簡易檢索 / 詳目顯示

研究生: 陳棟鈞
Dong-Jun Chen
論文名稱: 爐石基無機聚合物漿體之碳化研究
Study on Carbonation of Slag-based Geopolymer Paste
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Ta-Peng Chang
黃中和
Chung-Ho Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 209
中文關鍵詞: 無機聚合物抗壓強度碳化深度碳化收縮化學性質孔隙體積
外文關鍵詞: geopolymer, compressive strength, carbonation depth, carbonation shrinkage, chemical property, pore volume
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無機聚合物係由富含矽鋁酸鹽的膠結材料,經聚合反應所形成具有高早強度、抗蝕的膠結材,然而其耐久性質仍待進一步探討,其中碳化是評估耐久性質的重要參數之一,因此本研究嘗試探討碳化對爐石基無機聚合物漿體物化性質之影響。試驗過程中,以液固比0.6及氫氧化鈉與水玻璃體積比5:5製作爐石基無機聚合物漿體,試驗環境則以20%及100%濃度之二氧化碳進行加速碳化28天,並設定試驗環境相對溼度為75%及100%。結果發現,漿體之抗壓強度會隨環境中之二氧化碳濃度或相對溼度的提升而降低,其中以試驗環境100%濃度二氧化碳且相對溼度100%下之試體強度最低。在碳化深度量測試驗中,漿體於加速碳化後之碳化深度皆小於5 mm,顯示爐石基無機聚合物漿優秀之抗碳化能力。後續改變鹼性激發劑混合比例後發現,於鹼性激發劑混合比例5:5下具有28天最佳抗壓強度,但隨著鹼性激發劑中氫氧化鈉比例減少及水玻璃比例增加,乾縮量以及碳化收縮量皆會增加。另外,改變液固比時則會發現,隨著液固比從0.6減少為0.4,抗壓強度會增加,乾縮量以及碳化收縮量則會降低。後續透過XRD及氣體吸附分析,發現產生前述現象與碳化所導致的碳酸鈉/碳酸氫鈉生成及孔隙結構的改變有關。


    Geopolymer is a cementitious material with high early strength and corrosion resistance by the polymerized aluminosilicates, but its durability is an issue. Carbonation is one of the important parameters to evaluate the durability. Therefore, this study tried to explore the effects of carbonation on the physical and chemical properties of slag-based geopolymer paste. During the study, the slag-based geopolymer was produced at water-solid ratio was 0.6 and 5:5 volume ratios of sodium hydroxide (NaOH) to water glass (WG). The test environments have 20% and 100% CO2 for the accelerated carbonation and the relative humidities at 75% and 100%. Results showed that the compressive strength of the paste decreased as the CO2 concentration or the relative humidity increased. The carbonization depth of the paste after the accelerated carbonation is less than 5 mm, indicating the excellent carbonation resistance of the slag-based geopolymer paste. After changing the mixing ratios of the alkaline activators in the subsequent experiments, it was found that the mix with the ratio of 5:5 had the highest 28-day strength. However, as the proportion of NaOH in the alkaline activator decreased and the proportion of WG increased, the amount of drying and carbonation shrinkage increased. In addition, it was found that as the liquid-solid ratio decreased from 0.6 to 0.4, the compressive strength increased, and the drying shrinkage and carbonation shrinkage decreased. Subsequent XRD and gas adsorption showed that the aforementioned behaviors were related to the formation of Na2CO3/NaHCO3 and the pore structure modified by carbonation.

