簡易檢索 / 詳目顯示

研究生: Shubham Subhash Kolhe
Shubham Subhash Kolhe
論文名稱: 電石渣萃取CaO對於以脫硫石膏作為強度提升劑之單劑型鹼激發材料活化機理之影響
Effect of CaO Extracted from Calcium Carbide Residue on Activation Mechanism of One-Part Alkali Activated Material with FGD Gypsum as Strength Enhancer
指導教授: 陳君弢
Chun-Tao Chen
張大鵬
Ta-Peng Chang
口試委員: 黃然
Huang Ran
歐昱辰
Yu-Chen Ou
廖文正
Wen-Cheng Liao
陳立憲
Prof. Li-Hsien Chen
李韋皞
Li-Wei Hao
廖敏志
Min-Chih Liao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 166
中文關鍵詞: 熱鹼激化電爐渣單階段鹼激發煙氣脫硫石膏(FGDG)無水泥鹼激發材料無機聚合物
外文關鍵詞: thermally treated, calcium carbide residue, one-part alkali-activated, flue gas desulphurized gypsum (FGDG), no-cement, alkali-activated materials, geopolymers
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 波特蘭水泥是一種被廣泛接受的營建材料,但其對二氧化碳之氣體排放、自然保護區之開發和自然棲息地之破壞等等方面所導致之環境足跡不容忽視,可以減少水泥使用量的鹼激發材料 (AAM) 一直都有創新的研究,但其傳統式需兩階段之活化機理一直被認為不方便於實務應用。本研究旨在探討使用工業副產品電石渣 (CCR) 作為固體氧化鈣(CaO)激發劑製作一種單階段鹼激發爐石基無水泥膠結材料之較新穎方法,深入探討以熱處理電石渣當作固體氫氧化鈣與氧化鈣活化劑之潛在優勢,亦分析由於將煙脫硫石膏 (FGDG)加入氧化鈣激發爐石基膠材體之相變機制,對由一系列組合電石渣、爐石粉和煙脫硫石膏之混合物所製成鹼激發膠結材之工作性、凝結行為、放熱量、導熱性、收縮率和抗壓強度等等進行試驗探討,另外,且通過 X 射線衍射和掃描電子顯微鏡之微觀結構檢驗,作進一步評估。
    根據實驗結果,觀察到電石渣在 700°C 的溫度下脫碳,在 400°C的溫度下脫水, 儘管屬於同一家族的鈣,但不同的化學成分在爐石粉中表現出不同之活化行為,研究發現,基於齡期28 天和56 天後之抗壓強度,12% 的爐石粉含量對於在 900°C 下處理的電石渣是最好的,以未處理和 470°C處理的電爐渣作為活化劑之添加量直至16%時都持續顯示改善強度,XRD 分析顯示,隨溫度升高,熱活化將電石渣成分從氫氧化鈣變為純氧化鈣, 水化熱實驗發現,900°C 處理過的電石渣具有吸引人的氧化鈣水化反應,未處理和 470°C處理過的電爐石的主要成分是氫氧化鈣與非常些微的水化熱。
    此外,當在 900°C 處理過的氧化鈣基電爐渣中添加 5%煙脫硫石膏時,機械強度會顯著增加,添加12% 之電石渣活化複合材料在齡期28 天後顯示出 28.10 MPa 的強度,此外,當添加煙脫硫石膏時,強度增加 54.27%,在整個水化過程中,鈣礬石和氫氧化鈣是所有實驗組合中之二氧化矽和氧化鋁水合凝膠中的主要成分。


    Although the ordinary Portland cement is a widely accepted construction material, its resulting environmental footprint on CO2 gas emissions, exploitation of natural reserves, and disruption of natural habitat, etc. cannot be overlooked. Alkali-activated materials (AAM) that can curb cement usage have been innovatively researched, while the traditional AAM's two-part activation mechanism has been arguably regarded as inconvenient for practical application. This study aimed to explore a relatively new approach by using calcium carbide residue (CCR), an industrial by-product, as a solid CaO activator to make a one-part alkali activated slag-based no-cement cementitious material, in which the potential advantages of thermally treated calcium carbide residue as solid Ca(OH)2 and CaO activators had been delved. Furthermore, an analysis of the phase change mechanism due to the incorporation of flue gas desulphurized gypsum (FGDG) into the CaO-activated slag binder was evaluated. The experimental studies of workability, setting behavior, heat release, thermal conductivity, shrinkage, compressive strength, etc. of composite alkali-activated binders made of a series of combinations of blended CCR, slag, and FGDG were carried out. In addition, microstructural examinations through X-ray diffraction and scanning electron microscopy were conducted for further assessments.
    Based on the experimental results, it was observed that CCR underwent decarbonization at a temperature of 700°C and dehydration at a temperature of 400°C. Despite belonging to the same family of calcium, different chemical compositions exhibited varying activation behavior in slag. The study found that the 12% slag content was the best for CCR treated at 900°C based on compressive strengths after 28 and 56 days. The amounts of added activator up to 16% with the non-treated and 470°C CCRs showed continued improvement in strength. XRD analysis revealed that the thermal activation changed the composition of CCR from Ca(OH)2 to pure CaO with increasing temperature. The heat of hydration showed that the CCR treated at 900°C had a fascinating CaO moisture reaction, while non-treated and 470°C treated CCRs had a main composition of Ca(OH)2 and insignificant heat of hydration.
    In addition, when 5% FGDG was added to CaO-based CCR treated at 900°C, the mechanical strength was significantly increased. The activated composite of 12% CCR showed a strength of 28.10 MPa after the age of 28 days, furthermore, when the FGDG was added, the strength increased by 54.27%. Throughout the hydration process, the ettringite and calcium hydroxide were the main components found in the hydrated gels of silica and alumina in all of the experimented combinations.

    摘要 i Abstract iii Personal Acknowledgements v Table of Contents vii List of Symbols and Abbreviations xi List of Tables xv List of Figures xvii Chapter 1 Introduction 1 1.1. Background 1 1.2. Research Significance 4 1.3. Research aim 5 1.4. Research outline 6 Chapter 2 Literature review 11 2.1. Alkali-activated material 11 2.1.1 History and development of alkali activation 12 2.1.2 Conventional two-part alkali activation 16 2.1.3 One-part alkali activation 17 2.1.4. The reaction of alkali-activated material 18 2.2. Utilization of industrial by-products as one-part alkali activated material 20 2.3. Calcium carbide residue (CCR) 21 2.3.1 Calcium carbide residue as soil stabilizer 22 2.3.2 Calcium carbide residue in low strength building elements, cements and other applications 23 2.4. Ground granulated blast furnace slag (GGBFS) 25 2.5. Flue gas disulpharized gypsum (FGDG) 27 Chapter 3 Materials and methodology 45 3.1. Materials 45 3.2. Mixture design 47 3.3. Specimen preparation and test methods 49 Chapter 4 Effect on thermal treatment of calcium carbide residue used as solid alkali activator 71 4.1. Effect of heat treatment of calcium carbide residue on the fresh properties of CCR activated slag 71 4.2. Effect of heat treatment and activator contents on the compressive strengths of CCR activated slag 74 4.3. Effect of heat treatment and activator contents on the volumetric changes of CCR activated slag 76 4.4. Effect of heat treatment and activator contents on the thermal conductivity of CCR activated slag 78 4.5. Ultrasonic pulse velocity results of CCR activated slag 79 4.6. X-ray diffraction analysis of the thermally treated CCR activated slag 81 4.7. Scanning electron microscopy analysis of the thermally treated CCR activated slag. 82 4.8. Water absorption 83 Chapter 5 Effect of FGDG addition on the fresh and hardened properties of CCR extracted CaO activated slag 101 5.1. Fresh Properties of CaO activated slag with addition of FGDG 101 5.2. Effect of FGDG addition on compressive strength of CaO activated slag 103 5.3. Effect of FGDG addition on shrinkage of CaO activated slag binder 105 5.4. Effect of FGDG addition on thermal conductivity of CaO activated slag binder ………………………………………………………………………………..106 5.5. Scanning electron microscopy observations for effect of FGDG addition on CaO activated slag binder 107 5.6. X-Ray diffraction analysis on effect of FGDG addition on CaO activated slag binder 108 5.7. Water absorption 109 Chapter 6 Conclusions and suggestions 123 6.1. Conclusions 123 6.2. Future scope 125 Acknowledgement 127 References 128

    References
    2008, J.D., 2008. Geopolymer Chemistry and Applications, 5th edition, J. Davidovits.–Saint-Quentin, France.
    Abdel-Gawwad, H.A., 2021. Thermo-alkali activation of talc for the production of a novel white one-part alkali-activated magnesia-based cement. Constr. Build. Mater. 306, 124909. https://doi.org/10.1016/j.conbuildmat.2021.124909
    Abdel-Gawwad, H.A., S.A. Abo-El-Enein, 2016. A novel method to produce dry geopolymer cement powder. HBRC J. 12, 13–24. https://doi.org/10.1016/j.hbrcj.2014.06.008
    Abdel-Gawwad, H.A., S.R.V. García, H.S. Hassan, 2018. Thermal activation of air cooled slag to create one-part alkali activated cement. Ceram. Int. 44, 14935–14939. https://doi.org/10.1016/j.ceramint.2018.05.089
    Abdel-Gawwad, H.A., A.M. Rashad, M. Heikal, 2019. Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement. J. Clean. Prod. 232, 318–328. https://doi.org/10.1016/j.jclepro.2019.05.356
    Abdel Gawwad, H.A., S. Abd El-Aleem, A.S. Ouda, 2016. Preparation and characterization of one-part non-Portland cement. Ceram. Int. 42, 220–228. https://doi.org/10.1016/j.ceramint.2015.08.096
    ACI 233, 2003. ACI 233R-03. Slag Cement in Concrete and Mortar. Am. Concr. Inst. 1–19.
    Adesanya, E., P. Perumal, T. Luukkonen, J. Yliniemi, K. Ohenoja, P. Kinnunen, M. Illikainen, 2021. Opportunities to improve sustainability of alkali-activated materials: A review of side-stream based activators. J. Clean. Prod. 286, 125558. https://doi.org/10.1016/j.jclepro.2020.125558
    Almalkawi, A.T., S. Hamadna, P. Soroushian, 2017. One-part alkali activated cement based volcanic pumice. Constr. Build. Mater. 152, 367–374. https://doi.org/10.1016/j.conbuildmat.2017.06.139
    Amer, I., M. Kohail, M.S. El-Feky, A. Rashad, M.A. Khalaf, 2021. A review on alkali-activated slag concrete. Ain Shams Eng. J. 12, 1475–1499. https://doi.org/10.1016/j.asej.2020.12.003
    Asadi, I., P. Shafigh, Z.F. Bin Abu Hassan, N.B. Mahyuddin, 2018. Thermal conductivity of concrete – A review. J. Build. Eng. 20, 81–93. https://doi.org/10.1016/j.jobe.2018.07.002
    ASTM, 2013. Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM Stand. 44, 1–8. https://doi.org/10.1520/C0989
    ASTM, 1997. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete C642-97, ASTM International. https://doi.org/10.1520/C0642-21.2
    ASTM C 109/C 109M-21, 2021. Standard test method for compressive strength of hydraulic cement mortars. Annu. B. ASTM Stand. 04, 9. https://doi.org/10.1520/C0109
    ASTM C 188-95, 2003. Standard Test Method for Density of Hydraulic Cement. ASTM Int. 95, 1–2. https://doi.org/10.1520/C0188-17R23.2
    ASTM C 490, 2017a. Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete, ASTM International. https://doi.org/10.1520/C0490
    ASTM C 490, 2017b. Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. ASTM Int. i, 1–5. https://doi.org/10.1520/C0490
    ASTM C1437, 2001. Standard Test Method for Flow of Hydraulic Cement Mortar: C1437-01, Standard. https://doi.org/10.1520/C1437-20.2
    ASTM C191-21, 1987. Standard test methods for felt. https://doi.org/10.1520/C0191-21.2
    Athira, V.S., V. Charitha, G. Athira, A. Bahurudeen, 2021. Agro-waste ash based alkali-activated binder: Cleaner production of zero cement concrete for construction. J. Clean. Prod. 286, 125429. https://doi.org/10.1016/j.jclepro.2020.125429
    Aziz, I.H., M.M.A.B. Abdullah, M.A.A. Mohd Salleh, E.A. Azimi, J. Chaiprapa, A.V. Sandu, 2020. Strength development of solely ground granulated blast furnace slag geopolymers. Constr. Build. Mater. 250, 118720. https://doi.org/10.1016/j.conbuildmat.2020.118720
    Bhardwaj, B., P. Kumar, 2019. Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand. Constr. Build. Mater. 209, 555–565. https://doi.org/10.1016/j.conbuildmat.2019.03.107
    Boardman, D.I., S. Glendinning, C.D.F. Rogers, 2001. Development of stabilisation and solidification in lime-clay mixes. Geotechnique 51, 533–543. https://doi.org/10.1680/geot.2001.51.6.533
    Bogue, R.H., W. Lerch, 1934. Hydration of Portland Cement Compounds. Ind. Eng. Chem. 26, 837–847. https://doi.org/10.1021/ie50296a007
    Caijun Shi, Pavel V. Krivenko, D.R., 2006. Alkali-Activated Cements and Concretes, 1st ed. Taylor & Francis, London. https://doi.org/https://doi.org/10.1201/9781482266900
    Caillahua, M.C., F.J. Moura, 2018. Technical feasibility for use of FGD gypsum as an additive setting time retarder for Portland cement. J. Mater. Res. Technol. 7, 190–197. https://doi.org/10.1016/j.jmrt.2017.08.005
    Chandrasiri, C., T. Yehdego, S. Peethamparan, 2019. Synthesis and characterization of bio-cement from conch shell waste. Constr. Build. Mater. 212, 775–786. https://doi.org/10.1016/j.conbuildmat.2019.04.031
    Chatterji, S., 1995. Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO. Cem. Concr. Res. 25, 51–56. https://doi.org/10.1016/0008-8846(94)00111-B
    Chindaprasirt, P., T. Phoo-ngernkham, S. Hanjitsuwan, S. Horpibulsuk, A. Poowancum, B. Injorhor, 2018. Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Stud. Constr. Mater. 9, e00198. https://doi.org/10.1016/j.cscm.2018.e00198
    Cong, P., L. Mei, 2021. Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr. Build. Mater. 275, 122171. https://doi.org/10.1016/j.conbuildmat.2020.122171
    Cristelo, N., I. Garcia-Lodeiro, J.F. Rivera, T. Miranda, Á. Palomo, J. Coelho, A. Fernández-Jiménez, 2021. One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride. J. Build. Eng. 44. https://doi.org/10.1016/j.jobe.2021.103298
    DESTA, E., Z. JUN, 2018. A Review on Ground Granulated Blast Slag GGBS in Concrete 5–10. https://doi.org/10.15224/978-1-63248-145-0-14
    Djayaprabha, H.S., T.P. Chang, J.Y. Shih, C.T. Chen, 2017. Mechanical properties and microstructural analysis of slag based cementitious binder with calcined dolomite as an activator. Constr. Build. Mater. 150, 345–354. https://doi.org/10.1016/j.conbuildmat.2017.05.221
    Djobo, Y.J.N., A. Elimbi, J. Dika Manga, I.B. Djon Li Ndjock, 2016. Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers. Constr. Build. Mater. 113, 673–681. https://doi.org/10.1016/j.conbuildmat.2016.03.104
    Dueramae, S., S. Sanboonsiri, T. Suntadyon, B. Aoudta, W. Tangchirapat, P. Jongpradist, T. Pulngern, P. Jitsangiam, C. Jaturapitakkul, 2021. Properties of lightweight alkali activated controlled Low-Strength material using calcium carbide residue – Fly ash mixture and containing EPS beads. Constr. Build. Mater. 297, 123769. https://doi.org/10.1016/j.conbuildmat.2021.123769
    Dulaimi, A., H.K. Shanbara, H. Jafer, M. Sadique, 2020. An evaluation of the performance of hot mix asphalt containing calcium carbide residue as a filler. Constr. Build. Mater. 261, 119918. https://doi.org/10.1016/j.conbuildmat.2020.119918
    Elahi, M.M.A., M.M. Hossain, M.R. Karim, M.F.M. Zain, C. Shearer, 2020. A review on alkali-activated binders: Materials composition and fresh properties of concrete. Constr. Build. Mater. 260, 119788. https://doi.org/10.1016/j.conbuildmat.2020.119788
    Endait, M., S. Wagh, S. Kolhe, 2021. Stabilization of Black Cotton Soil Using Calcium Carbide Residue, in: Lecture Notes in Civil Engineering. Springer Singapore, pp. 75–86. https://doi.org/10.1007/978-981-33-6444-8_7
    Esmaeili, J., J. Kasaei, 2013. Effect of different curing regimes on shrinkage and strength properties of self-consolidating mortars containing silica fume in different contents. Appl. Mech. Mater. 357–360, 1271–1276. https://doi.org/10.4028/www.scientific.net/AMM.357-360.1271
    Fořt, J., M. Mildner, M. Keppert, M. Abed, R. Černý, 2023. Potential of industrial waste as alternative alkaline activator for development of eco-efficient mortars. Case Stud. Constr. Mater. 18. https://doi.org/10.1016/j.cscm.2022.e01716
    Gao, D., Z. Zhang, Y. Meng, J. Tang, L. Yang, 2021. Effect of flue gas desulfurization gypsum on the properties of calcium sulfoaluminate cement blended with ground granulated blast furnace slag. Materials (Basel). 14, 1–17. https://doi.org/10.3390/ma14020382
    Gao, X., X. Yao, T. Yang, S. Zhou, H. Wei, Z. Zhang, 2021. Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: compressive strength, phase assemblage and environmental benefits. Constr. Build. Mater. 308, 125015. https://doi.org/10.1016/j.conbuildmat.2021.125015
    Gartner, E., 2004. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34, 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021
    Giles, D.E., I.M. Ritchie, B.A. Xu, 1993. The kinetics of dissolution of slaked lime. Hydrometallurgy 32, 119–128. https://doi.org/10.1016/0304-386X(93)90061-H
    Guo, S., Y. Wu, Z. Jia, X. Qi, W. Wang, 2023. Sodium-based activators in alkali- activated materials: Classification and comparison. J. Build. Eng. 70, 106397. https://doi.org/10.1016/j.jobe.2023.106397
    Hajimohammadi, A., J.S.J. van Deventer, 2017. Characterisation of One-Part Geopolymer Binders Made from Fly Ash. Waste and Biomass Valorization 8, 225–233. https://doi.org/10.1007/s12649-016-9582-5
    Hao, J., G. Cheng, T. Hu, B. Guo, X. Li, 2021. Preparation of high-performance building gypsum by calcining FGD gypsum adding CaO as crystal modifier. Constr. Build. Mater. 306, 124910. https://doi.org/10.1016/j.conbuildmat.2021.124910
    Horpibulsuk, S., A. Kampala, C. Phetchuay, A. Udomchai, A. Arulrajah, 2015. Calcium Carbide Residue - A Cementing Agent for Sustainable Soil Stabilization. Geotech. Eng. J. SEAGS AGSSEA 46, 3–8.
    Horpibulsuk, S., C. Phetchuay, A. Chinkulkijniwat, 2013a. Strength development in silty clay stabilized with calcium carbide residue and fl y ash. Soils Found. 53, 477–486. https://doi.org/10.1016/j.sandf.2013.06.001
    Horpibulsuk, S., C. Phetchuay, A. Chinkulkijniwat, 2012. Soil Stabilization by Calcium Carbide Residue and Fly Ash. J. Mater. Civ. Eng. 24, 184–193. https://doi.org/10.1061/(asce)mt.1943-5533.0000370
    Horpibulsuk, S., C. Phetchuay, A. Chinkulkijniwat, A. Cholaphatsorn, 2013b. Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils Found. 53, 477–486. https://doi.org/10.1016/j.sandf.2013.06.001
    Huang, Y., S. Hu, Z. Gu, Y. Sun, 2019. Fracture Behavior and Energy Analysis of 3D Concrete Mesostructure under Uniaxial Compression 1–24. https://doi.org/10.3390/ma12121929
    Isah, B.W., S.M.R. Sharmila, 2015. Soil Stabilization Using Calcium Carbide Residue and Coconut Shell Ash. J. Basic Appl. Eng. Res. 2, 1039–1044.
    Jaturapitakkul, C., B. Roongreung, 2003. Cementing Material from Calcium Carbide Residue-Rice Husk Ash. J. Mater. Civ. Eng. 15, 470–475. https://doi.org/10.1061/(asce)0899-1561(2003)15:5(470)
    Kadhim, A., M. Sadique, R. Al-Mufti, K. Hashim, 2020. Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. J. Build. Eng. 32, 101766. https://doi.org/10.1016/j.jobe.2020.101766
    Khongpermgoson, P., A. Abdulmatin, W. Tangchirapat, C. Jaturapitakkul, 2019. Evaluation of compressive strength and resistance of chloride ingress of concrete using a novel binder from ground coal bottom ash and ground calcium carbide residue. Constr. Build. Mater. 214, 631–640. https://doi.org/10.1016/j.conbuildmat.2019.04.145
    Kim, M.S., Y. Jun, C. Lee, J.E. Oh, 2013. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem. Concr. Res. 54, 208–214. https://doi.org/10.1016/j.cemconres.2013.09.011
    Kolhe, S.S., T.P. Chang, C.T. Chen, J.Y. Shih, 2022. Potential application of thermally treated calcium carbide residue as solid CaO activator for No-cement slag-FGDG composite. Constr. Build. Mater. 359, 129530. https://doi.org/10.1016/j.conbuildmat.2022.129530
    Koloušek, D., J. Brus, M. Urbanova, J. Andertova, V. Hulinsky, J. Vorel, 2007. Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers. J. Mater. Sci. 42, 9267–9275. https://doi.org/10.1007/s10853-007-1910-5
    Lavagna, L., R. Nisticò, 2023. An Insight into the Chemistry of Cement—A Review. Appl. Sci. 13. https://doi.org/10.3390/app13010203
    Li, C., L. Jiang, 2021. Effect of flue gas desulfurization gypsum addition on critical chloride content for rebar corrosion in fly ash concrete. Constr. Build. Mater. 286, 122963. https://doi.org/10.1016/j.conbuildmat.2021.122963
    Li, G., X. Xu, E. Chen, J. Fan, G. Xiong, 2015. Properties of cement-based bricks with oyster-shells ash. J. Clean. Prod. 91, 279–287. https://doi.org/10.1016/j.jclepro.2014.12.023
    Li, J., X. Zhuang, C. Leiva, A. Cornejo, O. Font, X. Querol, N. Moeno, C. Arenas, C. Fernández-Pereira, 2015. Potential utilization of FGD gypsum and fly ash from a Chinese power plant for manufacturing fire-resistant panels. Constr. Build. Mater. 95, 910–921. https://doi.org/10.1016/j.conbuildmat.2015.07.183
    Li, L., J.X. Lu, B. Zhang, C.S. Poon, 2020. Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes. Constr. Build. Mater. 258, 120381. https://doi.org/10.1016/j.conbuildmat.2020.120381
    Li, P., Z. Ma, Z. Zhang, X. Li, X. Lu, P. Hou, P. Du, 2019. Effect of gypsum on hydration and hardening properties of alite modified calcium sulfoaluminate cement. Materials (Basel). 12. https://doi.org/10.3390/ma12193131
    Li, Z., J. Zhang, S. Li, Y. Gao, C. Liu, Y. Qi, 2020. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J. Clean. Prod. 245, 118759. https://doi.org/10.1016/j.jclepro.2019.118759
    Liu, Y., C.W. Chang, A. Namdar, Y. She, C.H. Lin, X. Yuan, Q. Yang, 2019. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Constr. Build. Mater. 221, 1–11. https://doi.org/10.1016/j.conbuildmat.2019.05.157
    Longhi, M.A., Z. Zhang, E.D. Rodríguez, A.P. Kirchheim, H. Wang, 2019. Efflorescence of alkali-activated cements (geopolymers) and the impacts on material structures: A critical analysis. Front. Mater. 6, 1–13. https://doi.org/10.3389/fmats.2019.00089
    Lu, C., Z. Zhang, C. Shi, N. Li, D. Jiao, Q. Yuan, 2021. Rheology of alkali-activated materials: A review. Cem. Concr. Compos. 121, 104061. https://doi.org/10.1016/j.cemconcomp.2021.104061
    Luo, K., X. Cheng, J. Li, Z. Lu, X. Deng, L. Hou, J. Jiang, 2022. Performance of hydraulic lime by using carbide slag. J. Build. Eng. 51, 104208. https://doi.org/10.1016/j.jobe.2022.104208
    Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, 2018a. One-part alkali-activated materials: A review. Cem. Concr. Res. 103, 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001
    Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, 2018b. One-part alkali-activated materials: A review. Cem. Concr. Res. 103, 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001
    Makaratat, N., C. Jaturapitakkul, T. Laosamathikul, 2010. Effects of Calcium Carbide Residue – Fly Ash Binder. J. Mater. Civ. Eng. 22, 1164–1170.
    Manning, W.J., 1971. Effects of limestone dust on leaf condition, foliar disease incidence, and leaf surface microflora of native plants. Environ. Pollut. 2, 69–76. https://doi.org/10.1016/0013-9327(71)90038-3
    Marey, H., G. Kozma, G. Szabó, 2022. Effects of Using Green Concrete Materials on the CO2 Emissions of the Residential Building Sector in Egypt. Sustainability 14, 3592. https://doi.org/10.3390/su14063592
    Mec, P., J. Boháčová, J. Koňařík, 2016. Comparison of selected properties of portland cement based materials and alkali activated materials based on granulated blast furnace slag. Mater. Sci. Forum 865, 107–113. https://doi.org/10.4028/www.scientific.net/MSF.865.107
    Miao, M., X. Feng, G. Wang, S. Cao, W. Shi, L. Shi, 2015. Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis. Particuology 19, 53–59. https://doi.org/10.1016/j.partic.2014.04.010
    Mohammed, B.S., S. Haruna, M.M.A. Wahab, M.S. Liew, A. Haruna, 2019. Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator. Heliyon 5, e02255. https://doi.org/10.1016/j.heliyon.2019.e02255
    Mohammed, S., O. Safiullah, 2018. Optimization of the SO3 content of an Algerian Portland cement: Study on the effect of various amounts of gypsum on cement properties. Constr. Build. Mater. 164, 362–370. https://doi.org/10.1016/j.conbuildmat.2017.12.218
    Moranville-Regourd, M., S. Kamali-Bernard, 2019. Cements made from blastfurnace slag, Fourth Edi. ed, Lea’s Chemistry of Cement and Concrete. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100773-0.00010-1
    Namarak, C., P. Satching, W. Tangchirapat, C. Jaturapitakkul, 2017. Improving the compressive strength of mortar from a binder of fly ash-calcium carbide residue. Constr. Build. Mater. 147, 713–719. https://doi.org/10.1016/j.conbuildmat.2017.04.167
    Nath, P., P.K. Sarker, 2015. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem. Concr. Compos. 55, 205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008
    Neupane, K., 2018. High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Adv. Mater. 7, 15. https://doi.org/10.11648/j.am.20180702.11
    Nguyen, H.A., T.P. Chang, J.Y. Shih, H. Suryadi Djayaprabha, 2018. Enhancement of low-cement self-compacting concrete with dolomite powder. Constr. Build. Mater. 161, 539–546. https://doi.org/10.1016/j.conbuildmat.2017.11.148
    Obeng, J., A. Andrews, M. Adom-Asamoah, S. Adjei, 2023. Effect of calcium carbide residue on the sulphate resistance of metakaolin-based geopolymer mortars. Clean. Mater. 7, 100177. https://doi.org/10.1016/j.clema.2023.100177
    Özbay, E., M. Erdemir, H.I. Durmuş, 2016. Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review. Constr. Build. Mater. 105, 423–434. https://doi.org/10.1016/j.conbuildmat.2015.12.153
    Pacheco-Torgal, F., J. Castro-Gomes, S. Jalali, 2008a. Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 22, 1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015
    Pacheco-Torgal, F., J. Castro-Gomes, S. Jalali, 2008b. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 22, 1315–1322. https://doi.org/10.1016/j.conbuildmat.2007.03.019
    Park, H., Y. Jeong, Y. Jun, J.H. Jeong, J.E. Oh, 2016. Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum. Cem. Concr. Compos. 68, 57–65. https://doi.org/10.1016/j.cemconcomp.2016.02.008
    Payá, J., J. Monzó, M. V. Borrachero, M.M. Tashima, 2015. Reuse of aluminosilicate industrial waste materials in the production of alkali-activated concrete binders, Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422884.4.487
    Peng, M.X., Z.H. Wang, S.H. Shen, Q.G. Xiao, L.J. Li, Y.C. Tang, L.L. Hu, 2017a. Alkali fusion of bentonite to synthesize one-part geopolymeric cements cured at elevated temperature by comparison with two-part ones. Constr. Build. Mater. 130, 103–112. https://doi.org/10.1016/j.conbuildmat.2016.11.010
    Peng, M.X., Z.H. Wang, Q.G. Xiao, F. Song, W. Xie, L.C. Yu, H.W. Huang, S.J. Yi, 2017b. Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na2CO3. Appl. Clay Sci. 139, 64–71. https://doi.org/10.1016/j.clay.2017.01.020
    Perumal, P., H. Sreenivasan, T. Luukkonen, A.M. Kantola, V.V. Telkki, P. Kinnunen, M. Illikainen, 2021. High strength one-part alkali-activated slag blends designed by particle packing optimization. Constr. Build. Mater. 299, 124004. https://doi.org/10.1016/j.conbuildmat.2021.124004
    Prasad, M.N.V., 2016. Resource Potential of Natural and Synthetic Gypsum Waste, Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803837-6.00014-7
    Procházka, L., J. Boháčová, 2019. The role of alkalis in hydraulic mixtures. Mater. Sci. Forum 955 MSF, 62–67. https://doi.org/10.4028/www.scientific.net/MSF.955.62
    Provis, J.L., A. Palomo, C. Shi, 2015. Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013
    Provis, J.L., J.S.J. Van Deventer, 2019. Geopolymers and other alkali-activated materials, 5th ed, Lea’s Chemistry of Cement and Concrete. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100773-0.00016-2
    Puertas, F., B. González-Fonteboa, I. González-Taboada, M.M. Alonso, M. Torres-Carrasco, G. Rojo, F. Martínez-Abella, 2018. Alkali-activated slag concrete: Fresh and hardened behaviour. Cem. Concr. Compos. 85, 22–31. https://doi.org/10.1016/j.cemconcomp.2017.10.003
    Rao, S.M., B. V. Venkatarama Reddy, G.C. Raju, S. Lakshmikanth, N.S. Ambika, 2009. Chemical stabilization of lead contaminated gypsum sludge. Int. J. Geotech. Eng. 3, 109–116. https://doi.org/10.3328/IJGE.2009.03.01.109-116
    Rasuli, M.I., Y. Tajunnisa, A. Yamamura, M. Shigeishi, 2022. A consideration on the one-part mixing method of alkali-activated material: problems of sodium silicate solubility and quick setting. Heliyon 8, e08783. https://doi.org/10.1016/j.heliyon.2022.e08783
    Rattanashotinunt, C., P. Thairit, W. Tangchirapat, C. Jaturapitakkul, 2013. Use of calcium carbide residue and bagasse ash mixtures as a new cementitious material in concrete. Mater. Des. 46, 106–111. https://doi.org/10.1016/j.matdes.2012.10.028
    Reddy, P.S., 2016. Stabilization of Weak Soil with Calcium Carbide Residue, in: International Conference on Engineering Innovations and Solutions(ICEIS – 2016). pp. 86–89.
    Ren, J., H. Sun, Q. Li, Z. Li, L. Ling, X. Zhang, Y. Wang, F. Xing, 2021a. Experimental comparisons between one-part and normal (two-part) alkali-activated slag binders. Constr. Build. Mater. 309, 125177. https://doi.org/10.1016/j.conbuildmat.2021.125177
    Ren, J., H. Sun, Q. Li, Z. Li, L. Ling, X. Zhang, Y. Wang, F. Xing, 2021b. Experimental comparisons between one-part and normal (two-part) alkali-activated slag binders. Constr. Build. Mater. 309, 125177. https://doi.org/10.1016/j.conbuildmat.2021.125177
    Rojas, Â., J. Cabrera, 2001. Mechanism of hydration of the metakaolin - lime - water system. Cem. Concr. Res. 31, 177–182.
    Roy D M, 1999. Alkali activated cements, opportunities and challenges. Cem. Concr. Res. 29, 249–254. https://doi.org/https://doi.org/10.1016/S0008-8846(98)00093-3
    Ruslan, H.N., K. Muthusamy, S.M. Syed Mohsin, R. Jose, R. Omar, 2021. Oyster shell waste as a concrete ingredient: A review. Mater. Today Proc. 48, 713–719. https://doi.org/10.1016/j.matpr.2021.02.208
    Rustandi, A., F.W. Nawawi, Y. Pratesa, A. Cahyadi, 2018. Evaluation of the suitability of tin slag in cementitious materials: Mechanical properties and Leaching behaviour. IOP Conf. Ser. Mater. Sci. Eng. 299. https://doi.org/10.1088/1757-899X/299/1/012046
    Sabat, A.K., R. Nayak, 2015. Evaluation of fly ash- calcium carbide residue stabilized expansive soil as a liner material in engineered landfill. Electron. J. Geotech. Eng. 20, 6703–6712.
    Sadeghian, G., K. Behfarnia, M. Teymouri, 2022. Drying shrinkage of one-part alkali-activated slag concrete. J. Build. Eng. 51, 104263. https://doi.org/10.1016/j.jobe.2022.104263
    Seo, J., S. Park, H.N. Yoon, J.G. Jang, S.H. Kim, H.K. Lee, 2019. Utilization of calcium carbide residue using granulated blast furnace slag. Materials (Basel). 12. https://doi.org/10.3390/ma12213511
    Seo, J., S. Park, H.N. Yoon, H.K. Lee, 2020. Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume. Constr. Build. Mater. 249, 118691. https://doi.org/10.1016/j.conbuildmat.2020.118691
    Shi, C., J. Qian, 2000. High performance cementing materials from industrial slags - A review. Resour. Conserv. Recycl. 29, 195–207. https://doi.org/10.1016/S0921-3449(99)00060-9
    Shin, A.H.C., U. Kodide, 2012. Thermal conductivity of ternary mixtures for concrete pavements. Cem. Concr. Compos. 34, 575–582. https://doi.org/10.1016/j.cemconcomp.2011.11.009
    Sivapullaiah, P. V., A.A.B. Moghal, 2011. Role of Gypsum in the Strength Development of Fly Ashes with Lime. J. Mater. Civ. Eng. 23, 197–206. https://doi.org/10.1061/(asce)mt.1943-5533.0000158
    Suhamad, D.A., S.P. Martana, 2020. Sustainable Building Materials. IOP Conf. Ser. Mater. Sci. Eng. 879, 8–13. https://doi.org/10.1088/1757-899X/879/1/012146
    Sun, H., Z. Li, J. Bai, S.A. Memon, B. Dong, Y. Fang, W. Xu, F. Xing, 2015. Properties of chemically combusted calcium carbide residue and its influence on cement properties. Materials (Basel). 8, 638–651. https://doi.org/10.3390/ma8020638
    Sun, X., J. Liu, J. Qiu, P. Wu, Y. Zhao, 2022. Alkali activation of blast furnace slag using a carbonate-calcium carbide residue alkaline mixture to prepare cemented paste backfill. Constr. Build. Mater. 320, 126234. https://doi.org/10.1016/j.conbuildmat.2021.126234
    Temuujin, J., A. van Riessen, R. Williams, 2009. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 167, 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121
    Thapa, V.B., D. Waldmann, 2015. A short review on alkali-activated binders and geopolymer binders. Vielfalt im Massivbau - Festschrift zum 65. Geburtstag von Prof. Dr. Ing. Jürgen Schnell Author, co-author Pahn, Matthias Thiele, Catherina 576–591.
    Theodoridou, M., L. Kyriakou, I. Ioannou, 2016. PCM-enhanced Lime Plasters for Vernacular and Contemporary Architecture. Energy Procedia 97, 539–545. https://doi.org/10.1016/j.egypro.2016.10.070
    Thomas, R.J., H. Ye, A. Radlinska, S. Peethamparan, 2016. Alkali-activated slag cement concrete. Concr. Int. 33–38.
    Thymotie, A., T.P. Chang, H.A. Nguyen, 2020. Improving properties of high-volume fly ash cement paste blended with β-hemihydrate from flue gas desulfurization gypsum. Constr. Build. Mater. 261, 120494. https://doi.org/10.1016/j.conbuildmat.2020.120494
    Tian, Y., J. Xing, Y. Zhao, X. Sun, P. Wu, J. Qiu, 2021. Influence of aluminum sulfate on strength of CaO-activated slag system. Constr. Build. Mater. 306, 124895. https://doi.org/10.1016/j.conbuildmat.2021.124895
    Tzouvalas, G., G. Rantis, S. Tsimas, 2004. Alternative calcium-sulfate-bearing materials as cement retarders: Part II. FGD gypsum. Cem. Concr. Res. 34, 2119–2125. https://doi.org/10.1016/j.cemconres.2004.03.021
    Van Aardt, J.H.P., S. Visser, 1978. Reaction of Ca(OH)2 and of Ca(OH)2 + CaSO4.2H2O at various temperatures with feldspars in aggregates used for concrete making. Cem. Concr. Res. 8, 677–681. https://doi.org/10.1016/0008-8846(78)90076-5
    Van Deventer, J.S.J., J.L. Provis, P. Duxson, D.G. Brice, 2010. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste and Biomass Valorization 1, 145–155. https://doi.org/10.1007/s12649-010-9015-9
    Vichan, S., R. Rachan, 2013. Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash. Soils Found. 53, 272–281. https://doi.org/10.1016/j.sandf.2013.02.007
    Walkley, B., 2020. Geopolymers. J. Therm. Anal. 37, 1633–1656. https://doi.org/10.1007/978-3-319-12127-7_299-1
    Wang, K. tuo, L. qiu Du, X. sen Lv, Y. He, X. min Cui, 2017. Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technol. 312, 204–209. https://doi.org/10.1016/j.powtec.2017.02.036
    Wang, K.T., L.Q. Du, X. sen Lv, Y. He, X.M. Cui, 2017. Preparation of drying powder inorganic polymer cement based on alkali-activated slag technology. Powder Technol. 312, 204–209. https://doi.org/10.1016/j.powtec.2017.02.036
    Wang, Q., C. Li, W.T. Zhou, X. Lyu, 2022. Characterization and comparison of the grindability, residual compressive strength, and hydrated phases of traditional cement prepared from lime rock and carbide slag. J. Build. Eng. 60, 105159. https://doi.org/10.1016/j.jobe.2022.105159
    Wang, X., W. Wu, L. Zhang, L. Fu, X. Li, 2022. Preparation of one-part alkali-activated nickel slag binder using an optimal ball milling process. Constr. Build. Mater. 322, 125902. https://doi.org/10.1016/j.conbuildmat.2021.125902
    Whittington, B.I., 1996. The chemistry of CaO and Ca(OH)2 relating to the Bayer process. Hydrometallurgy 43, 13–35. https://doi.org/10.1016/0304-386x(96)00009-6
    Xu, C., Z. Zhang, X. Tang, Z. Gui, F. Liu, 2022. Synthesis and characterization of one-part alkali-activated grouting materials based on granulated blast furnace slag, uncalcined coal gangue and microscopic fly ash sinking beads. Constr. Build. Mater. 345, 128254. https://doi.org/10.1016/j.conbuildmat.2022.128254
    Yan, S., D. Pan, J. Dan, J. Wang, Y. Yu, 2023. Calcium carbide residue and Glauber’s salt as composite activators for fly ash-based geopolymer. Cem. Concr. Compos. 140, 105081. https://doi.org/10.1016/j.cemconcomp.2023.105081
    Yang, B., J.G. Jang, 2020. Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator. Constr. Build. Mater. 257, 119552. https://doi.org/10.1016/j.conbuildmat.2020.119552
    Yang, H., D. Liang, Z. Deng, Y. Qin, 2018. Effect of limestone powder in manufactured sand on the hydration products and microstructure of recycled aggregate concrete. Constr. Build. Mater. 188, 1045–1049. https://doi.org/10.1016/j.conbuildmat.2018.08.147
    Yang, T., Z. Zhang, F. Zhang, Y. Gao, Q. Wu, 2020. Chloride and heavy metal binding capacities of hydrotalcite-like phases formed in greener one-part sodium carbonate-activated slag cements. J. Clean. Prod. 253, 120047. https://doi.org/10.1016/j.jclepro.2020.120047
    Yang, T., Z. Zhang, H. Zhu, W. Zhang, Y. Gao, X. Zhang, Q. Wu, 2019. Effects of calcined dolomite addition on reaction kinetics of one-part sodium carbonate-activated slag cements. Constr. Build. Mater. 211, 329–336. https://doi.org/10.1016/j.conbuildmat.2019.03.245
    Ye, J., M. Zubair, S. Wang, Y. Cai, P. Zhang, 2019. Power production waste. Water Environ. Res. 91, 1091–1096. https://doi.org/10.1002/wer.1200
    Yin, K., Y. Jiang, H. He, J. Ren, Z. Li, 2022. Characterization of one-part alkali-activated slag with rice straw ash. Constr. Build. Mater. 345, 128403. https://doi.org/10.1016/j.conbuildmat.2022.128403
    Yum, W.S., J. Il Suh, D. Jeon, J.E. Oh, 2020. Strength enhancement of CaO-activated slag system through addition of calcium formate as a new auxiliary activator. Cem. Concr. Compos. 109, 103572. https://doi.org/10.1016/j.cemconcomp.2020.103572
    Zhang, D., Z. Yang, D. Kang, C. Fang, Y. Jiao, K. Wang, S. Mi, 2023. Study on the mechanism of Ca2+ and Na+ interaction during the hydration of multi-source solid waste geopolymers. J. Build. Eng. 69, 106177. https://doi.org/10.1016/j.jobe.2023.106177
    Zhang, X., L. Ran, X. Wang, B. Jin, J. Zhang, S. Li, L. Yang, 2022. Structural characteristic and formation mechanism of hemihydrate calcium sulfate whiskers prepared using FGD gypsum. Particuology 62, 98–103. https://doi.org/10.1016/j.partic.2021.04.010
    Zhou, S., C. Tan, Y. Gao, Y. Li, S. Guo, 2021. One-part alkali activated slag using Ca(OH)2and Na2CO3instead of NaOH as activator: More excellent compressive strength and microstructure. Mater. Res. Express 8. https://doi.org/10.1088/2053-1591/ac16f4
    Zhu, X., Z. Jiang, B. He, C. Qian, 2020. Investigation on the physical stability of calcium-silicate-hydrate with varying CaO/SiO2 ratios under cryogenic attack. Constr. Build. Mater. 252. https://doi.org/10.1016/j.conbuildmat.2020.119103

    無法下載圖示 全文公開日期 2026/08/25 (校內網路)
    全文公開日期 2026/08/25 (校外網路)
    全文公開日期 2026/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE