.2.2 發光顏色可調特性 72 4.3 電性質量測 77 第五章 水冷式LED植物燈測試 79 5.1 燈具製作 79 5.2 溫度測試 81 5.2.1 LED植物燈管熱電偶溫度量測 81 5.2.2 接面溫度量測 83 5.3 模擬光場分佈 86 5.4 照度均勻度模擬與簡易測試 87 5.4.1 照度均勻度模擬 87 5.4.2 照度均勻度簡易測試 90 第六章 結論與建議 93 6.1 結論 93 6.2 未來發展方向 95 參考文獻 96

    [1]A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps”, Applied Physics Letters, vol. 80, pp. 234-236 (2002).
    [2]N. Narendran, N. Maliyagoda, L. Deng, and R. M. Pysar, “Characterizing LEDs for general illumination applications: mixed-color and phosphor-based white sources” , in International Symposium on Optical Science and Technology, pp. 137-147 (2001).
    [3]Y. Ohno, “Spectral design considerations for white LED color rendering”, Optical Engineering, vol. 44, pp. 111302-111302-9 (2005).
    [4]I. Speier and M. Salsbury, “Color temperature tunable white light LED system” , in SPIE Optics+ Photonics, pp. 63371F-63371F-12 (2006).
    [5]N. Narendran and L. Deng, “Color rendering properties of LED light sources”, pp. 61-67 (2002).
    [6]P. Schlotter, J. Baur, C. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, et al., “Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs” , Materials Science and Engineering: B, vol. 59, pp. 390-394 (1999).
    [7]P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes” , Applied Physics A: Materials Science & Processing, vol. 64, pp. 417-418 (1997).
    [8]Y.-C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, “Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration” , Journal of Electronic Packaging, vol. 133, p. 011009 (2011).
    [9]R. Mueller‐Mach, G. Mueller, M. R. Krames, H. A. Hoppe, F. Stadler, W. Schnick, et al., “Highly efficient all‐nitride phosphor‐converted white light emitting diode” , physica status solidi (a), vol. 202, pp. 1727-1732 (2005).
    [10]Z. Chen, J. Zhao, Z. Qin, X. Hu, T. Yu, Y. Tong, et al., “Study on the stability of the high‐brightness white LED” , physica status solidi (b), vol. 241, pp. 2664-2667 (2004).
    [11]C.-H. Kuo, J.-K. Sheu, S.-J. Chang, Y.-K. Su, L.-W. Wu, J.-M. Tsai, et al., “n-UV+ blue/green/red white light emitting diode lamps” , Japanese Journal of Applied Physics, vol. 42, p. 2284 (2003).
    [12]E. Radkov, A. Setlur, Z. Brown, and J. Reginelli, “High CRI phosphor blends for near-UV LED lamps” , in Optical Science and Technology, the SPIE 49th Annual Meeting, pp. 260-265 (2004).
    [13]W.-C. Lai, J.-K. Sheu, Y.-K. Fu, C.-H. Kuo, C.-W. Kuo, C.-J. Tun, et al., “Four-Wavelengths-Mixed White Light Emitting Diodes with Dual-Wavelength-Pumped Green and Red Phosphors”, Japanese journal of applied physics, vol. 47, p. 6317 (2008).
    [14]呂俊霖,「具有全方位反射器封裝之色溫可調式白光發光二極體」,碩士論文,國立臺灣科技大學,臺北 (2009)。
    [15]J. Petroski, “Thermal challenges facing new-generation light-emitting diodes (LEDs) for lighting applications”, pp. 215-222 (2002).
    [16]M. Meneghini, L.-R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs”, Device and Materials Reliability, IEEE Transactions on, vol. 8, pp. 323-331 (2008).
    [17]M. Arik, J. Petroski, and S. Weaver, “Thermal challenges in the future generation solid state lighting applications: light emitting diodes”, in Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on, pp. 113-120 (2002).
    [18]N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-state lighting: failure analysis of white LEDs”, Journal of Crystal Growth, vol. 268, pp. 449-456 (2004).
    [19]S. I. Chan, W. S. Hong, K. T. Kim, Y. G. Yoon, J. H. Han, and J. S. Jang, “Accelerated life test of high power white light emitting diodes based on package failure mechanisms”, Microelectronics Reliability, vol. 51, pp. 1806-1809 (2011).
    [20]S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes”, Journal of Applied Physics, vol. 97, p. 054506 (2005).
    [21]K. Pan, G. Ren, P. Li, and P. Huang, “Thermal analysis of multi-chip module high power LED packaging”, in Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference on, pp. 1-4 (2011).
    [22]L. Lei, G. Q. Zhang, Y. Daoguo, P. Kailin, Z. Hong, and H. Fengze, “Thermal analysis and comparison of heat dissipation methods on high-power LEDs”, in Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), 2010 11th International Conference on, pp. 1366-1370 (2010).
    [23]J. Li, B. Ma, R. Wang, and L. Han, “Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs”, Microelectronics Reliability, vol. 51, pp. 2210-2215 (2011).
    [24]L. Yuan, L. Sheng, C. Mingxiang, and L. Xiaobing, “Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler”, in Electronic Packaging Technology, 2006. ICEPT '06. 7th International Conference on, pp. 1-5 (2006).
    [25]Z. M. Wang, K. Bao, L. P. Xu, C. X. Luo, B. Zhang, H. Ji, et al., “Microfluidic cooling of semiconductor light emission diodes”, Microelectronic Engineering, vol. 84, pp. 1223-1226 (2007).
    [26]“The colours of senescence and ripening”, http://www.sidthomas.net/SenEssence/Evolution/pigments.htm.
    [27]陳仙瑋,「高演色性白光發光二極體封裝」,碩士論文,國立臺灣科技大學,臺北 (2008)。
    [28]彭聖揚,「多功能白光發光二極體」,碩士論文,國立臺灣科技大學,臺北 (2012)。
    [29]Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Applied Physics Letters, vol. 85, p. 2163 (2004).
    [30]Y. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, pp. 149-154 (1967).
    [31]徐才竣,「以光學顯微鏡量測熱效應對發光二極體之影響」,碩士論文,國立臺灣科技大學,臺北 (2010)。
    [32]M. S. Phadke, Quality engineering using robust design: Prentice Hall PTR (1995).
    [33]黃翊軒,「以光學顯微鏡探討圖形化藍寶石基板對發光二極體之影響」,碩士論文,國立臺灣科技大學,臺北 (2013)。

    QR CODE