    摘要 I Abstract II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法與流程 2 第二章 文獻回顧 5 2.1 水淬高爐石粉 5 2.1.1 水淬高爐石粉之物理性質 5 2.1.2 水淬高爐石粉之化學性質 6 2.2 無機聚合物 6 2.2.1 無機聚合物之發展 7 2.2.2 無機聚合物之反應機理 8 2.2.3 無機聚合物之微觀結構型態 10 2.2.4 無機聚合物之物化性影響因素 10 2.3 碳化 14 2.3.1 碳化原理 15 2.3.2 影響碳化之因素 16 2.3.3 碳化對無機聚合物之影響 19 2.3.4 碳化之測定法 20 第三章 試驗規劃 36 3.1 試驗內容以及變數 36 3.1.1 變數說明 36 3.1.2 編碼說明 37 3.2 試驗材料與設備 38 3.2.1 試驗材料 38 3.2.2 試驗設備 40 3.3 配比設計 43 3.4 試驗項目 44 3.4.1 物理性質試驗 44 3.4.2 力學性質試驗 45 3.4.3 碳化深度測定試驗 47 3.4.4 乾縮試驗 48 3.4.5 碳化收縮試驗 49 3.4.6 微觀分析試驗 50 第四章 試驗結果與討論 75 4.1 加速碳化環境條件測試試驗(力學) 75 4.1.1 二氧化碳濃度差異 75 4.1.2 相對溼度差異 78 4.1.3 預先養護條件差異 81 4.2 加速碳化環境條件測試試驗(碳化深度量測) 84 4.2.1 相對溼度75%、未預先自體養護 84 4.2.2 相對溼度100%、未預先自體養護 85 4.2.3 相對溼度75%、預先自體養護14天 85 4.2.4 相對溼度100%、預先自體養護14天 85 4.3 配比比較試驗(力學) 86 4.3.1 不同液固比下之抗壓強度損失 86 4.3.2 不同鹼性激發劑混合比例下之抗壓強度損失 87 4.4 配比比較試驗(碳化深度量測) 89 4.4.1 不同液固比下之碳化深度 89 4.4.2 不同鹼性激發劑混合比例下之碳化深度 89 4.5 收縮性質試驗 90 4.5.1 乾縮試驗 90 4.5.2 加速碳化收縮試驗 91 4.6 X光繞射分析試驗 93 4.6.1 試體表面之碳化產物分析 94 4.6.2 加速碳化環境條件測試試驗試體分析 95 4.6.3 配比比較試驗試體分析 96 4.7 比表面積及氣體吸附分析試驗 98 4.7.1 加速碳化環境條件測試試驗試體分析 98 4.7.2 配比比較試驗試體分析 99 第五章 結論與建議 182 5.1 結論 182 5.2 建議 184 參考文獻 186 附錄一 重量量測試驗結果 191

    [1] ASTM C109-21 (2021). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens), ASTM International, West Conshohocken, PA.
    [2] ASTM C39-14 (2014). Standard test method for compressive strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA.
    [3] ASTM C305-06 (2009). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, ASTM International, West Conshohocken, PA.
    [4] ASTM C490-17 (2017). Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete, ASTM International, West Conshohocken, PA.
    [5] ASTM E104-20 (2020). Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions, ASTM International, West Conshohocken, PA.
    [6] Babaee, M., M. S. H. Khan and A. Castel (2018). ''Passivity of embedded reinforcement in carbonated low-calcium fly ash-based geopolymer concrete.'' Cement and Concrete Composites 85: 32-43.
    [7] Babushkin, V. I., G. M. Matveyev and O. P. Mchedlov-Petrossyan (1985). Thermodynamics of Silicates, Springer-Verlag Berlin, Heidelberg.
    [8] Bakharev, T., J. G. Sanjayan and Y. B. Cheng (1999). ''Effect of elevated temperature curing on properties of alkali-activated slag concrete.'' Cement and Concrete Research 29: 1619-25.
    [9] Bernal, S. A., J. L. Provis, D. G. Brice, A. Kilcullen, P. Duxson and J. S. J. Deventer (2012). ''Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry.'' Cement and Concrete Research 42: 1317-26.
    [10] Bernal, S.A., J. L. Provis, B. Walkley, R. San Nicolas, J. D. Gehman, D. G. Brice, A. R. Kilcullen, P. Duxson and J. S. J. Deventer (2013). ''Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation.'' Cement and Concrete Research 53: 127-44.
    [11] Bernal, S. A., R. San Nicolas, R. J. Myers, R. Mejía de Gutiérrez, F. Puertas, J. S. J. Deventer and J. L. Provis (2014). ''MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders.'' Cement and Concrete Research 57: 33-43.
    [12] Bonen, D., and S. L. Sarkar (1995). ''The effects of simulated environmental attack on immobilization of heavy metals doped in cement-based materials.'' Journal of Hazardous Materials 40: 321-35.
    [13] Cui, H., W. Tang, W. Liu, Z. Dong and F. Xing (2015). ''Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms.'' Construction and Building Materials 93: 522-27.
    [14] CNS 12223 (2013). 水淬高爐爐碴, 中華民國國家標準, 經濟部標準檢驗局.
    [15] CNS 12549 (2014). 混凝土及水泥砂漿用水淬高爐爐碴粉, 中華民國國家標準, 經濟部標準檢驗局.
    [16] Davidovits, J., R. Davidovits and C. James (1999). Chemistry of Geopolymeric Systems Terminology. In 2nd, International conference on geopolymers, 9-40. Saint-Quentin, France:: Cordi-Geopolymere SARL,;.
    [17] Elsalamawy, M., A. R. Mohamed and E. M. Kamal (2019). ''The role of relative humidity and cement type on carbonation resistance of concrete.'' Alexandria Engineering Journal 58: 1257-64.
    [18] Fernández Bertos, M., S. J. R. Simons, C. D. Hills and P. J. Carey (2004). ''A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2.'' Journal of Hazardous Materials 112: 193-205.
    [19] Gebregziabiher, B. S., R. J. Thomas and S. Peethamparan (2016). ''Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders.'' Construction and Building Materials 113: 783-93.
    [20] Goldstein, J., Y. Goldshtain, J. A. Goldstein, M. Springer Science+Business, D. E. Newbury, D. C. Joy, P. Echlin, C. E. Lyman and E. Lifshin (2003). Scanning Electron Microscopy and X-Ray Microanalysis: Third Edition, Springer, US.
    [21] Hills, C. D., R. E. H. Sweeney and N. R. Buenfeld (1999). ''Microstructural study of carbonated cement-solidified synthetic heavy metal waste.'' Waste Management 19: 325-31.
    [22] JIS A6206 (2013). Ground granulated blast-furnace slag for concrete, 日本工業標準.
    [23] Johnson, D. C. (2000). Accelerated carbonation of waste calcium silicate materials, Society of Chemical Industry Science Lecture Series.
    [24] Komnitsas, K., D. Zaharaki and V. Perdikatsis (2009). ''Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers.'' Journal of Hazardous Materials 161: 760-68.
    [25] Lange, L. C., C. D. Hills and A. B. Poole (1996). ''The influence of mix parameters and binder choice on the carbonation of cement solidified wastes.'' Waste Management 16: 749-56.
    [26] Law, D. W., Adam, A. A., Molyneaux, T. K., Patnaikuni, I. and Wardhono, A. (2015). ''Long term durability properties of class F fly ash geopolymer concrete.'' Materials and Structures 48: 721-31.
    [27] Leemann, A. and F. Moro (2016). ''Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity.'' Materials and Structures 50: 30.
    [28] Li, C., H. Sun and L. Li (2010). ''A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements.'' Cement and Concrete Research 40: 1341-49.
    [29] Maragkos, I., I. P. Giannopoulou and D. Panias (2009). ''Synthesis of ferronickel slag-based geopolymers.'' Minerals Engineering 22: 196-203.
    [30] Maries, A. (1985). The activation of Portland cement by carbon dioxide. In Proceedings of Conference in Cement and Concrete Science, Oxford, UK.
    [31] Mindess, S., J. F. Young and D. Darwin (2003). Concrete, Prentice Hall, New Jersey.
    [32] Palacios, M. and F. Puertas (2006). ''Effect of Carbonation on Alkali-Activated Slag Paste.'' Journal of the American Ceramic Society 89: 3211-21.
    [33] Palomo, A., M. W. Grutzeck and M. T. Blanco (1999). ''Alkali-activated fly ashes: A cement for the future.'' Cement and Concrete Research 29: 1323-29.
    [34] Phair, J. W., J. D. Smith and J. S. J. Deventer (2003). ''Characteristics of aluminosilicate hydrogels related to commercial “Geopolymers”.'' Materials Letters 57: 4356-67.
    [35] Phair, J. W. and J. S. J. Deventer (2001). ''Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers.'' Minerals Engineering 14: 289-304.
    [36] Phair, J. W. and J. S. J. Deventer (2002). ''Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers.'' International Journal of Mineral Processing 66: 121-43.
    [37] Pouhet, R., and M. Cyr ( 2016). ''Carbonation in the pore solution of metakaolin-based geopolymer.'' Cement and Concrete Research 88: 227-35.
    [38] Puertas, F., M. Palacios and T. Vázquez (2006). ''Carbonation process of alkali-activated slag mortars.'' Journal of Materials Science 41: 3071-82.
    [39] Purdon, A.O. (1940). ''The action of alkalis on blast-furnace slag.'' Journal of the Society of Chemical Industry 59: 191-202.
    [40] Shi, C. and R. L. Day (1995). ''A calorimetric study of early hydration of alkali-slag cements.'' Cement and Concrete Research 25: 1333-46.
    [41] Shi, C. and R. L. Day (1996). ''Some factors affecting early hydration of alkali-slag cements.'' Cement and Concrete Research 26: 439-47.
    [42] Sufian Badar, M., K. Kupwade-Patil, S. A. Bernal, J. L. Provis and E. N. Allouche (2014). ''Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes.'' Construction and Building Materials 61: 79-89.
    [43] Swanepoel, J. C., and C. A. Strydom (2002). ''Utilisation of fly ash in a geopolymeric material.'' Applied Geochemistry 17: 1143-48.
    [44] Jaarsveld, J. G. S., J. S. J. Deventer and L. Lorenzen (1997). ''The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications.'' Minerals Engineering 10: 659-69.
    [45] Vu, T. H., N. Gowripalan, P. De Silva, A. Paradowska, U. Garbe, P. Kidd and V. Sirivivatnanon (2020). ''Assessing carbonation in one-part fly ash/slag geopolymer mortar: Change in pore characteristics using the state-of-the-art technique neutron tomography.'' Cement and Concrete Composites 114: 103759.
    [46] Wang, W.-C., B.-T. Chen, H.-Y. Wang and H.-C. Chou (2016). ''A study of the engineering properties of alkali-activated waste glass material (AAWGM).'' Construction and Building Materials 112: 962-69.
    [47] Xu, H., J. S. J. Deventer and G. C. Lukey (2001). ''Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures.'' Industrial & Engineering Chemistry Research 40: 3749-56.
    [48] Xu, H., and J. S. J. Deventer (2000). ''The geopolymerisation of alumino-silicate minerals.'' International Journal of Mineral Processing 59: 247-66.
    [49] Zhou, H., X. Wu, Z. Xu and M. Tang (1993). ''Kinetic study on hydration of alkali-activated slag.'' Cement and Concrete Research 23: 1253-58.
    [50] Zuhua, Z., Y. Xiao, Z. Huajun and C. Yue (2009). ''Role of water in the synthesis of calcined kaolin-based geopolymer.'' Applied Clay Science 43: 218-23.
    [51] 姚廷穎 (2020). 不同養護環境下含低溫煆燒稻殼灰無機聚合物漿體之抗壓強度與體積穩定性研究, 營建工程研究所, 國立臺灣科技大學. 碩士論文.
    [52] 莊秋明 (1991). 鋼筋或預力混凝土橋梁等構造物鹽害之防治研究, 臺灣公路工程: PP.14~26.
    [53] 陳冠宇 (2010). 鹼激發爐石基膠體配比因子對其工程性質影響之研究, 營建工程研究所, 國立臺灣科技大學, 碩士論文.
    [54] 黃兆龍 (2007). 卜作嵐混凝土使用手冊. 台北市, 財團法人中興工程顧問公司.

    無法下載圖示 全文公開日期 2031/10/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE