簡易檢索 / 詳目顯示

研究生: 佘德宇
Te-Yu Hser
論文名稱: 添加苯乙烯 -壓克力 (SAR)樹脂對鹼激發材料性質影響之研究
The Study on the Influence of Properties of Alkali-activated Materials by Adding Styrene-Acrylic Resin(SAR) 研
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 陳君弢
Chun-Tao Chen
林利國
Lee-Kuo Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 115
中文關鍵詞: 鹼激發材料苯乙烯 -壓克力 樹脂表面風化表面裂縫養護方式
外文關鍵詞: Alkali-Activated Materials, Styrene-Acrylic Resin, Surface Efflorescence, Surface Crack, Curing condition
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以添加苯乙烯-壓克力(SAR)樹脂對鹼激發材料性質影響作為主軸,首先比較不同細度爐石在高莫爾濃度(10M、 12M、 14M)下的性質並針對性能較好的爐石細度添加不同比例的來探討其工程性質之影響, 也比較水中及空氣養護對添加苯乙烯-壓克力樹脂 試體的影響,共計24組實驗組配比,並與未使用苯乙烯 -壓克力樹脂的控制組來做比較。試驗內容 包含 硬固性質(抗壓強度、超音波速、熱傳導係數),耐久性質(表面風化、表面裂縫、長度變化量、吸水率)之量測,以及運微觀照片來觀察 內部顯微結構 。結果顯示,12M莫爾濃度下添加5%苯乙烯-壓克力樹脂在抗壓強度上有最好的成果。耐久性質方面,苯乙 -壓克力 樹脂 添加含量的增加,能有效減少鹼激發試體的表面風化、表面裂縫及長度變化量。另外比較了相同配比在水中養護及空氣的結果,不論是否添加樹脂空氣養護的鹼激發材料在各項面皆優於水中養護。


    The main purpose of this study was to evaluate the results on the influence of properties of alkali-activated materials by adding styrene-acrylic resin(SAR). In the first part, compare different fineness of slag and discuss about the engineering properties. And choose the fineness which have better performance and add styrene-acrylic resin to explore the engineering properties. Then compare air and water curing about the performance of the engineering properties about the alkali activated material with styrene-acrylic resin, totally 24 groups mix proportion. And compare the result with the mix proportion have no styrene-acrylic resin. The experiment content include harden properties(Strength、 UPV、 Thermal) and durability properties(Surface efflorescence、 Surface crack、 Length change、 Water absorption), and finally use the XRD to observe the chemical composition and the SEM to see the microstructure and observe the inside structure. As the result, thadding suitable styrene-acrylic resin can keep compressive strength similar to the control group, in durability properties, when the adding of amount increase can reduce surface efflorescence, surface crack and length change effectively. And in different curing condition, the same mix proportion no matter adding styrene-acrylic resin or not, air curing sample have better performance than water curing.

