簡易檢索 / 詳目顯示

研究生: 邱伃安
Yu-An Chiu
論文名稱: 鹼激發膠結材料反應機理之研究
The Study on the Reaction Mechanism of Alkali Activated Material
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 鄭大偉
Ta-Wui Cheng
林凱隆
Kae-Long Lin
廖敏志
Min-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 156
中文關鍵詞: 鹼激發無機聚合物矽鋁酸鹽礦物
外文關鍵詞: Alkali Activated, Geopolymer, Aluminisilicate Material
相關次數: 點閱:295下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討矽鋁酸鹽礦物製作鹼激發膠結材料 (AAM)之反應機制,由 之反應機制,由 之反應機制,由 之反應機制,由 於目前鹼激發低溫即可製成,且其用以含矽鋁之工業副產物故較傳統 於目前鹼激發低溫即可製成,且其用以含矽鋁之工業副產物故較傳統 於目前鹼激發低溫即可製成,且其用以含矽鋁之工業副產物故較傳統 於目前鹼激發低溫即可製成,且其用以含矽鋁之工業副產物故較傳統 於目前鹼激發低溫即可製成,且其用以含矽鋁之工業副產物故較傳統 水泥材料具有低污染、耗能之優勢,目前鹼激發膠結可因產物構及反 水泥材料具有低污染、耗能之優勢,目前鹼激發膠結可因產物構及反 水泥材料具有低污染、耗能之優勢,目前鹼激發膠結可因產物構及反 水泥材料具有低污染、耗能之優勢,目前鹼激發膠結可因產物構及反 水泥材料具有低污染、耗能之優勢,目前鹼激發膠結可因產物構及反 應之 機制 分為鈣 分為鈣 -矽組合系統 組合系統 (AAS)及矽 -鋁組合系統 鋁組合系統 (GP),本研究將就兩種 ,本研究將就兩種 ,本研究將就兩種 ,本研究將就兩種 組合系統之工程性質及微觀進行其機理研究 組合系統之工程性質及微觀進行其機理研究 組合系統之工程性質及微觀進行其機理研究 組合系統之工程性質及微觀進行其機理研究 組合系統之工程性質及微觀進行其機理研究 ,鈣 -矽組合基材 組合基材 組合基材 使用水淬高 爐石粉 (GGBFS)、石灰粉末( )、石灰粉末( )、石灰粉末( )、石灰粉末( LSP);矽 );矽 );矽 -鋁組合基材使用燃煤飛灰( 鋁組合基材使用燃煤飛灰( FA)、 焚 化底渣 (BA)、稻殼 )、稻殼 )、稻殼 灰( RHA)、變高嶺土( )、變高嶺土( )、變高嶺土( )、變高嶺土( MK)、玻璃粉( 、玻璃粉( 、玻璃粉( GP)及液晶玻璃粉 )及液晶玻璃粉 (LCD-GP),並以濃度 ),並以濃度 5M之氫氧化鈉溶液製成 AAM,之後進行新拌漿體超音 波速試驗探討其結構發展並對照反應溫度,現 波速試驗探討其結構發展並對照反應溫度,現 波速試驗探討其結構發展並對照反應溫度,現 GGBFS溫度最高達 60℃,之 後進行其硬固性質試驗發現 14天時,反應較快之 天時,反應較快之 天時,反應較快之 GGBFS、LSP+20%MK及 MK皆有裂縫產生,最後微觀性質佐證工程發現 GGBFS之產物為 C-S-H膠體, 符合 AAS之產物,而 之產物,而 之產物,而 LSP+20%MK之基材雖 CaO含量高,由 含量高,由 含量高,由 XRD分析結果有 C-S-H膠體產生,但 29Si MAS-NMR分析結果其 分析結果其 Si主要以 SiQ4(4Al)鍵結,屬於 無機聚合反應之產物,故歸類此為複式;而 GP系統 之 29Si MAS-NMR分析結果 顯示 SiQ4會與不同數量之 Al原子鍵結, 此結果 與基材之玻璃質 活性 有關 ,將進而影響基材之解聚反應導致產物不同 。


    The main purpose of this research is to investigate the reaction mechanism of alkali-activated materials (AAM)that were prepared from aluminosilicate materials. Due to the alkali activated process can be done at low temperature and used to activate the industrial by-products containing aluminum silicon, which is lower pollution and energy consumption than cement material. Recently, Alkali activated material usually classified in two groups by the structure of the product and the mechanism of reaction, where are Ca-Si system(AAS)及 Si-Al system(GP). This work considers the mechanism of the properties of engineering and microstructure for two combined systems, which are Ca-Si system based Ground Granulated Blast-Furnace Slag(GGBFS)、 Lime Stone Powder(LSP) and Si-Al system based Fly Ash(FA)、 Bottom Ash(BA)、 Rice Husk Ash(RHA)、 Metakaolin(MK)、 Glass Powder(GP) and LCD-Glass Powder( LCD-GP) mixed with sodium hydroxide solution that concentration for 5M. Afterward, the UPV test is exploited to probe the structure development with corresponding reaction temperature for paste and discover that the maximum temperature of GGBFS is 60℃ . The result shows that GGBFS, LSP+20%MK and MK, which react fast, will crack while fourteenth day in experiment of hardened properties. Last, the product of GGBGS, which is C-S-H colloid, meets the product of AAS. In spite of the high contents of CaO for LSP+20%MK, the result of XRD analysis reveal that C-S-H colloid will be produced. However, the result of 29Si MAS-NMR analysis indicate that Si is mainly bonded by SiQ4(4Al), which belong to the product of geopolymerization, and classified as composite geopolumer. Regrading to the GP system, the result of 29Si MAS-NMR analysis demonstrate that SiQ4 will bond with different number of Al atoms, which is related to the glass phase and reactivity of the basic powder, and it will lead the different product by affecting the degree of depolymerization.

    摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 代號及符號說明 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 2 1.4 預期成果 2 第二章 文獻回顧 4 2.1 鹼激發膠體材料發展 4 2.2 鹼激發鈣-矽材料(AAS) 6 2.2.1 鹼激發鈣-矽材料(AAS)之反應機制 6 2.2.2 鹼激發鈣-矽材料(AAS)之影響因子 8 2.2.3 鹼激發鈣-矽材料(AAS)之優缺點 9 2.3 鹼激發矽-鋁材料(Geopolymer) 10 2.3.1 無機聚合物(GP)之反應機理 10 2.3.2 無機聚合物(GP)之影響因子 15 2.3.3 無機聚合物(GP)之優缺點 16 2.4 複合式無機聚合物 16 2.5 鹼激發膠結材料(AAM)微結構分析 18 2.5.1 傅立葉紅外光譜(FTIR) 19 2.5.2 核磁共振波譜(NMR) 20 2.5.3 超音波傳波特性 22 第三章 試驗計畫 41 3.1 試驗內容 41 3.2 試驗材料 41 3.2.1 燃煤飛灰 41 3.2.2 焚化底渣 42 3.2.3 稻殼灰 42 3.2.4 水淬高爐石粉 42 3.2.5 變高嶺土 42 3.2.6 玻璃粉 43 3.2.7 液晶玻璃粉 43 3.2.8 石灰石粉末 43 3.2.9 氫氧化鈉 43 3.3 試驗流程 43 3.3.1 配比設計 44 3.3.2 鹼激發膠結材料(AAM)拌合程序 44 3.3.3 試驗項目 45 3.4 試驗方法與設備 46 3.4.1 材料基本性質 46 3.4.2 新拌性質 48 3.4.3 硬固性質 50 3.4.4 微觀性質 51 第四章 工程性質之結果與分析 68 4.1 鹼激發膠結材料之新拌性質 68 4.1.1 工作性質 68 4.1.2 終凝性質 70 4.1.3 超音波傳播速度及反應溫度 71 4.2 鹼激發膠結材料之硬固性質 73 4.2.1 抗壓強度 73 4.2.2 超音波波速及反應溫度性質 74 4.2.3 鹼激發矽鋁材料之其他物理表徵 75 第五章 微觀性質結果分析 99 5.1 X光繞射分析(XRD) 99 5.2 傅立葉紅外光譜分析(FTIR) 100 5.3 核磁共振光譜(NMR) 102 5.3.1 29Si MAS-NMR波譜分析結果 102 5.3.2 27Al MAS-NMR波譜分析結果 104 5.4 微觀觀測(SEM/EDS) 104 第六章 鹼激發結材料反應機理之推估 138 6.1 鹼激發鈣-矽材料(AAS) 138 6.2 鹼激發矽-鋁材料(GP) 139 第七章 結論與建議 146 7.1 結論 146 7.2 建議 148 參考文獻 149

    [1] 郭振雄、陳香梅、羅光達,「台灣工業部門二氧化碳之排放減量」,應用經濟論叢,第95卷,2014。
    [2] D. B. V. H. Rangan, "Development and properties of low calcium fly ash based geopolymer concrete, Research report GC-1, Faculty of Engineering," Curtins University of Technology, Perth, 2005.
    [3] H. Xu and J. S. J. Van Deventer, "The geopolymerisation of alumino-silicate minerals," International Journal of Mineral Processing, vol. 59, pp. 247-266, 6// 2000.
    [4] D. Krizan and B. Zivanovic, "Effects of dosage and modulus of water glass on early hydration of alkali–slag cements," Cement and Concrete Research, vol. 32, pp. 1181-1188, 8// 2002.
    [5] A. O. Purdon, "The action of alkalis on blast furnace slag," Journal of the Society of Chemical Industry, vol. 59, pp. 191-202, 1940.
    [6] V. D. Glukhovsky, "Soil silicates," USSR:Gostroiizdat, 1959.
    [7] R. Malinowsky, "Concretes and Mortars in Ancient Aqueducts" Concrete International, pp. 66-76, 1979.
    [8] C. J. Davidovits, L. D. T. A., "detection of intra-ceramic geopolymeric setting in archaeological ceramics and mortars."
    [9] H. D. C. C. L. C, "A propos des vases en chaux : recherches sur leur fabrication et leur origine," Paléorient, pp. 172-182, 1979.
    [10] G. Perinet, "Etude minéralogique de vaisselles blanches néolithiques de Ras-Shamra et Tell Ramad (Syrie)," Paris: Académie des Sciences, 1980.
    [11] C. A. L. D. M. Roy, "Longevity of borehole and shaft sealing materials: characterization of ancient cement-based building materials," pp. 543-549.
    [12] L. D. M. Roy, C.A., "Studies of ancient concretes as analogs of cementituos sealing materials for repository in Tuff," LA-11527-MS, Los Alamos Nacional Laboratory, 1989.
    [13] M. L. Granizo, "Activation alcalina de metacaolin: desarrolllo de nuevos materials cementantes.," University Autonoma of Madrid, Spanish, 1998.
    [14] J. Davidovits, "Synthesis of new high temperature geo-polymers for reinforced plastics/composites,," in SPE PACTEC 79 Society of Plastic Engineers, Brookfield Center, pp. 151-154, 1979.
    [15] R. V. D. Glukhovsky, G.S., Rumyna, G.V., "High strength slag alkaline cements.," pp. 164-168.
    [16] M. W. G. A. Palomo, and M. T. Blanco, , "Alkali-activated fly ashes: A cement for the future," Cement and Concrete Research, vol. 29, pp. 1323-1329, 8 1999.
    [17] W. X. Zhou Huanhai, and Xu Zhongzi, "Kinetic study on hydration of alkali-activated slag," Cement and Concrete Research, vol. 23, 1993.
    [18] C. S. R. L. Day, "A calorimetric study of early hydration of alkali-slag cements," Cement and Concrete Research, vol. 25, pp. 1333-1346, 8 1995.
    [19] C. S. R. L. Day, "Some factors affecting early hydration of alkali-slag cements," Cement and Concrete Research, vol. 26, pp. 439-447, 3 1996.
    [20] 孫家瑛、諸培南,「礦渣在鹼性溶液激發下的機理」,矽酸鹽通報,北京,第17卷,1998。
    [21] S. S. H. M. Jennings, "Pore solution chemistry of alkali-activated ground granulated blast-furnace slag," Cement and Concrete Research,, vol. 29, pp. 159-170, 1999.
    [22] P. D. J. L. Provis, "Designing Precursors for Geopolymer Cements," Journal of the American Ceramic Society, vol. 91, pp. 3864-3869, 2008.
    [23] K. L. S. S. D. Wang , and P. L. Pratt "Factors affecting the strength of alkali-activated slag," Cement and concrete Research, vol. 24, pp. 1033-1043, 1994.
    [24] M. H. A. R. Brough, J. Sykes, and A. Atkinson, "Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid,," Cement and Concrete Research, vol. 30, pp. 1375-1379, 2000.
    [25] A. F. J. A. Palomo, "Composition and microstructure of alkali activated fly ash binder: Effect of the activator," Cement and Concrete Research, vol. 35, pp. 1984-1992, 2005.
    [26] F. G. C. J. G. Sanjayan, "Workability and mechanical properties of alkali activated slag concrete," Cement and Concrete Research, vol. 29, pp. 455-458, 1999.
    [27] J. G. S. T. Bakharev, and Y. B. Cheng, "Alkali activation of Australian slag cement," Cement and Concrete Research, vol. 29, pp. 113-120, 1999.
    [28] J. S. J. H. Xu, Van Deventer, "The geopolymerisation of alumino-silicate minerals," International Journal Minerals, pp. 247-266, 2000.
    [29] J. S. J. H. Xu, Van Deventer, G.C., Lukey, "Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinitemixtures," International Engineering Chemical Research, vol. 40, pp. 3749-3756, 2001.
    [30] J. Davidovits, "Geopolymer Chemistry & Application," France: Institute Géopolymère, pp. 394-395, 2008.
    [31] J. Davidovits, "Geopolymer Chemistry & Application," France: Institute Géopolymère, pp. 141-143, 2008.
    [32] L. W. K. Sagoe-Crentsil, "Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part I. Low Si/Al ratio systems," Journal of Materials Science, vol. 42, pp. 2997-3006, 2007.
    [33] K. S.-C. L. Weng, "Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis:Part ⅡHigh Si/Al ratio systems," Journal of Materials Science, vol. 42, pp. 3007-3014, 2007.
    [34] Z. Z. X. Yao, H. Zhua, Y. Chen, "Geopolymerizaiton process of alkali-metakaolinite characterized by isothermal calorimetry," Thermochimica Acta, vol. 493, pp. 49-54.
    [35] H. X. J. S. J. V. Deventer, "The geopolymerisation of alumino-silicate minerals," International Journal Minerals Process, vol. 59, pp. 247-266, 2000.
    [36] C. S. Y. Li, "Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement," Cement and Concrete Research, vol. 19, pp. 527-233, 1989.
    [37] J. C. S. C. A. Strydom, "Utilisation of fly ash in a geopolymeric material," Applied Geochemistry, vol. 17, pp. 1143-1148, 2002.
    [38] T. C. P. Chindaprasirt , and V. Sirivivatnanon "Workability and strength of coarse high calcium fly ash geopolymer," Cement and Concrete Composites, vol. 29, pp. 24-229, 2007.
    [39] J. G. S. V. J. G. C. Lukey, "The effect of composition and temperature on the properties of fly ash and kaolinite-based geopolymers," Chemical Engineering Journal, vol. 89, pp. 63-73, 2002.
    [40] 戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,台北科技大學資源工程系碩士班,2002。
    [41] 陳志賢,「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木研究所,2009。
    [42] 代新祥,「鹼激活土聚水泥的製備、結構與性能」,博士論文,華南理工大學,2002。
    [43] 林湧昱,「以電弧爐還原碴製成複合無機聚合物之研究」,碩士論文,國立中央大學土木工程學系,2012。
    [44] F. Puertas, S. Martı́nez-Ramı́rez, S. Alonso & T. Vázquez, "Alkali-activated fly ash/slag cements: Strength behaviour and hydration products," Cement and Concrete Research, vol. 30, pp. 1625-1632, 10 2000.
    [45] S. A. M. L. Granizo, M. T. Blanco-Varela, and A. Palomo, "Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction," Journal of the American Ceramic Society, vol. 85, pp. 225-231, 2002.
    [46] G. C. L. C. K. Yip, and J. S. J. Van Deventer "The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation," Cement and Concrete Research, vol. 35, pp. 1688-1697, 2005.
    [47] J. L. P. S. A. Bernal, B. Walkley, R. San Nicolas, J. D. Gehman, D. G. Brice, A. R. Kilcullen, P. Duxson, and J. S. J. van Deventer, "Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation," Cement and Concrete Research, vol. 53, pp. 127-144, 10 2013.
    [48] D. H. S. E. Wallah, D. M. J. Sumajouw and B. V. Rangan, "Proceeding of the 21st biennial conference of concrete institute of Australia," p. 205.
    [49] J. L. P. C. A. Ress, G. C. Lukey, J. S. J. van Deventer, "Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging," languir, vol. 23, pp. 8170-8179, 2007.
    [50] 鄭大偉,「無機聚合技術的發展應用及回顧」,鑛冶,第54卷,第140-157頁,2010。
    [51] A. F.-J. Ines García-Lodeiro, M.T. blanco, A. Palomo, "FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H," Journal of Sol-Gel Science and Technology, vol. 45, pp. 63-72, 2008.
    [52] J. S. J. V. D. J.G.S. Van Jaarsveld, and L. Lorenzen, "The potential use of geopolymeric materials to immobilise toxic Metals:Part Ⅰ. Theory and applications, Minerals Engineering," vol. 10, pp. 659-669, 1997.
    [53] J. Davidovits, "Chemistry of geopolymeric systems terminology, Proceeding of Geopolymer," Proceeding of Geopolymer”99 Second International Conference, pp. 9-37, 1999.
    [54] K. J. D. M. V.F.F. Barbosa, and C.Thaumaturgo, "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica : sodium polysialate polymers," International Journal of Inorganic Materials, vol. 2, pp. 309-317, 2000.
    [55] J. W. P. J. S. J. V. Deventer, "Effect of silicate activator pH on the microstructural characteristics of waste-based geopolymers," International Journal Minerals Process, vol. 66, pp. 121-143, 2002.
    [56] M. T. P.S. Singh, and T. Bastow, "27Al and 29Si MAS-NMR study of aluminosilicate polymer formation at room temperature," Geopolymer 2002 International Conference, Melbourne, Australia, CD-ROM, 2002.
    [57] J. L. P. P. Duxson, G.C. Lucky, F. Separovic, and J.S.J. Van Deventer, "29Si MAS-NMR study of structural ordering in aluminosmeate geopolymer gels," Langmuir, vol. 21, pp. 3028-3036, 2005.
    [58] T. B. P.S. Singh, and M. Trigg, "Outstanding problems posed by nonpolymeric particulates in the synthesis of a well-structured geopolymeric material," Cement and Concrete Research, vol. 34, pp. 1943-1947, 2004.
    [59] J. Davidovits, "Global warming impact on the cement and aggregates industries," Published in World Resource Review, vol. 6, pp. 263-278, 1994.
    [60] M. T. P. S. Singh, I. Burgar, T. Bastow, "Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR," Materials Science and Engineering A, vol. 396, pp. 392-402, 2005.
    [61] J. G. S. V. J. J. S. J. V. Deventer, "The effect of metal contaminants on the formation and properties of waste-based geopolymers," Cement and Concrete Research, vol. 29, pp. 1189-1200, 1999.
    [62] K. J. D. M. a. M. E. Smith, "Multinuclear Solid-State NMR of Inorganic Materials," p. 273, 2008.
    [63] 沈. 黃兆龍, "高爐熟料與飛灰對新拌水泥漿體水化機理影響之研究," 中國土木水利工程學刊, vol. 3, pp. 365-370, 1991.
    [64] S. U. Toshiro Kamada, and Keitetsu Rokugo, "Nondestructive Evaluation of Setting and Hardening of Cement Paste Based on Ultrasonic Propagation Characteristics," Journal of Advanced Concrete Technology, vol. 3, pp. 343-353, 2005.
    [65] H. S. C. Li, and L. Li, "The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements," Cement and Concrete Research, vol. 40, pp. 1341-1349, 9 2010.
    [66] J. D. S. J.W. Phair, J.S.J Van Deventer, "Characteristics of aluminosilicate hydrogels related to commercial Geopolymers," Materials Letters, vol. 57, pp. 4356-4367, 2003.
    [67] J. Davidovits, "Geopolymers: Inorganic polymeric new materials," Journal of Thermal Analysis, vol. 37, pp. 1633-1656, 1991.
    [68] J. Davidovits, "Geopolymer Chemistry & Application," France: Institute Géopolymère, p. 70, 2008.
    [69] 黃兆龍,「混凝土性質與行為」,詹式書局,2003。
    [70] J. Davidovits, "Geopolymer Chemistry & Application," France: Institute Géopolymère, p. 23, 2008.
    [71] 江明英,「應用水化放熱及超音波量測優生混凝土之水化行為」, 碩士論文,國立台灣科技大學營建工程研究所, 1996。
    [72] 呂軒志,「無機聚合物工程特性及影響因素暨應用於混凝土缺陷修補研究」,博士論文,台北科技大學材料及資源工程研究所, 2013。
    [73] S. K. Lee and J. F. Stebbins, "Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations," Geochimica et Cosmochimica Acta, vol. 70, pp. 4275-4286, 8/15/ 2006.
    [74] 曾偉林,「鹼活化爐石粉基質材料製程與基本特性之探討」,碩士論文,國立台灣海洋大學,2001。
    [75] 蒲心誠、楊長輝,「高強鹼爐渣流態混凝土研究」,混凝土,第18-30頁,1994。
    [76] K. A. Chakraborty, "DTA study of preheated kaolinite in the mullite formation region," Thermochimica Acta, vol. 398, pp. 203-209, 2003.
    [77] C. Maochieh and R. Huang, "Binding mechanism and properties of alkali-activated fly ash/slag mortars," Construction and Building Materials, vol. 40, pp. 291-298, 3// 2013.
    [78] I. Ismail, S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. J. van Deventer, "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash," Cement and Concrete Composites, vol. 45, pp. 125-135, 1// 2014.
    [79] M. Torres-Carrasco, C. Rodríguez-Puertas, M. d. M. Alonso, and F. Puertas, "Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour," Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 54, pp. 45-57, 3// 2015.
    [80] B. Yılmaz and A. Olgun, "Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone," Cement and Concrete Composites, vol. 30, pp. 194-201, 3// 2008.
    [81] M. J. A. Mijarsh, M. A. Megat Johari, and Z. A. Ahmad, "Effect of delay time and Na2SiO3 concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA," Construction and Building Materials, vol. 86, pp. 64-74, 7/1/ 2015.
    [82] 趙駿穎,「廢玻璃鹼激發膠結材之研究」,碩士論文,國立成功大學,2008。
    [83] M. L. Granizo, M. T. Blanco-Varela, and S. Martínez-Ramírez, "Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties," Journal of Materials Science, vol. 42, pp. 2934-2943, 2007 2007.
    [84] M. E. H. M. Khater, Abdeen M. El Nagar, "Alkali Activated Eco-friendly Metakaolin/Slag Geopolymer Building Bricks," Chemistry abd Materials Research, vol. 8, 2016.
    [85] A. Buchwald, H. Hilbig, and C. Kaps, "Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition," Journal of Materials Science, vol. 42, pp. 3024-3032, 2007 2007.
    [86] S. D. Wang and K. L. Scrivener, "29Si and 27Al NMR study of alkali-activated slag," Cement and Concrete Research, vol. 33, pp. 769-774, 2003.
    [87] A. Fernández-Jiménez, A. Palomo, and M. Criado, "Microstructure development of alkali-activated fly ash cement: a descriptive model," Cement and Concrete Research, vol. 35, pp. 1204-1209, 6// 2005.

    QR CODE