    摘要 iii Abstract ii 目錄 iii 表目錄 vi 圖目錄 viii 第一章 緒論 1 1 1 研究背景 1 1 2 研究動機與目的 1 1 3 研究方法與流程 2 第二章 文獻回顧 4 2 1 鹼激發材料 4 2 2 鹼激發鈣 矽材料 ( 5 2.1.1 鹼激發鈣 矽材料 ( 之反應機理 5 2.1.1 影響鹼激發鈣 矽材料 ( 之因素 6 2 3 鹼激發材料的表面風化 6 2.2.1 鹼激發材料的表面風化之反應機裡與影響 6 2.2.2 影響鹼激發材料的表面風化之因素 7 2.2.3 預防鹼激發材 料的表面風化的方法 7 2 4 鹼激發材料的乾縮性質 8 2.3.1. 鹼激發材料的乾縮之反應 8 2.3.2. 影響鹼激發材料的乾縮之因素 8 iv 2.3.3. 2.3.3. 預防影響鹼激發材料的乾縮的方法預防影響鹼激發材料的乾縮的方法 ...................................... 88 2 2--55 鹼激發材料的裂縫情形鹼激發材料的裂縫情形.................................................................... 99 2 2--66 水淬爐石粉水淬爐石粉........................................................................................ 99 2.5.1 2.5.1 水淬爐石之物理性質水淬爐石之物理性質 ............................................................ 1010 2.5.2 2.5.2 水淬爐石之化學性質水淬爐石之化學性質 ............................................................ 1010 2 2--77 乳膠漆乳膠漆(Latex)(Latex)於鹼激發材料的應用於鹼激發材料的應用............................................ 1111 第三章 第三章 試驗計畫試驗計畫.......................................................................................... 1818 3 3--11 計畫概要計畫概要.......................................................................................... 1818 3 3--22 試驗材料試驗材料.......................................................................................... 1818 3.2.1 3.2.1 爐石粉爐石粉 .................................................................................... 1818 3.2.2 3.2.2 氫氧化鈉溶液氫氧化鈉溶液 ........................................................................ 1919 3.2.3 3.2.3 拌合水拌合水 .................................................................................... 1919 3.2.4 3.2.4 苯乙烯苯乙烯--壓克力樹脂壓克力樹脂(Styrene(Styrene--Acrylic Resin)Acrylic Resin) ................ 1919 3 3--33 試驗設備試驗設備.......................................................................................... 1919 3 3--44 配比設計配比設計.......................................................................................... 2121 3.4.1 3.4.1 試驗變數試驗變數 ................................................................................ 2121 3.4.2 3.4.2 試體編號說明試體編號說明 ........................................................................ 2222 3.4.3 3.4.3 配比設計配比設計 ................................................................................ 2222 3.4.1 3.4.1 拌和程序拌和程序 ................................................................................ 2323 3 3--55 試驗項目試驗項目.......................................................................................... 2424 3.5.1 3.5.1 物理性質試驗物理性質試驗 ........................................................................ 2424 3.5.2 3.5.2 硬固性質試驗硬固性質試驗 ........................................................................ 2525 3.5.3 3.5.3 耐久性質試驗耐久性質試驗 ........................................................................ 2727 3.5.4 3.5.4 微觀結果分析微觀結果分析 ........................................................................ 2828 第四章 第四章 結果與分析結果與分析...................................................................................... 4646 v 4 4--11 物理性質試驗物理性質試驗.................................................................................. 4646 4.1.1 4.1.1 含水量試驗含水量試驗 ............................................................................ 4646 4 4--22 硬固性質實驗硬固性質實驗.................................................................................. 4646 4.2.1 4.2.1 抗壓強度試驗抗壓強度試驗 ........................................................................ 4646 4.2.2 4.2.2 超音波速試驗超音波速試驗 ........................................................................ 4848 4.2.3 4.2.3 熱傳導係數試驗熱傳導係數試驗 .................................................................... 5151 4 4--33 耐久性質試驗耐久性質試驗.................................................................................. 5353 4.3.1 4.3.1 表面風化加速試驗表面風化加速試驗 ................................................................ 5353 4.3.2 4.3.2 乾縮試驗乾縮試驗 ................................................................................ 5454 4.3.3 4.3.3 裂縫觀察裂縫觀察 ................................................................................ 5454 4.3.4 4.3.4 吸水率試驗吸水率試驗 ............................................................................ 5555 4 4--44 圍觀結果分析圍觀結果分析.................................................................................. 5757 4.4.1 4.4.1 XX光繞射儀光繞射儀 .............................................................................. 5757 4.4.2 4.4.2 掃描式電子顯微鏡掃描式電子顯微鏡(SEM)(SEM) ...................................................... 5757 第五章 第五章 結論與建議結論與建議...................................................................................... 9797 5 5--11 結論結論.................................................................................................. 9797 5 5--22 建議建議.................................................................................................. 9898 參考文獻 參考文獻.............................................................................................................. 9999

    1. 郭振雄、陳香梅、羅光達 , 台灣工業部門二氧化碳之排放減量,應用經
    濟論叢,第 95卷 . 2014.
    2. Mastali, M., et al., Drying shrinkage in alkali-activated binders – A critical review. Construction and Building Materials, 2018. 190: p. 533-550.
    3. Muhammad, B. and M. Ismail, Performance of hydrocarbon particles on the drying shrinkage of cement mortar. Construction and Building Materials, 2013. 48: p. 868-873.
    4. Bissonnette, B.t., P. Pierre, and M. Pigeon, Influence of key parameters on drying shrinkage of cementitious materials. Cement and Concrete Research, 1999. 29(10): p. 1655-1662.
    5. Rao, G.A., Long-term drying shrinkage of mortar — influence of silica fume and size of fine aggregate. Cement and Concrete Research, 2001. 31(2): p. 171-175.
    6. 陳子謙 , 複合型無積聚合物砂漿之工程性質 . 營建工程系論文,國立台
    灣科技大學,台北市 , 2011.
    7. Kawamura, M., Internal Stresses and Microcrack Formation Caused by Drying in Hardened Cement Pastes. Journal of the American Ceramic Society, 1978. 61(7-8): p. 281-283.
    8. Fernández-Jiménez, A. and A. Palomo, Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 2005. 35(10): p. 1984-1992.
    9. Puertas, F., et al., Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cement and Concrete Research, 2000. 30(10): p. 1625-1632.
    100
    10. Najafi Kani, E., A. Allahverdi, and J.L. Provis, Efflorescence control in geopolymer binders based on natural pozzolan. Cement and Concrete Composites, 2012. 34(1): p. 25-33.
    11. El-Yamany, H.E., M.A. El-Salamawy, and N.T. El-Assal, Microstructure and mechanical properties of alkali-activated slag mortar modified with latex. Construction and Building Materials, 2018. 191: p. 32-38.
    12. Matalkah, F., et al., Drying shrinkage of alkali activated binders cured at room temperature. Construction and Building Materials, 2019. 201: p. 563-570.
    13. Choe, K.H.-J.S.-P.K.G.-C., Effect of Red Mud Content on Strength and Efflorescence
    in Pavement using Alkali-Activated Slag Cement. International Journal of Concrete Structures and Materials, 2018.
    14. Purdon, A.O., The action of alkalis on blast furnace slag. Journal of the Society of Chemical Industry, 1940. 59: p. 11.
    15. Davidovits, J., Synthesis of new high temperature geo-polymers for reinforced plastics/composites. Society of Plastic Engineers, 1979: p. 4.
    16. Wastiels, J., X. Wu, S. Faignet, G. Patfoort, Mineral polymer based on fly ash. Proceedings of the 9th International Conference on Solid Waste Management, 1993.
    17. Hassan, A., M. Arif, and M. Shariq, Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 2019. 223: p. 704-728.
    18. Zhou, H., W. Xuequan, X. Zhongzi, T. Mingshu, Kinetic study on hydration of alkali-activited slag. Cement and Concrete Research, 1993. 23: p. 6.
    19. Duxson, P., J. L. Provis, Designing precursors for geoploymer cements. Journal of the American Ceramic Society, 2008. 91: p. 6.
    101
    20. Nasr, D., A.H. Pakshir, and H. Ghayour, The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars. Construction and Building Materials, 2018. 190: p. 108-119.
    21. Bondar, D., et al., Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Construction and Building Materials, 2018. 190: p. 191-199.
    22. Zhang, Z., et al., Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 2014. 64: p. 30-41.
    23. Kang, S.-P. and S.-J. Kwon, Effects of red mud and Alkali-Activated Slag Cement on efflorescence in cement mortar. Construction and Building Materials, 2017. 133: p. 459-467.
    24. Collins, F. and J.G. Sanjayan, Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 2000. 30(9): p. 1401-1406.
    25. Ye, H., et al., Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement and Concrete Composites, 2017. 76: p. 13-24.
    26. Bakharev, T., J.G. Sanjayan, and Y.B. Cheng, Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and Concrete Research, 1999. 29(10): p. 1619-1625.
    27. Jiao, Z., et al., Effect of dosage of sodium carbonate on the strength and drying shrinkage of sodium hydroxide based alkali-activated slag paste. Construction and Building Materials, 2018. 179: p. 11-24.
    28. Hwang, C.-L., et al., Effect of high MgO content on the performance of alkali-activated fine slag under water and air curing conditions. Construction and Building
    102
    Materials, 2018. 186: p. 503-513.
    29. 黃兆龍黃兆龍, 混凝土性質與行為混凝土性質與行為. 詹氏書局詹氏書局, 2007.
    30. Lee, N.K., E.M. Kim, and H.K. Lee, Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Construction and Building Materials, 2016. 113: p. 264-272.
    31. Wang, S.D., Scrivener, K. L., Hydration products of alkali activited slag cement. Cement and Contrete Research, 1995: p. 10.

    無法下載圖示 全文公開日期 2025/03/05 (校內網路)
    全文公開日期 2025/03/05 (校外網路)
    全文公開日期 2025/03/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE